
Counting Computations with Formulae: Logical
Characterisations of Counting Complexity Classes
Antonis Achilleos # Ñ

Department of Computer Science, Reykjavik University, Iceland

Aggeliki Chalki #Ñ

Department of Computer Science, Reykjavik University, Iceland

Abstract
We present quantitative logics with two-step semantics based on the framework of quantitative logics
introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted
logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented
with a least fixed point operator capture interesting classes of counting problems. Specifically, we
answer an open question in the area of descriptive complexity of counting problems by providing
logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role
in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE
and SpanPSPACE, which are counting versions of PSPACE.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Complexity classes

Keywords and phrases descriptive complexity, quantitative logics, counting problems, #P

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.7

Related Version Full Version: https://doi.org/10.48550/arXiv.2304.10334

Funding This work has been funded by the projects “Open Problems in the Equational Logic of
Processes (OPEL)” (grant no. 196050), “Mode(l)s of Verification and Monitorability” (MoVeMnt)
(grant no 217987) of the Icelandic Research Fund, and the Basic Research Program PEVE 2020 of
the National Technical University of Athens.

Acknowledgements The authors would like to thank Stathis Zachos and Aris Pagourtzis for fruitful
discussions and Luca Aceto for sound advice. We also thank the anonymous reviewers for their
suggestions and constructive comments.

1 Introduction

We examine counting problems from the viewpoint of descriptive complexity. We present a
quantitative logic with a least fixed point operator and two-step semantics. In the first step,
given a structure, a formula generates a set. In the second step, a quantitative interpretation
results from the cardinality of that set. These semantics allow us to use a uniform approach
to identify logical fragments that capture several counting complexity classes.

In 1979, Valiant introduced the complexity class #P in his seminal paper [32] and used
it to characterise the complexity of computing the permanent function. #P is the class of
functions that count accepting paths of non-deterministic poly-time Turing machines, or,
equivalently, the number of solutions to problems in NP. For example, #Sat is the function
that, on input a formula φ in CNF, returns the number of satisfying assignments of φ. Since
then, counting complexity has played an important role in computational complexity theory.

Descriptive complexity provides characterisations of complexity classes in terms of the
logic needed to express their problems. The Büchi–Elgot–Trakhtenbrot theorem [9, 15, 31]
characterising regular languages in terms of Monadic Second-Order logic and Fagin’s the-
orem [17], which states that Existential Second-Order logic captures NP, are two fundamental
results in this area. Another prominent result was the introduction of the class MaxSNP [29],

© Antonis Achilleos and Aggeliki Chalki;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonios@ru.is
https://sites.google.com/view/antonisachilleos
https://orcid.org/0000-0002-1314-333X
mailto:angelikic@ru.is
https://aggelikichal.github.io/
https://orcid.org/0000-0001-5378-0467
https://doi.org/10.4230/LIPIcs.MFCS.2023.7
https://doi.org/10.48550/arXiv.2304.10334
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Counting Computations with Formulae

which has played a central role in the study of the hardness of approximation for optimization
problems [6]. Moreover, descriptive complexity is an interesting and active research field with
more recent results in the logical characterisation of the class P [20], dynamic complexity [33],
symmetric linear programs [7], and counting complexity [5, 12], among others.

As in the case of optimization problems, an interesting, long-standing question is the
logical characterisation of approximable counting problems. This is also a meaningful line of
research since very few counting problems can be computed exactly in polynomial time. In
the case of counting problems, the appropriate notion of approximability is the existence
of a fully polynomial randomized approximation scheme (fpras). We denote the class of
approximable counting problems by FPRAS [13, 8].

A counting class is considered robust if it has either natural complete problems or nice
closure properties. Two robust subclasses of #P defined in terms of Turing Machines (TMs),
are of great significance in the quest for a characterisation of approximable counting problems.
The first one is TotP, which contains all self-reducible counting problems whose decision
version is in P. It is noteworthy that TotP is not contained in FPRAS, unless RP = NP [8],
but almost all known approximable counting problems belong to TotP (see e.g. [23, 22, 27]).
The second class, namely SpanL [2], is contained in TotP, and it consists of the functions that
count different outputs of non-deterministic log-space transducers, i.e. TMs with output. To
the best of our knowledge, SpanL is the only counting class so far defined in terms of TMs,
that, despite containing #P-complete problems [2], contains only approximable problems [4].

Our contribution. Our main objective is to provide logical characterisations of the classes
SpanL and TotP, which was posed as an open question in [5]. To this end, we introduce
a variant of the quantitative logics from [5]. Our two-step semantic definition is the key
difference between our approach and that in [5]. The first step is an intermediate semantics,
where the meaning of a formula is given as a set of strings that, intuitively, represent
computation paths. In the second step, a concrete semantics associates with each formula the
size of the set resulting from the intermediate semantics. Gastin et al. follow an analogous
approach for weighted logics in [18], to give a connection to weighted automata.

In Section 4, we introduce logics equipped with least fixed point formulae that capture
“span-classes” of restricted space, namely SpanL and SpanPSPACE, in a natural way (Theor-
ems 4.7 and 4.13). When we consider such classes, we are interested in counting the number
of different outputs produced by a transducer. Semantics that map the set of quantitative
formulae to N interpret every accepting path as a contributing unit. Then, by evaluating the
sum of formulae as the sum of natural numbers, one can sum up the accepting paths of a
TM. On the other hand, when a formula is evaluated as a set of output strings and the sum
of formulae as the union of sets, they can count the number of different TM outputs.

We also consider two classes, namely #PSPACE and TotP, which contain functions that
count the accepting or all paths of TMs with restricted resources, respectively. Using our
alternative semantics, a computation path can be encoded as a sequence of configurations
visited by the TM along that path – in other words, its computation history – so that different
paths are mapped to different sequences. In Section 5, we provide a logical characterisation
of the class of functions that count the number of accepting paths of poly-space TMs, namely
#PSPACE [25] (Theorem 5.3), which coincides with FPSPACE, i.e. the class of poly-space
computable functions. FPSPACE has already been characterised by a logic with a partial
fixed point [5]. Interestingly, the logic we define here uses a least fixed point. In Section 6,
we introduce a quantitative logic that captures TotP (Theorem 6.6). In Section 7, we discuss
how to obtain two least fixed point logics that capture NL and PSPACE by specialising the
semantics. We believe that the semantics we propose in this paper can contribute insight to
the study of counting complexity classes.

A. Achilleos and A. Chalki 7:3

Related work. Arenas et al. and Saluja et al. give logical characterisations of #P in [30, 5].
The authors of [30] substitute existential quantification over second-order variables of ∃SO
with counting second-order variables. The work in [5] incorporated counting into the syntax
of the logic by introducing Quantitative Second-Order logic (QSO), a logic for quantitative
functions, which is based on the framework of weighted logics [11, 18, 1]. There has been
progress in characterising counting classes with respect to their approximability in the
context of descriptive complexity. Saluja et al. defined the classes #Σ1 and #RΣ2 in [30],
and proved that they contain only problems that admit an fpras. A more recent variant
of #Σ1 [12] is also a subclass of FPRAS. The class #RΠH1 [13] is conjectured to contain
problems which are neither as hard to approximate as #Sat nor admit an fpras, and
it was used to classify Boolean #CSP with respect to their approximability [14]. Since
NP-complete problems cannot have approximable counting versions unless RP = NP [13],
Arenas et al. suggested in [5] to examine robust classes of counting problems with an easy
decision version. The papers [5, 8] defined such counting classes and examined them with
respect to the approximability of their problems. There is also work on logics that capture
superclasses of #P, namely SpanP [24] and FPSPACE [25]. Compton and Grädel were the
first to characterise SpanP in [10], followed by Arenas et al. in [5], where they also introduced
a logic that captures FPSPACE. Finally, in [12], Durand et al. introduced a framework for
the descriptive complexity of arithmetic circuit classes.

