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Abstract
Finite-state dimension, introduced early in this century as a finite-state version of classical Hausdorff
dimension, is a quantitative measure of the lower asymptotic density of information in an infinite
sequence over a finite alphabet, as perceived by finite automata. Finite-state dimension is a robust
concept that now has equivalent formulations in terms of finite-state gambling, lossless finite-state
data compression, finite-state prediction, entropy rates, and automatic Kolmogorov complexity.
The 1972 Schnorr-Stimm dichotomy theorem gave the first automata-theoretic characterization of
normal sequences, which had been studied in analytic number theory since Borel defined them in
1909. This theorem implies, in present-day terminology, that a sequence (or a real number having
this sequence as its base-b expansion) is normal if and only if it has finite-state dimension 1. One
of the most powerful classical tools for investigating normal numbers is the 1916 Weyl’s criterion,
which characterizes normality in terms of exponential sums. Such sums are well studied objects
with many connections to other aspects of analytic number theory, and this has made use of Weyl’s
criterion especially fruitful. This raises the question whether Weyl’s criterion can be generalized
from finite-state dimension 1 to arbitrary finite-state dimensions, thereby making it a quantitative
tool for studying data compression, prediction, etc. i.e., Can we characterize all compression ratios
using exponential sums?.

This paper does exactly this. We extend Weyl’s criterion from a characterization of sequences
with finite-state dimension 1 to a criterion that characterizes every finite-state dimension. This
turns out not to be a routine generalization of the original Weyl criterion. Even though exponential
sums may diverge for non-normal numbers, finite-state dimension can be characterized in terms of
the dimensions of the subsequence limits of the exponential sums. In case the exponential sums are
convergent, they converge to the Fourier coefficients of a probability measure whose dimension is
precisely the finite-state dimension of the sequence.

This new and surprising connection helps us bring Fourier analytic techniques to bear in proofs
in finite-state dimension, yielding a new perspective. We demonstrate the utility of our criterion by
substantially improving known results about preservation of finite-state dimension under arithmetic.
We strictly generalize the results by Aistleitner and Doty, Lutz and Nandakumar for finite-state
dimensions under arithmetic operations. We use the method of exponential sums and our Weyl
criterion to obtain the following new result: If y is a number having finite-state strong dimension 0,
then dimF S(x + qy) = dimF S(x) and DimF S(x + qy) = DimF S(x) for any x ∈ R and q ∈ Q. This
generalization uses recent estimates obtained in the work of Hochman [17] regarding the entropy of
convolutions of probability measures.
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1 Introduction

Finite-state compressibility [34], or equivalently, finite-state dimension [10, 2, 5] is a quantific-
ation of the information rate in data as measured by finite-state automata. This formulation,
initially motivated by practical constraints, has proved to be rich and mathematically ro-
bust, having several equivalent characterizations. In particular, the finite state-dimension
of a sequence is equal to the compression ratio of the sequence using information lossless
finite-state compressors ([10, 2]). Finite-state dimension has unexpected connections to areas
such as number theory, information theory, and convex analysis [20, 12]. Schnorr and Stimm
[28] establish a particularly significant connection by showing that a number is Borel normal
in base b (see for example, [24, 6, 8]) if and only if its base b expansion has finite-state
compressibility equal to 1, i.e., is incompressible (see also: [3, 5, 13, 15]). Equivalently, a
number x ∈ [0, 1) is normal if and only if dimF S(x), the finite-state dimension of x is equal
to 1. A celebrated characterization of Borel normality in terms of exponential sums, provided
by Weyl’s criterion [32], has proved to be remarkably effective in the study of normality.
Weyl’s criterion on uniformly distributed sequences modulo 1 yields a characterization that a
real number r is normal to base b if and only if for every integer k,

lim
n→∞

1
n

n−1∑
j=0

e2πik(bjr) = 0. (1)

This tool was used by Wall [31] in his pioneering thesis to show that normality is preserved
under certain operations like selection of subsequences along arithmetic progressions, and
multiplication with non-zero rationals. Weyl’s criterion facilitates the application of tools
from Fourier analysis in the study of Borel normality. Weyl’s criterion is used in several
important constructions of normal numbers including those given by Cassels [7], Erdös and
Davenport [11] etc. The criterion was also instrumental in obtaining the construction of
absolutely normal numbers given by Schmidt in [27].

The finite-state compression ratio/dimension of an arbitrary sequence is a quantity in
[0,1]. The classical Weyl’s criterion provides a characterization of numbers having finite-state
dimension equal to 1 in terms of exponential sums. This leads us to the natural question -
Can we characterize arbitrary compression ratios using exponential sums?. This question
turns out to be highly non-trivial. It is not easy to generalize Weyl’s criterion to study
arbitrary finite-state compression ratios/dimension. The major conceptual hurdle arises
from the fact that for non-normal numbers, the Weyl sum averages in (1) need not converge.
The Weyl averages need not converge even when the finite-state dimension and the strong
dimension of a sequence are equal.

We demonstrate this by explicitly constructing such a sequence in Lemma 19. Using a
new construction method involving the controlled concatenation of two special sequences, we
demonstrate the existence of a sequence x ∈ Σ∞ with non-convergent Weyl averages, while
having finite-state dimension and strong dimension both equal to 1

2 . The proof that this
constructed sequence satisfies the required properties uses new techniques, which might be
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of independent interest. Due to the existence of such sequences, it is unclear how to extract
the finite-state dimension of a sequence from non-convergent Weyl averages. Indeed, it was
unclear whether any generalization of the Weyl’s criterion to arbitrary finite-state dimensions
even exists.

Our paper rescues this approach and gives such a characterization of arbitrary finite-
state compressibility/dimension by introducing one important viewpoint, that turns out to
be the major theoretical insight. Even when the exponential sums diverge, the theory of
weak convergence of probability measures ([4]) enables us to consider the collection of all
probability measures having Fourier coefficients equal to the subsequence limits of the Weyl
averages. The dimensions of the measures in the set of subsequence weak limit measures
gives a generalization of Weyl’s criterion. For any x, let dimF S(x) and DimF S(x) denote
the finite-state dimension and finite-state strong dimension [2] of x respectively. We now
informally state our Weyl’s criterion for finite-state dimension.

