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Abstract
We establish that constructive continued fraction dimension originally defined using s-gales [20]
is robust, but surprisingly, that the effective continued fraction dimension and effective (base-b)
Hausdorff dimension of the same real can be unequal in general.

We initially provide an equivalent characterization of continued fraction dimension using
Kolmogorov complexity. In the process, we construct an optimal lower semi-computable s-gale for
continued fractions. We also prove new bounds on the Lebesgue measure of continued fraction
cylinders, which may be of independent interest.

We apply these bounds to reveal an unexpected behavior of continued fraction dimension. It is
known that feasible dimension is invariant with respect to base conversion [8]. We also know that
Martin-Löf randomness and computable randomness are invariant not only with respect to base
conversion, but also with respect to the continued fraction representation [20]. In contrast, for any
0 < ε < 0.5, we prove the existence of a real whose effective Hausdorff dimension is less than ε, but
whose effective continued fraction dimension is greater than or equal to 0.5. This phenomenon is
related to the “non-faithfulness” of certain families of covers, investigated by Peres and Torbin [22]
and by Albeverio, Ivanenko, Lebid and Torbin [1].

We also establish that for any real, the constructive Hausdorff dimension is at most its effective
continued fraction dimension.
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1 Introduction

The concept of an individual random sequence, first defined by Martin-Löf using constructive
measure [15], is well-established and mathematically robust - very different approaches towards
the definition identify precisely the same sequences as random. These include Kolmogorov
incompressibility (Levin [10], Chaitin [3]) and unpredictability by martingales [24]. While
the theory of Martin-Löf randomness classifies sequences into random and non-random, it
does not quantify the information rate in a non-random sequence. Lutz effectivized the
classical notions of Hausdorff and packing dimensions [12], surprisingly extending it to
individual infinite binary sequences [13], yielding a notion of information density in sequences.
This definition also has several equivalent definitions in terms of Kolmogorov compression
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rates [16], unpredictability by s-gales, and using covers [12, 13]. These definitions have led
to a rich variety of applications in various domains of computability and complexity theory
(see for example, Downey and Hirschfeldt [5], Nies [21]).

Recently, settings more general than the Cantor space of infinite binary (or in general,
infinite sequences from a finite alphabet) have been studied by Lutz and Mayordomo [14],
and Mayordomo [17, 18]. Prominent among them is Mayordomo’s definition of effective
Hausdorff dimension for a very general class of metric spaces [17, 18]. Nandakumar and
Vishnoi [20] and Vishnoi [28] define the notion of effective dimension of continued fractions,
which involves a countably infinite alphabet, and is thus a setting which cannot be studied
using Mayordomo’s framework. This latter setting is interesting topologically since the space
of continued fractions is non-compact, and interesting measure-theoretically since the natural
shift invariant measure, the Gauss measure, is a non-product measure.

Nandakumar and Vishnoi [20] use the notion of an s-gale on the space of continued
fractions to define effective dimension. Vishnoi [28] introduced the notion of Kolmogorov
complexity of finite continued fraction strings using a one to one binary encoding. Vishnoi
[28] also shows that the notion of Kolmogorov complexity is invariant under computable 1-1
encodings, upto an additive constant.

In this work, we first establish the mathematical robustness of the notion of effective
dimension, by proving an equivalent characterization using Kolmogorov complexity of con-
tinued fractions. The characterization achieves the necessary equivalence by choosing a
binary encoding of continued fractions which has a compelling geometric intuition, and
then applying Mayordomo’s characterization of effective (binary) Hausdorff dimension using
Kolmogorov complexity [16] . In the process, analogous to the notion of an optimal con-
structive supergale on the Cantor space defined by Lutz [13], we provide the construction
of a lower semi-computable s-gale that is optimal for continued fractions. We also prove
new bounds on the Lebesgue measure of continued fraction cylinders using the digits of the
continued fraction expansion, a result which may be of independent interest.

The topological and measure-theoretic intricacies involved in this setting imply that
some, but not all, “natural” properties of randomness and dimension carry over from the
binary setting. For example, while Martin-Löf and computable randomness are invariant
with respect to the conversion between the base-b and continued fraction expansion of the
same real [19, 20], Vandehey [26] and Scheerer [23] show that other notions of randomness
like absolute normality and normality for continued fractions are not identical.