2 Preliminaries

Turing machines. A (two-tape non-deterministic) Turing machine (TM) N is a quintuple
N = (Q,Σ, δ, q0, qF), where Q is a set of states, Σ = {0, 1} is the alphabet, δ ⊆ (Q × (Σ ∪
{ })2) × (Q × (Σ ∪ { }) × {L,R}2) is the transition relation, q0 is the initial state, and qF

is the final accepting state. We assume the TM N has a read-only input tape and a work
tape that it can read and write on. L and R in a transition designate that the respective
tape head moves to the left or right. A configuration c of N encodes a snapshot of the
computation of N and is defined in the usual way (see e.g. [28]). We can apply a compatible
transition to a configuration to result in a new configuration in the expected way. W.l.o.g.
we assume that every TM has a binary computation tree: any configuration is compatible
with zero, one or two transitions. In the latter case, we call these transitions, the left and
right non-deterministic transition. A transducer M is a TM with a write-only output tape,
on which a string over Σ is written from left to right. The output of a computation is
valid if M stops in the accepting state. A TM or transducer is called deterministic if at
every configuration at most one transition can be applied. By restricting the time or space
resources of a TM or transducer in the usual way, we can obtain an NPTM (non-deterministic
poly-time TM), an NL-transducer (non-deterministic log-space transducer) etc.

We say that f is computable in polynomial time (resp. logarithmic/polynomial space), if
there is a deterministic polynomial-time (resp. log-space/poly-space) transducer M , such
that for every x ∈ Σ∗, f(x) is the valid output of M on input x. We define the functions
that count paths (resp. outputs) of a TM (resp. transducer) as follows.

▶ Definition 2.1. Let M be a Turing machine and T a transducer. We define functions
accM , totM , spanT : Σ∗ → N ∪ {+∞}, such that for every x ∈ Σ∗:
(a) accM (x) = #(accepting computation paths of M on input x),
(b) totM (x) = #(computation paths of M on input x) − 1,
(c) spanT (x) = #(different valid outputs of T on input x).

MFCS 2023

7:4 Counting Computations with Formulae

Classes of counting problems. The classes defined in Definition 2.2 are already known,
except for SpanPSPACE, which is presently defined.

▶ Definition 2.2 ([2, 27, 25]). (a) SpanL = {spanM : Σ∗ → N | M is an NL-transducer},
(b) TotP = {totM : Σ∗ → N | M is an NPTM},
(c) FPSPACE = {f : Σ∗ → N | f is computable in polynomial space},
(d) #PSPACE = {accM : Σ∗ → N | M is a non-deterministic poly-space TM}.
(e) SpanPSPACE = {spanM : Σ∗ → N | M is a non-deterministic poly-space transducer}.

▶ Remark 2.3. Note that in the definition of TotP, one is subtracted from the total number
of paths so that a function can take the zero value. Since a TotP function f can be
associated with an NPTM M that has a binary computation tree, f(x) = totM (x) =
#(branchings of M on input x), where a branching is an occurrence of a configuration on
the computation tree, where M makes a non-deterministic choice.
▶ Remark 2.4. For the class SpanL, note that, by the pigeonhole principle, an NL-transducer
has infinitely many accepting paths if and only if the length of its accepting runs is not
bounded by a polynomial. It then makes sense to attach a clock that imposes a polynomial-
time bound to each NLTM, as suggested in [2]. In this way, every NLTM is also an NPTM
with a finite number of computation paths. Similarly, we assume that a clock that imposes
an exponential-time bound can be attached to a non-deterministic poly-space TM.

▶ Proposition 2.5 ([2, 27, 25]). SpanL ⊆ TotP ⊆ #P ⊊ FPSPACE = #PSPACE ⊆
SpanPSPACE. The first two inclusions are proper unless P = NP.

The decision version of a function f : Σ∗ → N is {x | f(x) > 0}. We say that a function
f : Σ∗ → N is self-reducible if its value on an instance can be recursively computed by
evaluating f on a polynomial number of smaller instances. A formal definition of self-
reducibility can be found in [3]. TotP can be characterised as the closure under parsimonious
reductions of the class of self-reducible #P functions whose decision version is in P [27].

▶ Example 2.6. Consider the problem of counting independent sets of all sizes in a graph G,
denoted by #IS. Let M be the NPTM that makes the following computation: given Gi−1
and vi, . . . , vn, M non-deterministically chooses to add vertex vi to the independent set or
not, and defines Gi to be either Gi−1 where vi, all its neighbours, and all edges adjacent
to them have been removed, or Gi−1 where vi and its adjacent edges have been removed,
respectively. Then, M recursively continues on Gi and vi+1, . . . , vn. Consider M ′ that on
input G = ⟨V = {v1, . . . , vn}, E⟩ simulates M on G and v1, . . . , vn, and has also an additional
dummy path. Then, #IS(G) = #(paths of M ′ on input G) − 1.

Logics. A relational vocabulary σ = {Rk1
1 , ...,Rkm

m } is a finite set of relation symbols.
Each relation symbol Ri has a positive integer ki as its designated arity. A finite structure
A = ⟨A,R1, ..., Rm⟩ over σ consists of a finite set A, which is called the universe of A and
relations R1,...,Rm of arities k1, .., km on A, which are interpretations of the corresponding
relation symbols. We may write that arity(Ri) = ki or that Ri is a ki-ary relation. The size of
the structure, denoted by |A| or |A|, is the size of its universe. A finite ordered structure is a
finite structure with an extra relation ≤, which is interpreted as a total order on the elements
of the universe. In sequel, A denotes a finite ordered structure unless otherwise specified.
For convenience we use letters B,C,R, S, and so on, to denote both relation symbols and
their interpretations. For example, the vocabulary of binary strings is σbs = {≤2, B1}.
Binary string x = 00101 corresponds to the structure A = ⟨{0, 1, ..., 4},≤, B = {2, 4}⟩, where
relation B represents the positions where x is one. Moreover, |A| = 5.

A. Achilleos and A. Chalki 7:5

First-order formulae over σ are defined in the usual way, using first-order variables that
range over the universe of a structure, the relation symbols from σ, equality, the logical
operators ∧,∨,¬,→, and first-order quantifiers ∀x and ∃x. For convenience and clarity, we
omit function and constant symbols from the syntax of FO, but we include ⊤, which is the
logical constant for truth. A first-order formula with no free variable occurrences is called a
first-order sentence, where an occurrence of x is free if it does not lie in the scope of either
∃x or ∀x. In addition to the syntax of FO, SO includes and quantifies over second-order
variables that range over relations, are denoted by uppercase letters, and each of them has
an arity. SO includes formulae of the form X(x1, . . . , xk), where X is a second-order variable
of arity k, and x1, . . . , xk are first-order variables. The fragment of SO consisting only of
existential second-order formulae is called existential second-order logic and is abbreviated
as ∃SO. We use the usual A, v, V |= φ interpretation of an SO-formula φ, given a structure
A and first- and second-order assignments v and V , respectively. If φ has no free first- or
second-order variables, v or V , respectively, can be omitted. We refer the reader to [16] for a
more extensive presentation of FO and SO.