▶ Theorem (Informal statement of Theorem 22). Let x ∈ [0, 1). If for any subsequence
⟨nm⟩∞

m=0 of natural numbers, there exist complex numbers ck such that for every k ∈ Z,
limm→∞

1
nm

∑nm−1
j=0 e2πik(bjx) = ck, then, there exists a probability measure µ on [0, 1)

such that for every k, ck =
∫

e2πikydµ. Let Wx be the collection of all such probability
measures µ on [0, 1) that can be obtained as the subsequence limits of Weyl averages. Then,
dimF S(x) = infµ∈Wx H−(µ) and DimF S(x) = supµ∈Wx

H+(µ).

The correct notion of dimensions of the subsequence weak limit measures in Wx which
yields the finite-state dimensions of x turns out to be H− and H+, the lower and upper
average entropies of µ as defined in [2] 1. Therefore, this new characterization enables us to
extract the finite-state compressibility/dimension by studying the behavior of the Weyl sum
averages, thereby extending Weyl’s criterion for normality to arbitrary finite-state dimensions.

An interesting special case of our criterion is when the exponential averages of a sequence
are convergent. In this case, the averages ⟨ck⟩k∈Z are precisely the Fourier coefficients of
a unique limiting measure, whose dimension is precisely the finite-state dimension of the
sequence. This relates two different notions of dimension to each other. We give the informal
statement of our criterion for this special case.

▶ Theorem (Informal statement of Theorem 23). Let x ∈ [0, 1). If there exist complex numbers
ck for k ∈ Z such that 1

n

∑n−1
j=0 e2πik(bjx) → ck as n → ∞, then, there exists a unique measure

µ on [0, 1) such that for every k, ck =
∫

e2πikydµ. Furthermore, dimF S(x) = DimF S(x) =
H−(µ) = H+(µ).

Our results also show that in case there is a unique weak limit measure, the exponential
sums (1) converge for every k ∈ Z. These give the first known relations between Fourier
coefficients and finite-state compressibility/dimension. The proof of Weyl’s criterion for
finite-state dimension is not a routine generalization of the available proofs of Weyl’s criterion
for normality (see [32, 14], [30]) and requires several facts from the theory of weak convergence
of probability measures and new relationships involving the exponential sums, the dimensions
of weak limit measures and the finite-state dimension of the given sequence. We overcome
certain additional technical difficulties in working with two different topologies - the topology
on the torus T where Fourier coefficients uniquely determine a measure, and another, Cantor
space, which is required for studying combinatorial properties of sequences, like normality.

1 These are analogues of the well-known Rényi upper and lower dimensions of measures as defined in [25].
See the remark following Definition 5.
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1.1 Applications of our criterion

We illustrate how this framework can be applied in sections 6. These results justify that this
framework pioneers a new, powerful, approach to data compression. It is not very surprising
that when the Weyl averages converge, our criterion has applications. Importantly, even
in situations where the Weyl averages do not converge, it is possible to derive non-trivial
consequences. We apply our techniques to substantially improve known results about the
preservation of finite-state dimension under arithmetic and combinatorial operations.

Doty, Lutz and Nandakumar [12] show that if x is any real and q is any non-zero rational,
then the finite-state dimensions and strong dimensions of x, qx and x + q are equal. When x

is normal, a generalization is obtained by Aistleitner [1], which can be described as follows.
Let y be any real such that the asymptotic density of zeroes in its expansion is one. Then,
for any rational q, we have x + qy is normal. We generalize these results by allowing both
the following conditions simultaneously,

1. x is allowed to be any real, obtaining a result for all finite-state dimensions rather than
only for normals as in Aistleitner [1] and

2. y is allowed to be any real with finite-state strong dimension 0 which satisfies a nat-
ural independence condition. This generalizes both the restrictions in Doty, Lutz and
Nandakumar [12] and Aistleitner [1],

and show that for any rational q ∈ Q, dimF S(x + qy) = dimF S(x) and DimF S(x + qy) =
DimF S(x) if x and y are independent (see Definition 30) and DimF S(y) = 0.

Using our Weyl criterion along with the results in Hochman [17], we obtain the following.
Let x and y be real numbers in T such that x and y are independent. Then for any
d, e ∈ Z, dimF S(dx+ey) ≥ max{dimF S(dx), dimF S(ey)} and dimF S(dx+ey) ≤ dimF S(dx)+
DimF S(ey). Similarly, DimF S(dx + ey) ≥ max{DimF S(dx), DimF S(ey)} and DimF S(dx +
ey) ≤ DimF S(dx) + DimF S(ey). Our main results are consequences of these inequalities.

There are several known techniques for explicit constructions of normal numbers (see [20,
6]), but constructions of those with finite-state dimension s ∈ [0, 1) follow two techniques:
first, to start with a normal sequence, and to dilute it with an appropriate fraction of
simple patterns, as we did in Section 4, and second, to start with a coin with bias p such
that −p log2 p − (1 − p) log2(1 − p) = s, and consider any typical sequence drawn from this
distribution (see also [23]). We note that our Weyl criterion along with techniques from
Mance and Madritsch [22] yields new methods for the explicit construction of numbers having
a specified finite-state dimension.

Lossless data compression is practically significant, and theoretically sophisticated. We
show how one of the major tools of modern mathematics, Fourier analysis, can be brought to
bear to study compressibility of individual data sequences. We hope that our criterion will
facilitate the application of more powerful Fourier analytic tools in future works involving
finite-state compression/dimension.

After the preliminary sections, section 3 gives Weyl’s criterion on Cantor space using
weak convergence of measures. Next, we show the necessity and the sufficiency of passing
to subsequences of sequences of measures in order to generalize Weyl’s criterion for finite-
state dimension. In section 6 we show the applications of our Weyl criterion to yield new,
general results regarding the preservation of finite-state dimension under arithmetic and
combinatorial operations.