Staiger [25] showed that the Kolmogorov complexity of a base b expansion of a real
α, 0 ≤ α ≤ 1, is independent of the chosen base b. Aligning with this, Hitchcock and
Mayordomo [8] establish that feasible dimension of a real is the same when converting
between one base to another. Hitherto, it was unknown whether effective dimension is
invariant with respect to conversion between base-b and continued fraction representations.
Since we can convert between the representations efficiently, it is possible that these are
equal. We show this is true in one direction, that the effective base b dimension is a lower
bound for effective continued fraction dimension.

However, using the technique of diagonalization against the optimal lower semicomputable
continued fraction s-gale and using set covering techniques used in recent works by Peres and
Torbin [22], Albeverio, Ivanenko, Lebid and Torbin [1] and Albeverio, Kondratiev, Nikiforov
and Torbin [2] to show the “non-faithfulness” of certain families of covers, we show that
the reverse direction does not hold, in general. We prove the following result: for every
0 < ε < 0.5, there is a real whose effective (binary) Hausdorff dimension is less than ε while
its effective continued fraction dimension is at least 0.5. By the result of Hitchcock and



S. Nandakumar, A. S, and P. Vishnoi 70:3

Mayordomo [8], this also implies that the effective base-b dimension of this real is less than ε

in every base-b, b ≥ 2. Thus, surprisingly, there is a sharp gap between the effective (base-b)
dimension of a real and its effective continued fraction dimension, highlighting another
significant difference in this setting.

2 Preliminaries

We denote the binary alphabet by Σ. The set of strings of a particular length n is denoted
Σn. The set of all finite binary strings is denoted Σ∗ and infinite binary sequences is denoted
Σ∞. For a binary string v ∈ Σn \ {0n ∪ 1n}, v − 1 denotes the string occurring just before v

lexicographically, and v + 1 the string occurring just after v lexicographically. We use N to
denote the set of positive integers. The set of finite continued fractions is denoted N∗ and
the set of all infinite continued fractions, as N∞.

We adopt the notation [a1, a2, . . . ] for the continued fraction

1

a1 +
1

a2 + · · ·

and similarly, [a1, a2, . . . , an] for finite continued fractions.
If a finite binary string x is a prefix of a finite string z or an infinite binary sequence

Z, then we denote this by x ⊑ z or x ⊑ Z respectively. If x is a proper prefix of a finite
string z, we denote it by x ⊏ z. We adopt the same notation for denoting that a finite
continued fraction v is a prefix of another continued fraction. For a v ∈ N∗, the cylinder
set of v, denoted Cv, is defined by Cv = {Y ∈ N∞ | v ⊏ Y }. For a w ∈ Σ∗, Cw is defined
similarly. For a continued fraction string v = [a1 . . . an], P (v) denotes the string [a1, . . . an−1].
λ denotes the empty string and we define P (λ) = λ.

For v ∈ N∗, µ(v) refers to the Lebesgue measure of the continued fraction cylinder
Cv. γ(v) refers to the Gauss measure of the continued fraction cylinder Cv, defined by
γ(v) =

∫
Cv

1
1+x dx. We use the same notation for a binary cylinder w ∈ Σ∗. It is well-known

that the Gauss measure is absolutely continuous with respect to the Lebesgue measure,
and is invariant with respect to the left-shift transformation on continued fractions (see for
example, [4], or [6]). Wherever there is no scope for confusion, for a v ∈ N∗, we use µ(v) and
γ(v) to represent µ(Cv) and γ(Cv) respectively. The same holds for a v ∈ Σ∗. We also use
the notation µs(v) and γs(v) to denote (µ(v))s and (γ(v))s respectively. For a continued
fraction string v = [a1, . . . , an], we call n as the rank of v, and we denote it using rank(v).
[v, i] denotes the continued fraction [a1, . . . an, i]. For an infinite continued fraction string
Y = [a1, a2, . . . ], Y ↿ n denotes the continued fraction string corresponding to the first n
entries of Y , that is Y ↿ n = [a1, a2 . . . an]. For k ∈ N, N≤k refers to the set of continued
fraction strings having rank less than or equal to k. All logarithms in the work have base 2,
unless specified otherwise. For any sets A and B, A∆B denotes the symmetric set difference
operator, defined by (A \ B) ∪ (B \ A). In this work, for ease of notation, Y ∈ N∗ denotes an
infinite continued fraction and X ∈ Σ∞ denotes an infinite binary sequence.