The logical symbols of Quantitative Second-Order logic, denoted by QSO, include all
the logical symbols of SO and the quantitative quantifiers Σ and Π for sum and product
quantification, respectively. The arity of a second-order variable X is denoted by arity(X).
When we write logic Λ over σ, we mean the set of Λ formulae over σ. The set of QSO formulae
over σ are defined by the following grammar:

α ::= φ | s | (α+ α) | (α · α) | Σx.α | Πx.α | ΣX.α | ΠX.α (1)

where φ is an SO formula over σ, s ∈ N, x is a first-order and X a second-order variable. A
formula α in QSO is a sentence if every variable occurrence in α is bound by a first-order,
second-order, or quantitative quantifier. The evaluation of a QSO formula α is a function
JαK that on input A, v, and V returns a number in N. We refer the reader to [5, p. 5] for
the definition of the semantics of QSO formulae. When α is a sentence, JαK(A) is used to
denote JαK(A, v, V) for any v, V . We say that f ∈ QSO if there exists α ∈ QSO such that
f(enc(A)) = JαK(A), for every A. Note that QSO is a set of logical formulae, whereas QSO is
a class of functions. For every logic Λ, we can define a corresponding class of functions as
above, and we denote it by Λ.

▶ Definition 2.7. A logic Λ captures a complexity class C, and equivalently C = Λ, over finite
ordered structures over σ, if the following two conditions hold:
1. For every f ∈ C, there is a sentence α ∈ Λ, such that f(enc(A)) = JαK(A) for every finite

ordered structure A over σ.
2. For every sentence α ∈ Λ, there is a function f ∈ C, such that JαK(A) = f(enc(A)) for

every finite ordered structure A over σ.
Moreover, Λ captures C over finite ordered structures if Λ captures C over finite ordered
structures over σ, for every σ.

For example, ΣQSO(FO) = #P over finite ordered structures [5], where ΣQSO(FO) is the
set of QSO formulae that Π is not allowed and φ in (1) is restricted to be an FO formula.

Triples (A, v, V) can be encoded in space polynomial in |A| using a standard mapping
from finite ordered structures to strings over {0, 1} (see for example [26, Chapter 6]). We
assume that a TM M takes as input the encoding of A (or (A, v, V)), denoted by enc(A)
(resp. enc(A, v, V)), even if we write M(A) (resp. M(A, v, V)) for the sake of brevity.

In all cases that we consider in this paper, the initial configuration of a TM is FO
definable [21] and therefore, to prove that Λ captures C, it suffices to verify conditions 1
and 2 in Definition 2.7 for f(enc(A, v, V)) = JαK(A, v, V), where v, V encode the initial

MFCS 2023

7:6 Counting Computations with Formulae

Expl[x](A, v, V) = {v(x)}
Expl[X](A, v, V) = {V (X)}

Expl[φ](A, v, V) =
{

{ε}, if A, v, V |= φ

∅, otherwise

Expl[α1 + α2](A, v, V) = Expl[α1](A, v, V) ∪ Expl[α2](A, v, V)
Expl[α1 · α2](A, v, V) = Expl[α1](A, v, V) ◦ Expl[α2](A, v, V)

Expl[Σy.α](A, v, V) =
⋃

a∈A

Expl[α](A, v[a/y], V)

Expl[ΣY.α](A, v, V) =
⋃

B⊆Ak

Expl[α](A, v, V [B/Y])

Table 1 Intermediate semantics of ΣSO(Λ) formulae.

configuration of a TM that corresponds to f . Finally, we often use that (a) A, v, V |= φ can
be decided in deterministic logarithmic space, if φ is an FO formula, and in deterministic
polynomial space, if φ ∈ SO, for every finite structure A [21], and (b) given A, the lexicographic
order on k-tuples over A induced by ≤ is FO expressible and is also denoted by ≤.

3 The quantitative logic ΣSO(Λ)

The logic ΣSO(Λ) over σ, where Λ ∈ {FO, SO}, is defined by the following grammar:

α ::= x | X | φ | (α+ α) | (α · α) | Σy.α | ΣY.α (2)

where φ is in Λ, x, y are first-order variables, and X, Y are second-order variables. The
syntax of logic ΣSO(Λ) is the same as that of ΣQSO(Λ), where a formula can also be a first-
and second-order variable, but not a number s ∈ N. ΣFO(Λ) is the fragment of ΣSO(Λ) in
which Σ is not allowed over second-order variables. We say that a ΣSO(Λ) formula is x-free
(resp. X-free) if it is given by grammar (2) without x (resp. X).

▶ Notation Remark 3.1. We denote X · φ(X) (or φ(X) ·X) by φ(X).

We define the semantics of the logic ΣSO(Λ) in two phases: a formula α is mapped to a
set of strings. Then, the semantic interpretation of formula α is defined to be the size of
this set. Formally, JαK(A, v, V) = |Expl[α](A, v, V)|, where Expl[α](A, v, V) is recursively
defined in Table 1. Expl stands for Explicit and we call Expl[α](A, v, V) the intermediate
semantic interpretation of formula α. Note that ∪ and ◦ between sets of strings have replaced
sum and multiplication of natural numbers, respectively, in the semantics of QSO. S1 ∪ S2 is
the union of S1 and S2, whereas S1 ◦ S2 is concatenation of sets of strings lifted from the
concatenation operation on strings, that is S1 ◦ S2 = {x ◦ y | x ∈ S1, y ∈ S2}. For example,
{ε, a1, a2a3} ◦ {ε, a2a3} = {ε, a2a3, a1, a1a2a3, a2a3a2a3}, where ε denotes the empty string.
In specific, if one of S1, S2 is ∅, then S1 ◦ S2 = ∅.

▶ Notation Remark 3.2. For a finite set K, K∗ :=
⋃

n∈NK
n denotes the set of strings over K,

P(K∗) the powerset of K∗, and ε the empty string. For an A over σ, Rk := P(Ak) denotes
the set of relations on A of arity k.

A. Achilleos and A. Chalki 7:7

▶ Remark 3.3. Note that for a formula α ∈ ΣSO(Λ) and s ∈ Expl[α](A, v, V), we have that
s ∈ (A ∪

⋃
i∈N Ri)∗. In this paper, we consider logics that are either X-free or x-free,

and so for a formula α in some of these logics and s ∈ Expl[α](A, v, V), either s ∈ A∗ or
s ∈ (

⋃
i∈N Ri)∗, respectively.