J. H. Lutz, S. Nandakumar, and S. Pulari 65:5

2 Preliminaries

For any natural number b > 1, Σb denotes the alphabet {0, 1, 2, . . . b − 1}. Throughout this
paper, we work with base 2, but our results generalize to all bases. We use Σ to denote
the binary alphabet Σ2. We denote the set of finite binary strings by Σ∗ and the set of
infinite sequences by Σ∞. For any w ∈ Σ∗, let Cw be the set of infinite sequences with w as
a prefix, called a cylinder. For any sequence x = x0x1x2 . . . in Σ∞, we denote the substring
xixi+1 . . . xj of x, by xj

i . The Borel σ-algebra generated by the set of all cylinder sets is
denoted by B(Σ∞). Let T denote the one-dimensional torus or unit circle. i.e, T is the unit
interval [0, 1) with the metric d(r, s) = min{|r − s|, 1 − |r − s|}. T is a compact metric space.
The Borel σ-algebra generated by all open sets in T is denoted by B(T). For any base b, let vb

be the evaluation map which maps any x ∈ Σ∞ to its value in T which is
∑∞

i=0
xi

bi+1 mod 1.
We use the simplified notation v to denote the base 2 evaluation map v2. Let T be the left
shift transformation T (x0x1x2 . . . ) = x1x2x3 . . . on Σ∞. For any base b and w ∈ Σ∗

b , let Ib
w

denote the interval
[
vb(w0∞), vb(w0∞) + b−|w|) in T. We use the simplified notation Iw to

refer to I2
w. Let D be the set of all dyadic rationals in T. It is easy to see that v : Σ∞ → T

has a well-defined inverse, denoted v−1, over T \ D. For any measure µ on T (or Σ∞), we
refer to the collection of complex numbers

∫
e2πikydµ where k ranges over Z as the Fourier

coefficients of measure µ. For measures over Σ∞, the function e2πiky inside the integral is
replaced with e2πikv(y). For every measure µ on T, we define the corresponding lifted measure
on Σ∞ as follows.

▶ Definition 1 (Lift µ̂ of a measure µ on T). If µ is a measure on T, then we define the lift
µ̂ of µ to be the unique measure on Σ∞ satisfying µ̂(Cw) = µ(Iw) for every string w ∈ Σ∗. 2

▶ Definition 2. Let x ∈ Σ∗ have length n. We define the sliding count probability of w ∈ Σ∗

in x denoted P (x, w), and the disjoint block probability of w in x, denoted P d(x, w), as
follows.

P (x, w) = |{i ∈ [0, n − |w|] : x
i+|w|−1
i = w}|

n − |w| + 1 and P d(x, w) =
|{i ∈ [0, n

|w| ) : x
|w|(i+1)−1
|w|i = w}|

n/|w|

Now, we define normal sequences in Σ∞ and normal numbers on T.

▶ Definition 3. A sequence x ∈ Σ∞ is normal if for every w ∈ Σ∗, limn→∞ P (xn−1
0 , w) =

2−|w|. r ∈ T is normal if and only if r ̸∈ D and v−1(r) is a normal sequence in Σ∞.

Equivalently, we can formulate normality using disjoint probabilities [20]. The following is
the block entropy characterization of finite-state dimension from [5], which we use instead of
the original formulation using s-gales (see [10],[2],[21]).

▶ Definition 4 ([10, 5]). For a given block length l, we define the sliding block entropy
over xn−1

0 as Hl(xn−1
0 ) = − 1

l

∑
w∈Σl P (xn−1

0 , w) log(P (xn−1
0 , w)). The finite-state dimen-

sion of x ∈ Σ∞, denoted dimF S(x), and finite-state strong dimension of x, denoted
DimF S(x), are defined as follows. dimF S(x) = inf l lim infn→∞ Hl(xn−1

0 ) and DimF S(x) =
inf l lim supn→∞ Hl(xn−1

0 ) 3.

2 The uniqueness of µ̂ follows from routine measure theoretic arguments
3 The fact that dimF S(x) and DimF S(x) are equivalent to the lower and upper finite-state compressibilities

of x using lossless finite-state compressors, follows immediately from the results in [34] and [10].

MFCS 2023
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Disjoint block entropy Hd
l is defined similarly by replacing P with P d. Bourke, Hitchcock

and Vinodchandran [5], based on the work of Ziv and Lempel [34], demonstrated the
entropy characterization of finite-state dimension using Hd

l instead of Hl. Kozachinskiy
and Shen ([19]) proved that the finite-state dimension of a sequence can be equivalently
defined using sliding block entropies (as in Definition 4) instead of disjoint block entropies.
It is clear from the definition that, for any x ∈ Σ∞, dimF S(x) ≤ DimF S(x). Any x with
dimF S(x) = DimF S(x) is called a regular sequence. Upper and lower average entropies were
defined in [2] for measures constructed out of infinite bias sequences. We extend these notions
to the set of all measures on Σ∞ below.

▶ Definition 5. For any probability measure µ on Σ∞, let Hn(µ) =
−

∑
w∈Σn µ(Cw) log(µ(Cw)). The upper average entropy of µ, denoted H+(µ), and

its lower average entropy, denoted H−(µ), are respectively the limit superior and the limit
inferior as n tends to ∞ of Hn(µ)/n.

Upper and lower average entropies are the Cantor space analogues of Rényi upper and lower
dimensions of measures on [0,1) which were originally defined for measures on the real line
in [25]. For any x ∈ T (or x ∈ Σ∞) , let δx denote the Dirac measure at x. i.e, δx(A) = 1 if
x ∈ A and 0 otherwise for every A ∈ B(T) (or A ∈ B(Σ∞)). Given a sequence ⟨xn⟩∞

n=0 of
numbers in T(or Σ∞), we investigate the behavior of exponential averages 1

n

∑n−1
j=0 e2πikxj

by studying the weak convergence of sequences of averages of Dirac measures.

▶ Definition 6. Given a sequence ⟨xn⟩∞
n=0 in T (or elements in Σ∞), we say that ⟨νn⟩∞

n=1
is the sequence of averages of Dirac measures over T (or over Σ∞) constructed out of the
sequence ⟨xn⟩∞

n=0 if, νn = n−1 ∑n−1
i=0 δxi for each n ∈ N.

3 Weyl’s criterion and weak convergence

Schnorr and Stimm [28] (see also [3, 5]) showed a central connection between normal numbers
and finite-state compressibility, or equivalently, finite-state dimension: a sequence x ∈ Σ∞ is
normal if and only if its finite-state dimension is 1. Any x ∈ Σ∞ has finite-state dimension
(equivalently, finite-state compressibility) between 0 and 1. In this sense, finite-state dimension
is a generalization of the notion of normality. Another celebrated characterization of
normality, in terms of exponential sums, was provided by Weyl in 1916. This characterization
has resisted attempts at generalization. In the present section, we show that the theory
of weak convergence of measures yields a generalization of Weyl’s characterization for
arbitrary dimensions. We demonstrate the utility of this new characterization to finite-state
compressibilty/finite-state dimension, in subsequent sections. Weyl criterion for normal
numbers on T is the following.