2.1 Constructive dimension of binary sequences
Lutz [13] defines the notion of effective (equivalently, constructive) dimension of an individual
infinite binary sequence using the notion of the success of s-gales.

MFCS 2023
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▶ Definition 1 (Lutz [13]). For s ∈ [0, ∞), a binary s-gale is a function d : Σ∗ → [0, ∞) such
that d(λ) < ∞ and for all w ∈ Σ∗, d(w)[µ(Cw)]s =

∑
i∈{0,1} d(wi)[µ(Cwi)]s.

The success set of d is S∞(d) =
{

X ∈ N∞ | lim sup
n→∞

d(X ↾ n) = ∞
}

.

For F ⊆ [0, 1], G(F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable binary s-gale d with F ⊆ S∞(d).

The constructive dimension or effective Hausdorff dimension of F ⊆ [0, 1] is cdim(F) =
inf G(F) and the constructive dimension of a sequence X ∈ Σ∞ is cdim(X) = cdim({X}).

3 Effective Continued Fraction Dimension using s-gales

Nandakumar and Vishnoi [20] formulate the notion of effective dimension of continued
fractions using the notion of lower semicomputable continued fraction s-gales. Whereas a
binary s-gale bets on the digits of the binary expansion of a number, a continued fraction
s-gales places bets on the digits of its continued fraction expansion.

▶ Definition 2 (Nandakumar, Vishnoi [20]). For s ∈ [0, ∞), a continued fraction s-gale is a
function d : N∗ → [0, ∞) such that d(λ) < ∞ and for all w ∈ N∗, the following holds.

d(w)[γ(Cw)]s =
∑
i∈N

d(wi)[γ(Cwi)]s.

The success set of d is S∞(d) =
{

Y ∈ N∞ | lim sup
n→∞

d(Y ↾ n) = ∞
}

.

In this paper, we deal with the notion of effective or equivalently, constructive dimension.
In order to effectivize the notion of s-gales, we require them to be lower semicomputable.

▶ Definition 3. A function d : N∗ −→ [0, ∞) is called lower semicomputable if there exists a
total computable function d̂ : N∗ × N −→ Q ∩ [0, ∞) such that the following two conditions
hold.

Monotonicity: For all w ∈ N∗ and for all n ∈ N, we have d̂(w, n) ≤ d̂(w, n + 1) ≤ d(w).
Convergence: For all w ∈ N∗, lim

n→∞
d̂(w, n) = d(w).

For F ⊆ [0, 1], GCF (F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable continued fraction s-gale d with F ⊆ S∞(d).

▶ Definition 4 (Nandakumar, Vishnoi [20]). The effective continued fraction dimension of
F ⊆ [0, 1] is

cdimCF (F) = inf GCF (F).

The effective continued fraction dimension of a sequence Y ∈ N∞ is defined by cdimCF ({Y }),
the effective continued fraction dimension of the singleton set containing Y .

3.1 Conversion of binary s-gales into continued fraction s-gales
In this subsection, from a continued fraction s′-gale d : N∗ → [0, ∞), for any s > s′, we
construct a binary s-gale h : Σ∗ → [0, ∞) which succeeds on all the reals on which d succeeds.
The construction proceeds in multiple steps. We first mention some technical lemmas which
we use in the proof.

The following lemma is an easy consequence of the fact that the Gauss measure is
absolutely continuous with respect to the Lebesgue measure (see for example, Nandakumar
and Vishnoi [20]).
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▶ Lemma 5. For any interval B ⊆ (0, 1), we have

1
2 ln 2µ(B) ≤ γ(B) ≤ 1

ln 2µ(B).