The length of α, denoted by |α|, is defined as the length of α as a string of symbols, boolean
formulae and sum operators are treated as one symbol. The length of s ∈ A∗ ∪ (

⋃
i∈N Ri)∗,

denoted by |s|, is the standard length of strings. It is not hard to define an encoding enc(s)
of s, such that |enc(s)| ≤ |s| · log |A|, if s ∈ A∗, and |enc(s)| ≤ |s| · |A|k, if s ∈ (

⋃
1≤i≤k Ri)∗.

▶ Lemma 3.4. Let α be a ΣSO(Λ) formula over σ. For every finite ordered structure A over σ,
v, and V , and every s ∈ Expl[α](A, v, V), |s| ≤ |α|. Moreover, (a) if α is an X-free formula,
then |enc(s)| ≤ |α| · log |A|, and (b) if α is an x-free formula, then |enc(s)| ≤ |α| · poly(|A|).

3.1 The logic ΣSO(Λ) with recursion
By adding a function symbol f to the syntax of ΣSO(Λ), we obtain formulae defined below:

β ::= x | X | φ | f(x1, . . . , xk) | (β + β) | (β · β) | Σy.β | ΣY.β (3)

where f is a first-order function symbol with arity(f) = k, and x1, . . . , xk are first-order
variables, also denoted by x⃗. In like manner, we can add a second-order function symbol to
ΣSO(Λ). In particular, we consider only second-order function symbols of arity 1, i.e. of the
form f(X), where X is a second-order variable. A ΣSO(Λ) formula β(X, f) with a second-order
function symbol f(Y) is called arity-consistent when it has at most one free second-order
variable X, where X has the same arity as Y . We fix an arity k for the first-order function
symbol, or the argument of the second-order function symbol.

To extend the semantics of ΣSO(Λ) to the case of formula f(x1, . . . , xk), we say that F is a
first-order function assignment for A, if F (f) : Ak → P(A∗). In the case of formula f(X), we
say that F is a second-order function assignment for A, if F (f) : Rk → P(K∗), where K can
be either A or

⋃
i∈N Ri. We define FOF to be the set of functions h : Ak → P(A∗), SOF the

set of functions h : Rk → P(A∗), and RSOF the set of functions h : Rk → P((
⋃

i∈N Ri)∗).
Given v and V , we define Expl[f(x⃗)](A, v, V, F) := F (f)(v(x⃗)) and Jf(x⃗)K(A, v, V, F) :=

|F (f)(v(x⃗))|. The semantics of f(X) are defined in an analogous way. Now we can add to
the syntax of ΣSO(Λ), formulae of the form [lfpfβ](x⃗) (resp. [lfpfβ](X)), where β is a (resp.
arity-consistent) ΣSO(Λ) formula equipped with a first-order (resp. second-order) function
symbol f . To define the semantics of [lfpf β](x⃗), we first define two lattices. The first lattice
is (P(A∗),⊆), i.e. it contains all sets of strings over A. The bottom element is ∅ and the
top element is the set A∗. The second lattice is (FOF ,≤F): for g, h ∈ FOF , g ≤F h iff
g(x⃗) ⊆ h(x⃗), for every x⃗. The bottom element is g0 which takes the value ∅ for every x⃗, and
the top element is gmax, which is equal to A∗ for every x⃗. For an infinite increasing sequence
of functions h1 ≤F h2 ≤F h3 ≤F · · · from FOF , we define limn→+∞ hn := h, where for
every x ∈ Ak, h(x) =

⋃
n∈N hn(x).

We interpret β(x⃗, f) as an operator Tβ on FOF . For every h ∈ FOF and a⃗ ∈ Ak,
Tβ(h)(⃗a) = Expl[β(x⃗, f)](A, v, V, F), where v is a first-order assignment for A such that
v(x⃗) = a⃗ and F is a first-order function assignment for A such that F (f) = h. The following
propositions state that Tβ is monotone on (FOF ,≤F).

▶ Proposition 3.5. Let f be a first-order function symbol with arity(f) = k and β be a
formula over σ defined by grammar (3), such that if β contains a function symbol, then this
function symbol is f . Let also A be a finite ordered structure over σ, h, g : Ak → P(A∗) and

MFCS 2023

7:8 Counting Computations with Formulae

H,G be function assignments such that H(f) = h and G(f) = g. If h ≤F g, then for every
first- and second-order assignments v and V , respectively:

Expl[β](A, v, V,H) ⊆ Expl[β](A, v, V,G).

▶ Proposition 3.6. For every formula [lfpf β](x⃗), where β is in ΣSO(Λ) equipped with a
first-order function symbol, operator Tβ is monotone on the complete lattice (FOF ,≤F). In
other words, for every h, g ∈ FOF , if h ≤F g, then Tβ(h) ≤F Tβ(g).

Thus, by the Knaster–Tarski theorem, Tβ has a least fixed point. To compute the least
fixed point of Tβ , let us consider the sequence of functions {hi}i∈N, hi : Ak → P

(
A∗), where

h0(⃗a) = ∅ for every a⃗ ∈ Ak, and hi+1 := Tβ(hi), for every i ∈ N. We define lfp(Tβ) :=
limn→+∞ hn. Finally, Expl[[lfpfβ](x⃗)](A, v, V) := lfp(Tβ)(v(x⃗)) = limn→+∞ hn(v(x⃗)) and
J [lfpfβ](x⃗) K(A, v, V) = | limn→+∞ hn(v(x⃗))|. The semantics of [lfpfβ](X) are defined in a
completely analogous way. Examples 4.3, 4.8, and 4.9 make clear how formulae of the form
[lfpfβ](x⃗) are interpreted.

The logics we define below are fragments of ΣSO(SO) with recursion. Given a formula
[lfpfβ](x⃗) or [lfpfβ](X) in any of them, operator Tβ is monotone on the complete lattice
(F ,≤F), where F can be FOF , SOF , or RSOF .
▶ Remark 3.7. The name of a logic with recursion will be of the form RL1ΣL2(L3), where
L1 ∈ {fo, so} indicates that function symbol f is over first- or second-order variables,
respectively, L2 ∈ {fo, so} means that quantifier Σ is over first- or second-order variables,
respectively, and L3 ∈ {FO, SO} means that φ in (2) is in L3.

4 Logics that capture SpanL and SpanPSPACE

▶ Definition 4.1. RfoΣfo(FO) over σ is the set of formulae [lfpfβ](x⃗), where β is defined by:

β ::= α | f(x1, . . . , xk) | (β + β) | (α · β) | Σy.β (4)

where α is an X-free ΣFO(FO) formula over σ, x1, . . . , xk, y are first-order variables, and f is
a first-order function symbol.

▶ Remark 4.2. Notice that for a formula [lfpfβ](x⃗) ∈ RfoΣfo(FO), it may be the case that
J [lfpfβ](x⃗) K(A, v, V) = +∞ analogously to the fact that the computation of an NLTM may
contain cycles. For the sake of simplicity, we assume that an NL-transducer M can have
infinitely many accepting paths and SpanL contains functions from Σ∗ to N ∪ {+∞}. To be
in accordance with the literature, we can adjust the syntax of RfoΣfo(FO) formulae to express
the operation of the clock attached to NLTMs as discussed in Remark 2.4.