▶ Theorem 7 (Weyl’s criterion [32]). A number r ∈ T is normal if and only if for every
k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πik(2jr) = 0.

The insight in this theorem is the connection between a number x being normal, and the
concept of the collection of its shifts being uniformly distributed in the unit interval. It is
the latter concept which leads to the cancellation of the exponential sums of all orders. The
following is a formulation of this criterion on Cantor space, which we require in our work.

▶ Theorem 8 (Weyl’s criterion on Σ∞). A sequence x ∈ Σ∞ is a normal sequence if and only
if for every k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πik(v(T jx)) = 0.
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The key to generalizing Weyl’s criterion to sequences with finite-state dimension less than
1 is to characterize convergence of subsequences of exponential sums using weak convergence
of probability measures on Σ∞ (see Billingsley [4]). Over T, this equivalent characterization
is well-known (see Section 4.4 from [14]). Obtaining the same equivalence over Σ∞ involves
some technical hurdles due to the fact that continuous functions over Σ∞ need not have a
uniform approximation using trigonometric polynomials. In order to overcome these, we
need to carefully study the relationship between the convergence of Weyl averages and weak
convergence over Σ∞. We develop these relationships in the following lemmas. At the end
of this section we characterize Theorem 8 in terms of weak convergence of a sequence of
measures over Σ∞.

▶ Definition 9. A sequence ⟨νn⟩n∈N of probability measures on a metric space (X, d) converges
weakly to a probability µ on (X, d), denoted νn ⇒ µ, if for every bounded continuous function
f : X → C, we have limn→∞

∫
fdνn =

∫
fdµ.

If a sequence of measures ⟨νn⟩n∈N on a metric space (X, d) has a weak limit measure, then the
weak limit must be unique (see Theorem 1.2 from [4]). Since T and Σ∞4 are compact metric
spaces, using Prokhorov’s Theorem (see Theorem 5.1 from [4]) we get that any sequence of
measures ⟨νn⟩n∈N on T (or Σ∞), has a measure µ on T (or Σ∞) and a subsequence ⟨νnm

⟩m∈N
such that νnm ⇒ µ. We first establish a relationship between weak convergence of measures
on T and the convergence of measures of dyadic intervals in T. Since the set of all finite
unions of dyadic intervals in T is closed under finite intersections, we obtain the following
lemma using Theorem 2.2 from [4].

▶ Lemma 10. If for every dyadic interval I in T, limn→∞ νn(I) = µ(I), then νn ⇒ µ.

The Portmanteau theorem (Theorem 2.1 from [4]) gives the following partial converse.

▶ Lemma 11. Let νn ⇒ µ. Then limn→∞ νn(I) = µ(I) for dyadic interval I = [d1, d2) if
µ({d1}) = µ({d2}) = 0.

We characterize convergence of exponential sums in terms of weak convergence of probab-
ility measures, first on T and then on the Cantor space Σ∞. Unlike Theorem 7, the result on
Σ∞ does not follow immediately from that on T. On T, the following theorem holds due to
Prokhorov theorem, the fact that continuous functions on T can be approximated uniformly
using trigonometric polynomials, and that Fourier coefficients of measures over T are unique
due to Bochner’s theorem (see Theorem 4.19 from [16]).

▶ Theorem 12. Let r ∈ T and let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures

constructed out of ⟨2nr mod 1⟩∞
n=0. Let ⟨nm⟩m∈N be any subsequence of natural numbers.

Then for every k ∈ Z, there is a ck ∈ C such that limm→∞
1

nm

∑nm−1
j=0 e2πik(2jr) = ck if and

only if there is a unique measure µ such that νnm
⇒ µ. Furthermore, if any of the above

conditions are true, then ck =
∫

e2πikydµ for every k ∈ Z and µ is the unique measure on T
having Fourier coefficients ⟨ck⟩k∈Z.

We require an analogue of this theorem for Cantor space. But the proof above cannot be
adapted because on Cantor space, there are continuous functions which cannot be approxim-
ated uniformly using trigonometric polynomials. For example, consider χC0 . Observe that
χC0(0∞) = 1 ̸= 0 = χC0(1∞). But since v(0∞) = v(1∞), every trigonometric polynomial

4 The metric on Σ∞ is d(x, y) = 2− min{i|xi ̸=yi}.

MFCS 2023
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has the same value on 0∞ and 1∞. However, we recover the analogue by handling dyadic
rational sequences and other sequences in separate cases. Since the set of all finite unions of
cylinder sets in Σ∞ is closed under finite intersections and since the characteristic functions
of cylinder sets are continuous on the Cantor space, we get the following analogue of Lemma
10 and 11 using Theorem 2.2 from [4].

▶ Lemma 13. For a sequence of measures ⟨νn⟩n∈N on Σ∞, νn ⇒ µ iff limn→∞ νn(Cw) =
µ(Cw) for every w ∈ Σ∗.

In the following theorems we relate the convergence of measures of cylinder sets to the
convergence of Weyl averages on the Cantor space using Theorem 12 and Lemma 13. We
state these theorems for convergence along any subsequence, since we require these more
general results for studying the subsequence limits of Weyl averages.

▶ Theorem 14. Let x ∈ Σ∞ and ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures

on Σ∞ constructed out of ⟨T nx⟩∞
n=0. Let ⟨nm⟩m∈N be any subsequence of natural num-

bers. If limm→∞ νnm
(Cw) = µ(Cw) for every w ∈ Σ∗, then for every k ∈ Z we have

limm→∞
1

nm

∑nm−1
j=0 e2πikv(T jx) =

∫
e2πikv(y)dµ.

Observe that n−1
m

∑nm−1
j=0 e2πikv(T jx) =

∫
e2πikv(y)dνnm . Hence, the above claim follows

from Lemma 13 and the definition of weak convergence since for every k ∈ Z, e2πikv(y) is a
continuous function on Σ∞5. While Fourier coefficients uniquely determine measures over
T, Bochner’s Theorem does not hold over Σ∞. For example let µ1 = δ0∞ and let µ2 = δ1∞ .
Then µ1 ≠ µ2, but it is easy to verify that for any k ∈ Z,

∫
e2πikv(y)dµ1 = e2πikv(0∞) = 1 =

e2πikv(1∞) =
∫

e2πikv(y)dµ2. The following lemma leads to a converse of Theorem 14.