In the construction that follows, we formulate betting strategies on binary cylinders based
on continued fraction cylinders. In order to do this conversion, we require the following
bounds on the relationships between the lengths of continued fraction cylinders and binary
cylinders.

▶ Lemma 6 (Nandakumar, Vishnoi [20]). For any 0 ≤ a < b ≤ 1, let
[

m
2k , m+1

2k

)
, where

0 ≤ m ≤ 2k − 1 be one of the largest dyadic intervals which is a subset of [a, b), then
1

2k ≥ 1
4 (b − a).

▶ Lemma 7 (Falconer [7]). For any 0 ≤ a < b ≤ 1, let
[

m
2k , m+1

2k

)
,
[

m+1
2k , m+2

2k

)
, where

0 ≤ m ≤ 2k − 2, be the smallest consecutive dyadic intervals whose union covers [a, b). Then
1

2k ≤ 2(b − a).

The following lemma is a generalization of the Kolmogorov inequality for continued
fraction martingales (Vishnoi [27]) to s-gales. The lemma states that an equality holds in
the case of decompositions using prefix-free subcylinder sets upto a finite depth.

▶ Lemma 8. Let d : N∗ → [0, ∞) be a continued fraction s-gale. Let v ∈ N∗ and for some
k ∈ N, let A be a prefix free set of elements in N≤k such that ∪w∈ACw = Cv. Then, we have
d(v)γs(v) =

∑
w∈A d(w)γs(w).

In the construction of a binary s-gale from continued fraction gales, The first step is
the following decomposition of a binary cylinder into a set of prefix free continued fraction
cylinders.

▶ Lemma 9 (Vishnoi [27]). For every w ∈ Σ∗, there exists a set I(w) ⊆ N∗ and a constant
k ∈ N such that,
1. y ∈ N≤k for every y ∈ I(w).
2. (∪y∈I(w)Cy)∆Cw ⊆ {inf(Cw), sup(Cw)}
3. I(w0) ∪ I(w1) = I(w)
4. I(w0) ∩ I(w1) = ϕ

Moreover, given w ∈ Σ∗, Vishnoi [27] gives a division algorithm to compute I(w). It is
also clear from the division algorithm that for all w ∈ Σ∗, there exists a u ∈ I(w) such that
for all v ∈ (I(w0) ∪ I(w1)) \ I(w), we have u ⊏ v. This u ∈ I(w) is the continued fraction
cylinder for which the mid point of w, m(w) is an interior point in Cu and therefore gets
divided.

From a continued fraction martingale, Vishnoi [27] uses the decomposition I(w) to
construct a binary martingale that places the same aggregate bets on an interval. We
generalize this construction to the setting of s-gales. Given a continued fraction s′-gale
d : N∗ → [0, ∞), using the decomposition I(w), we construct a binary s′-gale Hd from d.

▶ Definition 10. Given any continued fraction s′-gale d : N∗ → [0, ∞), define the Propor-
tional binary s′-gale of d, Hd : Σ∗ → [0, ∞) as follows:

Hd(w) =
∑

y∈I(w)

d(y)
(

γ(y)
µ(w)

)s′

.

MFCS 2023
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For a w ∈ Σ∗, let I ′(w) = I(w0) ∪ I(w1). Then we have,

Hd(w0) + Hd(w1) = 2s′ ∑
y∈I′(w)

d(y)
( γ(y)

µ(w)

)s′

.

Let u ∈ I(w) such that for all v ∈ I ′(w) \ I(w), u ⊏ v. Hence, by Lemma 8, it follows that∑
y∈I′(w) d(y)γs′(y) =

∑
y∈I(w) d(y)γs′(y). Therefore, we have Hd(w0)+Hd(w1) = 2s′

Hd(w),
so Hd is an s′-gale. Also as γ(λ) = 1, we have that Hd(λ) = d(λ).

As I(w) is computably enumerable, it follows that Hd is lower semicomputable if d is
lower semicomputable.

The construction by Vishnoi [27] proceeds using the savings-account trick for martingales.
In the setting of s-gales, however, the concept of a savings account does not work directly.
Therefore, we require additional constructions in this setting.