Let N be an NL-transducer and A be over σ with |A| = n. The number of different
configurations of N is at most nk − 1 for some k ∈ N. To encode them, we use k-tuples over
A. To encode the output symbol, if any, that is produced at some configuration, it suffices to
use two distinct elements of A, since the output alphabet is Σ = {0, 1}; we use the minimum
element and the successor of the minimum element, which are both FO expressible. Below, we
informally write φ(c) to denote φ(x) interpreted in A where first-order variable x is assigned
c ∈ A. Formula [lfpf spanL](x⃗) counts the different valid outputs of N , where spanL(x⃗, f) is:

acc(x⃗) + Σy⃗.Σz.
(
output0(x⃗, y⃗, z) + output1(x⃗, y⃗, z) + next0(x⃗, y⃗) + next1(x⃗, y⃗)

)
· f(y⃗).

A. Achilleos and A. Chalki 7:9

Algorithm 1 NLTM MSpsub
β .

Input: γ,A, v, V , where γ is a subformula of β
1 if γ == α has no function symbol then simulate the transducer from

Proposition 4.5
2 if γ == f(y⃗) then simulate MSpsub

β (β,A, v[v(y⃗)/x⃗], V)
3 if γ == γ1 + γ2 then
4 non-deterministically choose γ′ ∈ {γ1, γ2}
5 simulate MSpsub

β (γ′,A, v, V)
6 if γ == α · γ′ then
7 for s ∈ A∗ where |s| ≤ |α| do
8 if s ∈ Expl[α](A, v, V) then simulate MSpsub

β (γ′,A, v, V)
9 if γ ==

∑
y.γ′ then

10 non-deterministically choose a ∈ A

11 simulate MSpsub
β (γ′,A, v[a/y], V)

Interpretations of z and x⃗, y⃗ encode a bit of the output, and configurations of N , re-
spectively. Formulae nexti(c⃗, c⃗′), i = 0, 1, say that if N is in configuration c⃗ and makes
non-deterministic choice i, then it is in c⃗′, and no output symbol is produced. Formulae
outputi(c⃗, c⃗′, b), i = 0, 1, state that N makes choice i and so it transitions from configuration
c⃗ to c⃗′ and writes the bit encoded by b on the next output cell. When N is in some c⃗ that
only a deterministic transition can be made, then exactly one of nexti(c⃗, c⃗′), outputi(c⃗, c⃗′, b),
i = 0, 1, is satisfied in A for a c⃗′ ∈ Ak (and a b ∈ A). Formula acc(c⃗) states that c⃗ is the
accepting configuration. All aforementioned formulae can be expressed in FO. Note that
for any A, v, and V , Expl[[lfpf spanL](x⃗)](A, v, V) is a set of strings in A∗ that encode the
outputs of N .

c⃗init

c⃗1/0

c⃗3/1 c⃗4

c⃗5/0

c⃗rej

c⃗6/1 c⃗7/1

c⃗acc c⃗acc

Figure 1 The computation tree of a transducer N on some input enc(A). c⃗/b represents that N enters
configuration encoded by c⃗ and writes bit b on the output tape.

▶ Example 4.3. Consider the computation tree shown in Figure 1 which corresponds to
a transducer N that on input enc(A) has three outputs, and spanN (enc(A)) = 1. Let 0,1
denote the minimum and the successor of the minimum element of A, respectively. Then,

Expl[[lfpf spanL](x⃗)](A, v[⃗cacc/x⃗]) = {ε}, and
Expl[[lfpf spanL](x⃗)](A, v[⃗crej/x⃗]) = ∅,
Expl[[lfpf spanL](x⃗)](A, v[⃗c1/x⃗]) = ∅∪{1}◦f(c⃗3)∪f(c⃗4) = {1}◦ (0◦∅)∪{1}◦{ε} = {1},
Expl[[lfpf spanL](x⃗)](A, v[⃗cinit/x⃗]) = ∅ ∪ {0} ◦ f(c⃗1) = {01}.

Intuitively, the intermediate interpretation of [lfpf spanL](c⃗) is the set of the different valid
outputs N produces during its computation starting from the configuration encoded by c⃗.

MFCS 2023

7:10 Counting Computations with Formulae

▶ Proposition 4.4. Given an NL-transducer N , spanN (enc(A)) = J [lfpf spanL](x⃗) K(A, v, V),
for every A, v, and V , such that v(x⃗) encodes the starting configuration of N .

To prove that RfoΣfo(FO) ⊆ SpanL, first note that X-free ΣFO(FO) formulae can be easily
evaluated by NLTMs as Proposition 4.5 states.

▶ Proposition 4.5. For every X-free ΣFO(FO) formula α over σ, there is an NL-transducer
M , that on input enc(A, v, V) has exactly one accepting run for each s ∈ Expl[α](A, v, V),
on which it outputs enc(s), and no other accepting runs.

▶ Proposition 4.6. Let [lfpfβ](x⃗) be an RfoΣfo(FO) formula over σ. There is an NL-transducer
Mβ, such that spanMβ

(enc(A, v, V)) = J [lfpfβ](x⃗) K(A, v, V), for every A, v and V .

Proof. Let [lfpfβ](x⃗) ∈ RfoΣfo(FO). The NL-transducer Mβ(A, v, V) calls MSpsub
β (β,A, v, V)

from Algorithm 1. If β does not contain a function symbol, then J [lfpfβ](x⃗) K(A, v, V) =
JβK(A, v, V). By Proposition 4.5, there is an NL-transducer M , such that
spanM (enc(A, v, V)) = JβK(A, v, V). In this case, let Mβ be M . Similarly, for any sub-
formula α of β without function symbols, Mα is the NL-transducer associated with α from
Proposition 4.5. ◀

▶ Theorem 4.7. RfoΣfo(FO) = SpanL over finite ordered structures.

The following are examples of specific SpanL problems expressed in RfoΣfo(FO).

▶ Example 4.8. Let G = ⟨V,E,≤⟩ represent a directed graph with a source. Then,
J [lfpfβ](x) K(G, v, V) is the number of sinks in the graph, where β(x, f) := ∀y¬E(x, y) ·
x+ Σy.E(x, y) · f(y), and v(x) is the source of the graph.

▶ Example 4.9. Let N = ⟨Q = {q0, . . . , qn−1, ℓ0, . . . , ℓm}, L,E0, E1,≤⟩ represent an NFA
N over the input alphabet {0, 1}, together with 1m; Q is the universe, L = {ℓ0, . . . , ℓm}
is a relation that distinguishes states of N from the encoding of 1m, and Ei, i = 0, 1,
is the set of i-transitions of N . Let β(x, y, f) := acc(x) + (y < max) · Σx′.Σy′.(y′ =
y+ 1) ·

(
E0(x, x′) · min0 +E1(x, x′) · min1

)
· f(x′, y′), where min0 and min1, and max express

the minimum, the successor of the minimum, and the maximum element of Q, respectively,
acc(x) expresses that x is an accepting state of N , and y′ = y + 1 is defined so that y′ is the
successor of y. Then, J [lfpfβ](x, y) K(N , v, V) is the number of strings of length at most m
accepted by N , where v(x) encodes the starting state of N , and v(y) encodes the minimum
element of L. This problem is SpanL-complete and was defined in [2] as the census function
of an NFA.

We now introduce the logic RsoΣso(SO), which captures SpanPSPACE.