▶ Lemma 15. Let x ∈ Σ∞ such that v(x) ̸∈ D and let ⟨ν′
n⟩∞

n=1 be the sequence of averages
of Dirac measures on T constructed out of the sequence ⟨2nv(x) mod 1⟩∞

n=0. Let d be any
non-zero dyadic rational. If ν′

nm
⇒ µ′ for some subsequence of natural numbers ⟨nm⟩m∈N,

then µ′({d}) = 0.

Using the above results we obtain the following partial converse of Theorem 14.

▶ Theorem 16. Let x ∈ Σ∞ and let ⟨nm⟩m∈N be any subsequence of natural numbers.
Let ⟨ck⟩k∈Z be complex numbers such that limm→∞

1
nm

∑nm−1
j=0 e2πikv(T jx) = ck for every

k ∈ Z. Then there exists a unique measure µ on T having Fourier coefficients ⟨ck⟩k∈Z and
limm→∞ νnm

(Cw) = µ̂(Cw) for every w ∈ Σ∗ such that w ̸= 1|w| and w ̸= 0|w|.

For any x ∈ Σ∞, let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures on Σ∞

constructed out of the sequence ⟨T nx⟩∞
n=0. Now, for any A ∈ B(Σ∞), νn(A) is the proportion

of elements in the finite sequence x, Tx, T 2x, . . . T n−1x which falls inside the set A. From
this remark, and the definitions of νn and the sliding count probability P , the following
lemma follows easily.

▶ Lemma 17. Let w be any finite string in Σ∗ and let l = |w|. Let x be any element in
Σ∞. If ⟨νn⟩∞

n=1 is the sequence of averages of Dirac measures over Σ∞ constructed out of
the sequence ⟨T nx⟩∞

n=0. Then for any n, νn(Cw) = P (xn+l−2
0 , w).

We now give a new characterization of Weyl’s criterion on Cantor Space (Theorem 8) in
terms of weak convergence of measures.

5 This follows easily by observing that the valuation map v : Σ∞ → T is a continuous function on Σ∞.
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▶ Theorem 18 (Weyl’s criterion on Σ∞ and weak convergence). Let x ∈ Σ∞, and ⟨νn⟩∞
n=1

be the sequence of averages of Dirac measures constructed out of ⟨T nx⟩∞
n=0, and µ be the

uniform measure on Σ∞. Then the following are equivalent.
1. x is normal.
2. For every w ∈ Σ∗, the sliding block frequency P (xn−1

0 , w) → 2−|w| as n → ∞.
3. For every k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πikv(T jx) = 0.

4. νn ⇒ µ.

4 Divergence of exponential sums for non-normal numbers

Weyl’s criterion says that when dimF S(x) = DimF S(x) = 1 the averages of the exponential
sums for every k converges to 0. However for x with dimF S(x) < 1, the situation is different.
It is easy to construct a sequence a with dimF S(a) < 1 and a k ∈ Z such that the sequence
of Weyl averages with parameter k do not converge. It is natural to ask if the condition
dimF S(x) = DimF S(x) is sufficient to guarantee convergence of the exponential sum averages.
But we construct an x with dimF S(x) = DimF S(x) = 1

2 such that for some k, the sequence
⟨
∑n−1

j=0 e2πik(v(T jx))/n⟩∞
n=1 diverges. Entropy rates converging to a limit does not imply that

the empirical probability measures converge to a limiting distribution, and it is the latter
notion which is necessary for exponential sums to converge.

▶ Lemma 19. There exists x ∈ Σ∞ with dimF S(x) = DimF S(x) = 1
2 such that for some

k ∈ Z, the sequence ⟨
∑n−1

j=0 e2πik(v(T jx))/n⟩∞
n=1 is not convergent.

Generalizing the construction of diluted sequences in [10], we define an x with v(x) ∈ T\D
and dimF S(x) = DimF S(x) = 1/2, but where for some k ∈ Z, the sequences of Weyl sum
averages diverge. The idea of dilution is as follows. Let y ∈ Σ∞ be normal. Define a ∈ Σ∞ by
a2n = 0, a2n+1 = yn, n ∈ N. Then dimF S(a) = DimF S(a) = 1/2. Note that b ∈ Σ∞ defined
by b4n = b4n+3 = 0, and b4n+1 = y2n, b4n+2 = y2n+1, n ∈ N is also a regular sequence with
dimF S(b) = DimF S(b) = 1/2. But, the sliding block frequency of 01 in a is 1/4, whereas
it is 3/16 in b. We leverage the existence of such distinct sequences with equal dimension.
The disjoint blocks of x alternate between the above two patterns in a controlled manner to
satisfy the following conditions.
1. dimF S(x) = DimF S(x) = 1/2
2. There is an increasing sequence of indices ⟨ni⟩∞

i=1 such that limi→∞ P (xni−1
0 , 01) = 1/4.

3. There is an increasing sequence of indices ⟨ni⟩∞
i=1 such that limj→∞ P (xnj−1

0 , 01) = 3/16.

Let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures constructed out of ⟨T nx⟩∞

n=0,
and ⟨ν′

n⟩∞
n=1, those from ⟨2nv(x) mod 1⟩∞

n=0. Assume that ⟨n−1 ∑n−1
j=0 e2πik(v(T jx))⟩∞

n=1 con-
verge for every k ∈ Z. Using the same steps in the proof of Theorem 16, we get that ν′

n ⇒ µ′

where µ′ is the unique measure on T having Fourier coefficients equal to the limits of the
Weyl averages. Since v(x) ∈ T \ D, Theorem 16 implies that ν(C01) is convergent. Using
Lemma 17, we infer that limn→∞ P (xn−1

0 , 01) exists. But, we know from conditions 2 and 3
that P (xn−1

0 , 01) is not convergent. Hence, we arrive at a contradiction. Therefore, for some
k ∈ Z, the Weyl averages ⟨n−1 ∑n−1

j=0 e2πik(v(T jx))⟩∞
n=1 diverge. The above construction is

easily adapted to show that for any rational number p/q ∈ (0, 1), there exists x ∈ Σ∞ with
dimF S(x) = DimF S(x) = p/q such that some Weyl average of x diverges.
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5 Weyl’s criterion for finite-state dimension

We saw in Lemma 19 that Weyl averages may diverge for x having finite-state dimension
less than 1, even if x is regular. Hence, it is necessary for us to deal with divergent Weyl
averages and obtain their relationship with the finite-state dimension of x. We know from
Theorem 18 that Weyl’s criterion for normality (Theorem 8) is equivalently expressed in
terms of weak convergence of a sequence of measures over Σ∞. In section 5.1, we generalize
the weak convergence formulation to handle arbitrary finite state dimension. Applying this,
in section 5.2, we generalize the exponential sum formulation.

5.1 Weak convergence and finite-state dimension
We know from Theorem 18 that x ∈ Σ∞ is normal (equivalently, dimF S(x) = 1) if and
only if νn → µ, where µ is the uniform distribution over Σ∞. In this subsection we give a
generalization of this formulation of Weyl’s criterion which applies for x having any finite-
state dimension. Lemma 19 and Theorem 14 together imply that νn’s need not be weakly
convergent even if x is guaranteed to be regular. However, studying the subsequence limits
of ⟨νn⟩∞

n=1 gives us the following generalization of Weyl’s criterion for arbitrary x ∈ Σ∞.

▶ Theorem 20. Let x ∈ Σ∞. Let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures on

Σ∞ constructed out of the sequence ⟨T nx⟩∞
n=0. Let Wx be the collection of all subsequence

weak limits of ⟨νn⟩∞
n=1. i.e, Wx = {µ | ∃⟨nm⟩∞

m=0 such that νnm
⇒ µ}. Then, dimF S(x) =

infµ∈Wx H−(µ) and DimF S(x) = supµ∈Wx
H+(µ).

The following is an equivalent version of Theorem 20 which we require in section
5.2. From the definition of lower average entropy, Theorem 20 shows that, dimF S(x) =
infµ∈Wx

lim inf l→∞ Hl(µ)/l. This lim inf can be replaced by an infimum.

▶ Lemma 21. dimF S(x) = infµ∈Wx
inf l Hl(µ)/l

5.2 Weyl averages and finite-state dimension
We now obtain the main result of the paper by relating subsequence limits of Weyl averages
and finite-state dimension. In case the Weyl averages converge, we show that the sequence is
regular. In particular, when the Weyl averages converge to 0, then the regular sequence is
normal. We know from Lemma 19 that there exist regular sequences with non-convergent
Weyl averages. In the absence of limits, we investigate the subsequence limits of Weyl
averages in order to obtain a relationship with the finite-state dimension. If for some
x ∈ Σ∞, there exist a sequence of natural numbers ⟨nm⟩m∈N and constants ⟨ck⟩k∈Z such
that limm→∞

1
nm

∑nm−1
j=0 e2πik(v(T jx)) = ck. Then, using Theorem 16, we get that there

exists a measure µ on T such that ck =
∫

e2πikydµ and limm→∞ νnm
(Cw) = µ̂(Cw) for every

w ̸= 0|w| and w ̸= 1|w|. But, νnm(C0l) and νnm(C1l) need not converge. Simple examples
of such strings can be obtained by concatenating increasingly large runs of 0’s and 1’s in
an alternating stage wise manner. However, the probabilities of the strings 0l and 1l have
negligible effect on the finite-state dimension as l gets large. Using Theorem 20 we obtain
the following.

▶ Theorem 22 (Weyl’s criterion for finite-state dimension). Let x ∈ Σ∞. If for any ⟨nm⟩∞
m=0

there exist constants ck for k ∈ Z such that limm→∞
1

nm

∑nm−1
j=0 e2πik(v(T jx)) = ck, for every

k ∈ Z, then there exists a measure µ on T such that for every k, ck =
∫

e2πikydµ. Let
Ŵx be the collection of the lifted measures µ̂ on Σ∞ for all µ on T that can be obtained
as subsequence limits of Weyl averages. Then, dimF S(x) = inf{H−(µ̂) | µ̂ ∈ Ŵx} and
DimF S(x) = sup{H+(µ̂) | µ̂ ∈ Ŵx}
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Proof of Theorem 22. If v(x) is a dyadic rational in T, then it can be easily verified that
the Weyl averages are convergent to 1. The unique measure having all Fourier coefficients
equal to 1 over T is δ0. Since δ̂0 = δ0∞ , it can be easily verified that dimF S(x) = H−(δ0∞) =
H+(δ0∞) = DimF S(x) = 0. Hence, we consider the case when v(x) is not a dyadic rational.
We first define analogues of finite-state dimension by avoiding the strings 0l and 1l for all l

in calculating the sliding entropies. We define H̃l(xn−1
0 ) to be the normalized sliding entropy

over xn−1
0 as in the definition of Hl(xn−1

0 ), except that the summation is taken over Σl\{0l, 1l}
instead of Σl. Using this notion, we define d̃imF S(x) = lim inf l→∞ lim infn→∞ H̃l(xn−1

0 ) and
D̃imF S(x) = lim inf l→∞ lim supn→∞ H̃l(xn−1

0 ). Since, H̃l(xn−1
0 ) ≤ Hl(xn−1

0 ) ≤ H̃l(xn−1
0 ) +

2/l, it can be shown using routine arguments that dimF S(x) = d̃imF S(x) and DimF S(x) =
D̃imF S(x). Similarly we define H̃+ and H̃− by reducing the range of the sum in the definition
of Hl to Σl \ {0l, 1l} instead of Σl. Using a similar argument as in the case of sliding entropy,
it can be shown that H̃+ and H̃− are the same as H+ and H− for any measure on Σ∞.
Let ⟨νn⟩∞

n=1 be the sequence of averages of Dirac measures on Σ∞ constructed out of the
sequence ⟨T nx⟩∞

n=0. Let Wx be the set of all weak limits of νn as constructed in Theorem
20. Since v(x) is not a dyadic rational, using Prokhorov’s theorem for weak convergence of
T and weak convergence over Σ∞, it can be shown that, infµ∈Wx

H−(µ) = inf
µ̂∈Ŵx

H−(µ̂)
and supµ∈Wx

H+(µ) = sup
µ̂∈Ŵx

H+(µ̂). The claim now follows from Theorem 20. ◀

Hence, the finite-state dimension and finite-state strong dimension are related to the lower
and upper average entropies of the subsequence limits of the Weyl averages. Using the above
result, we get the following theorem in the case when the Weyl averages are convergent.