▶ Definition 4.10. RsoΣso(SO) over σ is the set of formulae [lfpfβ](X), where β is defined by:

β ::= α | f(X) | (β + β) | (α · β) | Σy.β | ΣY.β (5)

where α is an X-free ΣSO(SO) formula over σ, y is a first-order variable, X,Y are second-order
variables, and f is a second-order function symbol.

▶ Remark 4.11. Relations R1, . . . , Rm on A with arity(Rj) = k, 1 ≤ j ≤ m, can be encoded
by one relation R on A of arity k + ⌈logm⌉, by defining R(⃗i, a⃗) iff Ri(⃗a), for every a⃗ ∈ Ak,
where i⃗ is the i-th smallest ⌈logm⌉-tuple over A. We use this observation to show that a
second-order function symbol f with arity(f) = 1, suffices to capture SpanPSPACE.

A. Achilleos and A. Chalki 7:11

▶ Remark 4.12. To avoid formulae [lfpfβ](X) ∈ RsoΣso(SO) with J [lfpfβ](X) K(A, v, V) = +∞,
we can adjust the syntax of RsoΣso(SO) similarly to Remark 4.2. The only difference is that
now the clock imposes an exponential-time bound.

Let A over σ with |A| = n and M = (Q,Σ, δ, q0, qF) be a non-deterministic poly-space
transducer that uses nd − 1 space. Let also k = max{d, ⌈log |Q|⌉}. We can use k-tuples over
A, to encode nd − 1 tape cells and |Q| states. W.l.o.g. assume that M has a single tape. A
configuration of M can be encoded by the tuple of k-ary relations C⃗ = (T,E, P,Q): T (c⃗)
iff cell c encoded by c⃗ contains symbol 1 (tape contents), E(c⃗) denotes that all cells greater
than c contain the symbol (end of zeros and ones on the tape), P (c⃗) indicates that the
head is on cell c (head’s position), and Q(c⃗) means that N is in state q that is encoded by
c⃗. As in the case of SpanL, a bit that M outputs at some time step is encoded using two
elements of A. Formulae Nexti(X⃗, Y⃗), Outputi(X⃗, Y⃗ , x), i = 0, 1, and Acc(X⃗) express similar
facts for the computation of M as the respective formulae defined for SpanL. They can be
expressed in FO as the formulae that describe the computation of an NPTM in the proof
of Fagin’s theorem [21]. By Remark 4.11, the aforementioned formulae can be replaced by
first-order formulae such that a unique relation is used to encode the configuration of M .
Therefore, we abuse notation and write Nexti(X,Y), Outputi(X,Y, x), and Acc(X).

▶ Theorem 4.13. RsoΣso(SO) = SpanPSPACE over finite ordered structures.

Proof. The proof of RsoΣso(SO) ⊆ SpanPSPACE is analogous to that of Proposition 4.6.
For the inclusion SpanPSPACE ⊆ RsoΣso(SO), given a non-deterministic poly-space trans-
ducer M , consider the formula spanpspace(X, f) := Acc(X) + ΣY.Σx.

(
Output0(X,Y, x) +

Output1(X,Y, x)+Next0(X,Y)+Next1(X,Y)
)
·f(Y). Then, J [lfpf spanpspace](X) K(A, v, V) =

spanM (enc(A)), for every A, v, V , such that V (X) encodes the initial configuration of M . ◀

5 Rr
soΣso(SO) captures #PSPACE

In this section, we prove that the logic ΣSO(SO) equipped with a second-order function
symbol and a restricted form of recursion captures #PSPACE over finite ordered structures.
Superscript r in the name of the logic stands for the fact that recursion is restricted.

▶ Definition 5.1. Rr
soΣso(SO) over σ is the set of formulae [lfpf β](X), where β is defined by:

β ::= α | (α+ β) | ΣY.φ(X,Y) · f(Y) (6)

where X,Y are second-order variables, φ is an SO formula over σ, α is an x-free ΣSO(SO)
formula over σ, and f is a second-order function symbol.

▶ Remark 5.2. In the case of #PSPACE, we can attach a clock to non-deterministic poly-
space TMs, and restrict the syntax of Rr

soΣso(SO) accordingly, as in Section 4. An alternative
approach is the following: it can be proven that for every β ∈ Rr

soΣso(SO), JβK is in FPSPACE
in the sense that there is a deterministic poly-space TM N such that on input enc(A, v, V)
outputs JβK(A, v, V), if JβK(A, v, V) ∈ N, and the symbol ⊥, if JβK(A, v, V) = +∞. By
Proposition 2.5, Rr

soΣso(SO) ⊆ #PSPACE, where we consider a slightly different kind of a
non-deterministic poly-space TM which on input x, if f(x) = +∞, it outputs ⊥ and halts,
and if f(x) = m ∈ N, it generates m accepting paths.

▶ Theorem 5.3. Rr
soΣso(SO) = #PSPACE over finite ordered structures.

MFCS 2023

7:12 Counting Computations with Formulae

6 Rr
soΣ

r
so(FO) captures TotP

We define a fragment of ΣSO(FO) with recursion, which we call Rr
soΣr

so(FO). Definitions 6.1
and 6.2 will be used to restrict the use of Σ operator.

▶ Definition 6.1. We say that a formula φ(Y) syntactically defines Y if φ(Y) is of the form
∀y⃗Y (y⃗) ↔ ψ(y⃗), for some formula ψ.

▶ Definition 6.2. We say that a formula φ(X,Y) (a) extends X to Y if it is of the
form ∀y⃗Y (y⃗) ↔ X(y⃗) ∨ ψ(X, y⃗), and (b) strictly extends X to Y if it is of the form
∀y⃗

(
Y (y⃗) ↔ X(y⃗)∨ψ(X, y⃗)

)
∧∃y⃗

(
¬X(y⃗)∧Y (y⃗)

)
, for some formula ψ and arity(X) = arity(Y).

▶ Notation Remark 6.3. (a) Y := φ · α denotes ΣY.φ(Y) · α, where φ syntactically defines Y ,
and (b) Y := φ(X) · f(Y) denotes ΣY.φ(X,Y) · Y · f(Y), where φ (strictly) extends X to Y .

▶ Definition 6.4.
(a) The ΣSOr(FO) formulae over σ are the x-free ΣSO(FO) formulae with the restriction that

the second-order sum operator only appears as Y := φ · α, φ ∈ FO.
(b) Rr

soΣr
so(FO) over σ is the set of formulae [lfpf β](X), where β is defined by:

β ::= α | Y := ψ(X) · f(Y) | α+ β | φ · β | β + β + ⊤ | φ · β + ¬φ · β (7)

where α is a ΣSOr(FO) formula, φ,ψ ∈ FO, ψ strictly extends X to Y , and f is a
second-order function symbol.