▶ Theorem 23 (Weyl’s criterion for convergent Weyl averages). Let x ∈ Σ∞. If there exist
ck ∈ C for k ∈ Z such that 1

n

∑n−1
j=0 e2πik(v(T jx)) → ck as n → ∞, then, there exists a

unique measure µ on T such that for every k, ck =
∫

e2πikydµ. Furthermore, dimF S(x) =
DimF S(x) = H−(µ̂) = H+(µ̂).

As a special case, we derive Weyl’s criterion for normality, i.e, for sequences x such that
dimF S(x) = DimF S(x) = 1 as a special case of Theorem 20 and Theorem 23.

▶ Theorem 24. Let x ∈ Σ∞. Then limn→∞
1
n

∑n−1
j=0 e2πik(v(T jx)) = 0 for every k ∈ Z if and

only dimF S(x) = DimF S(x) = 1.

The conclusion of Theorem 23 says that dimF S(x) = DimF S(x). i.e, x is a regular
sequence. Hence, Lemma 19 and Theorem 23 together yield the following.

▶ Corollary 25. If for each k ∈ Z, limn→∞
1
n

∑n−1
j=0 e2πik(v(T jx)) = ck for a sequence of

complex numbers ⟨ck⟩k∈Z. Then, x is a regular sequence. But there exist regular sequences
having non-convergent Weyl averages.

6 Preservation of finite-state dimension under real arithmetic

In this section, we demonstrate the utility of our framework by proving the most general
results yet regarding the preservation of finite-state dimension under arithmetic operations
like addition with reals satisfying a natural independence condition, and multiplication
with non-zero rationals. These results strictly generalize all known results regarding the
preservation of finite-state dimension including those of Doty, Lutz and Nandakumar [12] and
Aistleitner [1]. Our Weyl criterion plays a pivotal role in these extensions. We combine our
Weyl criterion along with recent estimates by Hochman [17] for the entropy of convolution
of probability measures. It is easier to analyze addition and multiplication as operations
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over T. Hence we first obtain an equivalent Weyl’s criterion for finite-state dimension
in terms of measures over T. We now define the analogues of upper and lower average
entropies for measures over T. This turns out to be the notion of Rényi dimension as
defined by Alfréd Rényi in [25]. Recall that for any m and w ∈ Σn

m, Im
w denotes the interval[

vm(w0∞), vm(w0∞) + m−|w|) in T.

▶ Definition 26 (Rényi Dimension). For any probability measure µ on T and partition factor
m, let Hm

n (µ) = −
∑

w∈Σn
m

µ(Im
w ) log(µ(Im

w )). The Rényi upper and lower dimensions (see
[25] and [33]) are defined as follows, dimm

R (µ) = lim sup
n→∞

Hm
n (µ)

n log m and dimm
R (µ) = lim inf

n→∞
Hm

n (µ)
n log m .

If dimm

R (µ) = dimm
R (µ) then the Rényi dimension of µ is dimm

R (µ) = dimm

R (µ) = dimm
R (µ).

From the above definition, it seems as if the notion of Rényi dimension is dependent
on the choice of the partition factor m. However, Rényi upper and lower dimensions are
quantities that are independent of the partition factor6. Hence, we suppress the partition
factor m in the notations dimm

R (µ), dimm
R (µ) and dimm

R (µ) and use dimR(µ), dimR(µ) and
dimR(µ) to refer to the corresponding quantities for a measure µ on T. Now, we state
an equivalent Weyl’s criterion for finite-state dimension for r ∈ T in terms of weak limit
measures over T and Rényi dimension of measures over T.

▶ Theorem 27 (Restatement of Weyl’s criterion for finite-state dimension (Theorem 22)). Let r ∈
T. If for any ⟨nm⟩∞

m=0 there exist ck for k ∈ Z such that 7 limm→∞
1

nm

∑nm−1
j=0 e2πik2jr = ck

for every k ∈ Z, then there exists a measure µ on T such that for every k, ck =
∫

e2πikydµ. Let
Wr be the collection of all µ on T that can be obtained as subsequence limits of Weyl averages.
Then, dimF S(r) = inf{dimR(µ) | µ ∈ Wr} and DimF S(r) = sup{dimR(µ) | µ ∈ Wr}.

D. D. Wall in his thesis [31] proved that if r ∈ [0, 1] and q is any non-zero rational
number, then r is a normal number if and only if qr and q + r are normal numbers. Doty,
Lutz and Nandakumar [12] generalized this result to arbitrary finite-state dimensions and
proved that the finite-state dimension and finite-state strong dimension of any number are
preserved under multiplication and addition with rational numbers.

▶ Theorem 28 ([12]). Let r ∈ T and q be any non-zero rational number. Then for any base
b, dimb

F S(r) = dimb
F S(q + r) = dimb

F S(qr) and Dimb
F S(r) = Dimb

F S(q + r) = Dimb
F S(qr).

In the above dimb and Dimb denotes the finite-state dimension and finite-state strong
dimension of the number r calculated by considering the sequence representing the base-b
expansion of r8. In the specific case of normal sequences, Wall’s result has been generalized
by Aistleitner in the following form. Let C be the set of reals y = 0.y0y1 . . . such that the
ratio P (yn−1

0 , 0) goes to 1 as n tends to ∞. Then we have the following.

▶ Theorem 29. If y ∈ C, then for any normal r ∈ T and q ∈ Q, the number r + qy is normal.

We strictly generalize all these above results by formulating a natural independence
notion between two reals. We describe the framework below. Given strings x and y in
Σ∞ and strings u, w ∈ Σℓ for some ℓ ≥ 1, we define the joint occurrence count of u and w

6 This important fact regarding Rényi dimension is a folklore result.
7 The 2j term in limit expression must be replaced with bj while investigating the above criterion in any

arbitrary base b
8 For r having multiple base b expansions, this does not cause any ambiguity since in this case the

finite-state dimensions of r are 0 with respect to any of the two possible expansions.
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in x and y up to n as, Nu,w(xn−1
0 , yn−1

0 ) = |{i ∈ [0, n − ℓ] : xi+ℓ−1
i = u and yi+ℓ−1

i = w}|.
And, then the joint occurrence probability of u and w in x and y up to n is defined as
Pu,w(xn−1

0 , yn−1
0 ) = Nu,w(xn−1

0 ,yn−1
0 )

n−ℓ+1 .
Informally, we define two infinite strings x and y to be independent if for infinitely many

lengths l, the occurrence probability distributions of l-length strings within x and y are
independent in the limit. The straightforward formulation of independence between x and
y is limn→∞ Pu,w(xn−1

0 , yn−1
0 ) = limn→∞ P (xn−1

0 , u)P (yn−1
0 , w). But these limits need not

exist for general x and y. Hence, the more admissible and useful definition is the following.