To express the generic TotP problem in Rr
soΣr

so(FO), we first describe how an NPTM run
can be encoded. Let A be of size n and N = (Q,Σ, δ, q0, qF) be an NPTM that uses at most
nd − 1 time. W.l.o.g. assume that N has a single tape. We define Γ = Σ ∪ { } = {0, 1, },
ΓQ = Γ × Q, and k = max{d, ⌈log(3 + 3|Q|)⌉}. To encode cells, time steps, and symbols in
Γ ∪ ΓQ, we use k-tuples over A. Let S be a relation of arity 3k, such that, if r⃗ represents
the symbol γ ∈ Γ, then S(c⃗, t⃗, r⃗) signifies that cell c⃗ contains symbol γ at time step t⃗. If r⃗
represents the symbol-state pair (γ, q) ∈ ΓQ, then S(c⃗, t⃗, r⃗) signifies that c⃗ contains symbol γ,
the head is at cell c⃗, and N is in state q at time step t⃗. We use the FO expressible formulae
x⃗+ 1 and min to describe the successor of x⃗ and the minimum k-tuple, respectively.

We say that a relation S of arity 3k on A describes a partial run c0c1 · · · cm of N , when
(a) there is some t⃗ ∈ Ak, such that for every t⃗′ ≤ t⃗, there are c⃗, r⃗ ∈ Ak, such that S(c⃗, t⃗′, r⃗),
and for every t⃗′ > t⃗ and c⃗, r⃗ ∈ Ak, not S(c⃗, t⃗′, r⃗), (b) S(−,min,−) describes the encoding
of the starting configuration c0, and (c) if S(−, t⃗,−) describes the encoding of ci, then
S(−, t⃗+ 1,−) either describes the encoding of ci+1 or is empty. We say that formula φ(c⃗, t⃗, r⃗)
describes a partial run c0c1 · · · cm, when φ defines in A a relation that does so. We use the
standard notion of definability, where φ(x⃗) defines R in A, if for every a⃗ ∈ Ak, R(⃗a) iff
A, v[⃗a/x⃗] |= φ(x⃗). For example, let S0 be a relation of arity 3k that describes the beginning
of a run by N on enc(A). S0 can be defined in FO by y⃗ = min ∧φc0(x⃗, z⃗), where φc0 encodes
the starting configuration, as, for instance, in [21].

Below we define formula tot(X, f), the least fixed point of which applied on S0 is equal
to the number of branchings of N on input enc(A):

branch(X)
(∑

i=0,1
Y := ndeti(X) · f(Y) + ⊤

)
+ ¬branch(X)

(
nfinal(X) · Y := det(X) · f(Y)

)
.

Let X be interpreted as a relation Sp that describes a partial run c0 . . . cm of N . Formula
branch checks whether the current configuration cm creates a branching. Formulae ndeti,
i = 0, 1, and det extend Sp to a relation Snew, that describes the run c0 . . . cmcm+1, where

A. Achilleos and A. Chalki 7:13

cm+1 is the configuration that N reaches from cm by making non-deterministic choice i or a
deterministic transition, respectively. The evaluation continues recursively on Snew. Finally,
if cm is a configuration where N halts, nfinal becomes false and recursion stops. Moreover,
ndeti(X,Y), i = 0, 1, and det(X,Y) are FO formulae that strictly extend X to Y . As a result,
there is a bijection between the strings in Expl[[lfpf tot](X)](A, v, V) and branchings of
N(enc(A)). Assume that cm is a configuration that is not the initial configuration c0 and
leads to a non-deterministic choice. Then, cm can be mapped to a string S1 ◦ . . .◦Si ∈ (R3k)∗

in Expl[[lfpf tot](X)](A, v, V), where Sj extends Sj−1, for every 2 ≤ j ≤ i, and Si describes
c0 . . . cm. If c0 leads to a non-deterministic choice, it is mapped to string ε.

▶ Proposition 6.5. Given an NPTM N , J [lfpf tot](X) K(A, v, V) =
#(branchings of N(enc(A)), where V (X) encodes the initial configuration of N .

The specific form of any [lfpf β](X) ∈ Rr
soΣr

so(FO) guarantees that there is an NPTM that
generates a number of paths equal to J [lfpf β](X) K(A, v, V) + 1.

▶ Theorem 6.6. Rr
soΣr

so(LFP) = TotP over finite ordered structures.

7 Conclusions and open questions

Inspired by the two-step semantics developed in the context of weighted logics, we introduced
two-step semantics that enriches the existing framework of quantitative logics, i.e. logics
for expressing counting problems. We provided logical characterisations of SpanL and
TotP, answering an open question of [5]. Furthermore, we determined logics that capture
SpanPSPACE and FPSPACE. Compared to the other classes, the logic that captures TotP
was defined in a more complicated way that is related to the properties of TotP problems:
recursion of the logic expresses self-reducibility and the restricted form of the recursion
captures the easy-decision property. It is worth investigating whether TotP is captured by
a simpler, more elegant logic. The intermediate semantics can express sets of computation
paths of TMs, different valid outputs of transducers, or solutions to computational problems.
In particular, in the case of SpanL and SpanPSPACE, union and concatenation of sets are
more suitable than addition and multiplication of QSO; when the union (resp. concatenation)
of two sets of strings is computed, identical outputs will contribute one string to the resulting
set. In general, using the intermediate semantics, it becomes possible to keep track of paths,
outputs, and solutions, apply operations on them, and then count them. Another difference
between our logics and quantitative logics from [5], is that in [5], only first-order function
symbols were considered and interpreted as functions h : Ak → N. Then, the respective
second lattice (F ,≤F) is not complete and the least fixed point was defined by considering
the supports of functions in F [5, Section 6]. By defining here, functions whose values are sets
of strings, the lattice (F ,≤F), where F is one of FOF , SOF , or RSOF , becomes complete,
and the definition of the least fixed point is straightforward.

The two-step semantics we propose in this work is noteworthy for reasons beyond its
primary objective. For instance, by specifying the concrete semantics such that any non-empty
set maps to 1 and the empty set to 0, our results yield least-fixed-point logical characterisations
of NL and PSPACE, the decision variants of SpanL and FPSPACE, respectively. It is known
that these two classes are captured by FO and SO, equipped with the transitive closure
operator, respectively [21]. Our logics combine the least fixed point with quite natural
syntactic definitions, without resorting to different fixed-point operators for each logic.

We believe that the logical characterisation of SpanL can yield more direct ways to
approximate its problems. RfoΣfo(FO) formulae bear some resemblance to regular grammars,
(or, equivalently, to NFAs), since the syntax of the logic, at each recursive call, concatenates

MFCS 2023

7:14 Counting Computations with Formulae

a string of fixed length from the left with f(x⃗). An interesting question is whether one can
adjust the fpras for #NFA and apply it directly to the syntax of RfoΣfo(FO), giving an fpras
metatheorem for the logic. Moreover, it is only natural to investigate the class that results
from allowing arbitrary concatenations of recursive calls, and to expect a natural connection
to context-free languages. Note that the problem of counting the strings of a specific length
accepted by a context-free grammar admits a quasi-polynomial randomized approximation
algorithm [19] and it is open whether it has an fpras.

Another interesting question remains the logical characterisation of a class for which
computing the permanent of a matrix is complete under parsimonious reductions. This was
the first problem shown in [32] to be #P-complete under Turing reductions, and it has an
fpras [22]. Therefore, such a result would provide a new subclass of FPRAS and refine the
complexity of the well-studied Permanent problem.

References
1 Antonis Achilleos and Mathias Ruggaard Pedersen. Axiomatizations and computability of

weighted monadic second-order logic. In Proc. of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.
2021.9470615.

2 Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theoretical Computer
Science, 107(1):3–30, 1993. doi:10.1016/0304-3975(93)90252-O.