▶ Definition 30. Any two strings x and y in Σ∞ are said to be independent if for infinitely
many ℓ ≥ 1 and for every u, w ∈ Σℓ, lim

n→∞

∣∣Pu,w(xn−1
0 , yn−1

0 ) − P (xn−1
0 , u)P (yn−1

0 , w)
∣∣ = 0.

For any measures µ1 and µ2 on T, let µ1 ∗µ2 denote the convolution of these two measures
(see [26] or [16]). A basic intuition for our approach can be viewed as follows. A standard
result in probability theory (see for example, Shiryaev [29], 2nd. edition, Section II.8) is
that, if X and Y are two independent random variables, then the distribution of X + Y is
the convolution of the distributions of X and Y . Moreover, the Fourier coefficients of the
convolution is the product of the Fourier coefficients of the individual distributions. Our
result may be viewed as an analogous result using sequences. The following theorem gives an
important connection between the exponential averages of the sum of independent reals and
the exponential averages of the individual reals which is crucial in proving the main results
in this section.

▶ Theorem 31. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30, then for any integers d, e and q ∈ Q,

lim
n→∞

∣∣∣∣∣∣ 1
n

n−1∑
j=0

e2πik2j(dx+ey) − 1
n

n−1∑
j=0

e2πik2jdx 1
n

n−1∑
j=0

e2πik2jey

∣∣∣∣∣∣ = 0.

The proofs of the following bounds on Rényi dimension of convolutions crucially employ
results from Hochman [17] along with the data processing inequality ([9, 18]).

▶ Lemma 32. For any measures µ1 and µ2 on T,
1. dimR(µ1 ∗ µ2) ≥ max{dimR(µ1), dimR(µ2)} and dimR(µ1 ∗ µ2) ≤ dimR(µ1) + dimR(µ2)
2. dimR(µ1 ∗ µ2) ≥ max{dimR(µ1), dimR(µ2)} and dimR(µ1 ∗ µ2) ≤ dimR(µ1) + dimR(µ2)

The following is our main result.

▶ Theorem 33. Let x and y be real numbers in T such that x and y are independent in the
sense of condition 30. Then for any d, e ∈ Z,
1. dimF S(dx + ey) ≥ max{dimF S(dx), dimF S(ey)} and dimF S(dx + ey) ≤ dimF S(dx) +

DimF S(ey).
2. DimF S(dx + ey) ≥ max{DimF S(dx), DimF S(ey)} and DimF S(dx + ey) ≤ DimF S(dx) +

DimF S(ey).

The following technical lemmas that are consequences of Theorem 31 are required for
proving Theorem 33.

▶ Lemma 34. Let x and y be real numbers in T such that x and y are independent in the
sense of condition 30 and let d, e ∈ Z. Then, for any µ ∈ Wdx+ey there exist µ1 ∈ Wdx and
µ2 ∈ Wey such that µ = µ1 ∗ µ2.
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▶ Lemma 35. If x and y are real numbers in T such that x and y are independent in
the sense of condition 30. Let d, e ∈ Z and q ∈ Q. Then, for any µ1 ∈ Wdx there exist
µ ∈ Wdx+ey and µ2 ∈ Wey such that µ = µ1 ∗ µ2.

Now we prove Theorem 33.

Proof of Theorem 33. Consider any µ ∈ Wdx+ey. Using Lemma 34 we get that there
exists µ1 ∈ Wdx and µ2 ∈ Wey such that µ = µ1 ∗ µ2. Now, it follows from Lemma 32
that dimR(µ) = dimR(µ1 ∗ µ2) ≥ dimR(µ1). On applying Theorem 27 for dx ∈ T, we get
dimR(µ) ≥ dimF S(dx). Since µ was arbitrary, applying Theorem 27 for dx + ey ∈ T, we
obtain dimF S(dx + ey) ≥ dimF S(dx). The proof of dimF S(dx + ey) ≥ dimF S(ey) is similar.
This completes the proof of the first inequality. In order to show the second inequality,
consider any µ1 ∈ Wdx. Using Lemma 35, there exist µ ∈ Wdx+ey and µ2 ∈ Wey such
that µ = µ1 ∗ µ2. Now using Lemma 32, it follows that dimR(µ) = dimR(µ1 ∗ µ2) ≤
dimR(µ1) + dimR(µ2). On applying Theorem 27 for the points dx + ey ∈ T and ey ∈ T, we
get dimF S(dx + ey) ≤ dimR(µ1) + DimF S(ey). Since µ1 was arbitrary, applying Theorem 27
for dx ∈ T, we obtain dimF S(dx + ey) ≤ dimF S(dx) + DimF S(ey). 2 follows similarly. ◀

The following is an immediate corollary of the Theorem 33.

▶ Corollary 36. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30, then for any q ∈ Q,
1. dimF S(x+qy) ≥ max{dimF S(x), dimF S(y)} and dimF S(x+qy) ≤ dimF S(x)+DimF S(y).
2. DimF S(x + qy) ≥ max{DimF S(x), DimF S(y)} and DimF S(x + qy) ≤ DimF S(x) +

DimF S(y)

On considering the case when DimF S(y) = 0, we obtain the following corollaries, gen-
eralizing earlier results by Doty, Lutz, Nandakumar [12] and Aistleitner [1], regarding the
preservation of finite-state dimension under addition with an independent sequence having
zero finite-state strong dimension.

▶ Corollary 37. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30 with DimF S(y) = 0, then for any q ∈ Q, dimF S(x + qy) = dimF S(x)
and DimF S(x + qy) = DimF S(x).

It is easy to verify that any string in C is independent of any other string x ∈ Σ∞. Thus
we obtain the following generalization of Aistleitner’s result to every dimension [1].

▶ Corollary 38. If y is any real number in C, then for any x ∈ T and q ∈ Q, dimF S(x+qy) =
dimF S(x) and DimF S(x + qy) = DimF S(x).
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