3 Antonis Antonopoulos, Eleni Bakali, Aggeliki Chalki, Aris Pagourtzis, Petros Pantavos, and
Stathis Zachos. Completeness, approximability and exponential time results for counting
problems with easy decision version. Theoretical Computer Science, 915:55–73, 2022. doi:
10.1016/j.tcs.2022.02.030.

4 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Efficient
logspace classes for enumeration, counting, and uniform generation. SIGMOD Record, 49(1):52–
59, 2020. doi:10.1145/3422648.3422661.

5 Marcelo Arenas, Martin Muñoz, and Cristian Riveros. Descriptive complexity for counting
complexity classes. Logical Methods in Computer Science, 16(1), 2020. doi:10.23638/
LMCS-16(1:9)2020.

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and hardness of approximation problems. In Proc. of the 33rd Annual Symposium
on Foundations of Computer Science, FOCS 1992, pages 14–23. IEEE Computer Society, 1992.
doi:10.1109/SFCS.1992.267823.

7 Albert Atserias, Anuj Dawar, and Joanna Ochremiak. On the power of symmetric linear
programs. Journal of the ACM, 68(4):26:1–26:35, 2021. doi:10.1145/3456297.

8 Eleni Bakali, Aggeliki Chalki, and Aris Pagourtzis. Characterizations and approximability
of hard counting classes below #P. In Proc. of the 16th International Conference on Theory
and Applications of Models of Computation, TAMC 2020, volume 12337 of Lecture Notes in
Computer Science, pages 251–262, 2020. doi:10.1007/978-3-030-59267-7_22.

9 J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6:66–92, 1960. doi:10.1002/malq.19600060105.

10 Kevin J. Compton and Erich Grädel. Logical definability of counting functions. Journal of
Computer and System Sciences, 53(2):283–297, 1996. doi:10.1006/jcss.1996.0069.

11 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theoretical
Computer Science, 380(1):69–86, 2007. doi:10.1016/j.tcs.2007.02.055.

12 Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. Descriptive complexity
of #P functions: A new perspective. Journal of Computer and System Sciences, 116:40–54,
2021. doi:10.1016/j.jcss.2020.04.002.

13 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004.
doi:10.1007/s00453-003-1073-y.

https://doi.org/10.1109/LICS52264.2021.9470615
https://doi.org/10.1109/LICS52264.2021.9470615
https://doi.org/10.1016/0304-3975(93)90252-O
https://doi.org/10.1016/j.tcs.2022.02.030
https://doi.org/10.1016/j.tcs.2022.02.030
https://doi.org/10.1145/3422648.3422661
https://doi.org/10.23638/LMCS-16(1:9)2020
https://doi.org/10.23638/LMCS-16(1:9)2020
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1145/3456297
https://doi.org/10.1007/978-3-030-59267-7_22
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1006/jcss.1996.0069
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1016/j.jcss.2020.04.002
https://doi.org/10.1007/s00453-003-1073-y

A. Achilleos and A. Chalki 7:15

14 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy
for boolean #CSP. Journal of Computer and System Sciences, 76(3-4):267–277, 2010. doi:
10.1016/j.jcss.2009.08.003.

15 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21–51, 1962. doi:10.2307/2270940.

16 Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972. URL:
https://books.google.is/books?id=DeLuAAAAMAAJ.

17 Ronald Fagin. Generalized first-order spectra, and polynomial. time recognizable sets.
SIAM-AMS Proceedings, 7:43–73, 1974. URL: http://www.researchgate.net/publication/
242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_
sets.

18 Paul Gastin and Benjamin Monmege. A unifying survey on weighted logics and weighted
automata - core weighted logic: minimal and versatile specification of quantitative properties.
Soft Computing, 22(4):1047–1065, 2018. doi:10.1007/s00500-015-1952-6.

19 Vivek Gore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. A
quasi-polynomial-time algorithm for sampling words from a context-free language. Information
and Computation, 134(1):59–74, 1997. doi:10.1006/inco.1997.2621.

20 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! The Journal of
Symbolic Logic, 84(1):54–87, 2019. doi:10.1017/jsl.2018.33.

21 Neil Immerman. Descriptive complexity. Springer, 1999. doi:10.1007/978-1-4612-0539-5.
22 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm

for the permanent of a matrix with nonnegative entries. Journal of the ACM, 51(4):671–697,
July 2004. doi:10.1145/1008731.1008738.

23 Richard M Karp, Michael Luby, and Neal Madras. Monte-carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10(3):429–448, 1989. doi:10.1016/
0196-6774(89)90038-2.

24 Johannes Köbler, Uwe Schöning, and Jacobo Torán. On counting and approximation. Acta
Informatica, 26(4):363–379, 1989. doi:10.1007/BFb0026095.

25 Richard E. Ladner. Polynomial space counting problems. SIAM Journal on Computing,
18(6):1087–1097, 1989. doi:10.1137/0218073.

26 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. doi:10.1007/
978-3-662-07003-1.

27 Aris Pagourtzis and Stathis Zachos. The complexity of counting functions with easy decision
version. In Proc. of the 31st International Symposium on Mathematical Foundations of
Computer Science 2006, MFCS 2006, pages 741–752. Springer, 2006. doi:10.1007/11821069_
64.

28 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. URL: https:
//books.google.is/books?id=JogZAQAAIAAJ.

29 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991. doi:
10.1016/0022-0000(91)90023-X.

30 Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive complexity
of #P functions. Journal of Computer and System Sciences, 50(3):493–505, 1995. doi:
10.1006/jcss.1995.1039.

31 Boris A. Trakhtenbrot. Finite automata and the logic of monadic predicates. Doklady Akademii
Nauk SSSR, 140:326–329, 1961.

32 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

33 Nils Vortmeier and Thomas Zeume. Dynamic complexity of parity exists queries. Logical
Methods in Computer Science, 17(4), 2021. doi:10.46298/lmcs-17(4:9)2021.

MFCS 2023

https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.2307/2270940
https://books.google.is/books?id=DeLuAAAAMAAJ
http://www.researchgate.net/publication/242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_sets
http://www.researchgate.net/publication/242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_sets
http://www.researchgate.net/publication/242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_sets
https://doi.org/10.1007/s00500-015-1952-6
https://doi.org/10.1006/inco.1997.2621
https://doi.org/10.1017/jsl.2018.33
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1145/1008731.1008738
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1007/BFb0026095
https://doi.org/10.1137/0218073
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/11821069_64
https://doi.org/10.1007/11821069_64
https://books.google.is/books?id=JogZAQAAIAAJ
https://books.google.is/books?id=JogZAQAAIAAJ
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1006/jcss.1995.1039
https://doi.org/10.1006/jcss.1995.1039
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.46298/lmcs-17(4:9)2021

	1 Introduction
	2 Preliminaries
	3 The quantitative logic Sigma SO(underline{Lambda}
	3.1 The logic Sigma SO(underline{Lambda} with recursion

	4 Logics that capture SpanL and SpanPSPACE
	5 R_{so}^{r}Sigma_{so}(SO) captures #PSPACE
	6 R_{so}^{r}Sigma_{so}^{r}(FO) captures TotP
	7 Conclusions and open questions