Using ideas from the construction given in Lemma 3.1 in Hitchcock and Mayordomo [8],
we construct a “smoothed” s-gale Hh : Σ∗ → [0, ∞) from the proportional s′-gale constructed
in Definition 10.

▶ Definition 11. For a w ∈ Σ∗, and an n > |w|, we define

Fn(w) = {u ∈ {0n ∪ 1n} | w ⊑ u} ∪ {u ∈ Σn \ {0n ∪ 1n} | w ⊑ u + 1 and w ⊑ u − 1},

Hn(w) = {u ∈ Σn | w ⊑ u or w ⊑ u + 1 or w ⊑ u − 1} \ Fn.

▶ Definition 12. Given an s′-gale h : Σ∗ → [0, ∞), for any s > s′ and for each n ∈ N,
define:

hn(w) =


2s|w|

( ∑
u∈Hn(w)

1
2 h(u) +

∑
u∈Fn(w)

h(u)
)

if |w| < n

2(s−1)(|w|−n+1) hn(w[0 . . . n − 2]) otherwise.

Define Sh : Σ∗ → [0, ∞) by

Sh(w) =
∞∑

n=0
2−sn hn(w).

We call Sh as the smoothed s-gale of h.

Consider a string w ∈ Σn other than 0n and 1n. In hn, a factor of half the capital of w

gets assigned to it’s immediate parent w′. The other half is assigned to the neighbor of w′ to
which w is adjacent to.

It is straightforward to verify that each hn is an s-gale. Sh is a combination of s-gales,
and hence is a valid s-gale. Note that hn(λ) =

∑
u∈Σn h(u) = 2s′n. Therefore as s > s′,

Sh(λ) =
∑

n∈N 2(s′−s)n is finite. If h is lower semicomputable, it follows that Sh is lower
semicomputable.

Combining the constructions given in the section, for any s > s′, we show the construction
of a binary s-gale from a continued fraction s′-gale, satisfying certain bounds on the capital
acquired.

This construction helps to establish a lower bound on effective continued fraction dimension
using effective binary dimension. It is also central in formulating a Kolmogorov complexity
characterization for continued fraction dimension.



S. Nandakumar, A. S, and P. Vishnoi 70:7

▶ Lemma 13. For s′ ∈ (0, ∞), let d : N∗ → [0, ∞) be a continued fraction s′- gale. Then,
for any s > s′, there exists a binary s-gale h : Σ∗ → [0, ∞) such that for any v ∈ N∗ and for
any b ∈ Σ∗ such that Cb ∩ Cv ̸= ϕ and 1

16 µ(v) ≤ µ(b) ≤ 2µ(v), we have

h(b) ≥ csd(v),

where cs is a constant that depends on s. Moreover, if d is lower semicomputable, then h is
lower semicomputable.

4 Kolmogorov Complexity characterization of Continued Fraction
Dimension

Mayordomo [16] extended the result by Lutz [11] to show that effective dimension of a binary
sequence X ∈ Σ∞ can be characterized in terms of the Kolmogorov complexity of the finite
prefixes of X.

▶ Theorem 14 (Mayordomo [16] and Lutz [11]). For every X ∈ Σ∞,

cdim(X) = lim inf
n→∞

K(X ↾ n)
n

.

We provide a similar characterization for effective continued fraction dimension. To
obtain the Kolmogorov complexity of a continued fraction string, we use the Kolmogorov
complexity of one of its binary encodings.

The idea of encoding a finite continued fraction using a 1-1 binary encoding is present
in Vishnoi [28]. The author presents an invariance theorem stating that every computable
binary 1-1 encoding of continued fractions defines the same Kolmogorov complexity, up to an
additive constant. Hence in this work, we use a new binary encoding to define Kolmogorov
complexity of continued fractions, which helps us establish the characterization of effective
dimension of continued fractions in a fairly simple manner while having intuitive geometric
meaning.

▶ Definition 15 (Many-one binary encoding). For a continued fraction string v ∈ N∗, let bv

be the leftmost maximal binary cylinder which is enclosed by Cv. We define E(v) = bv.

▶ Lemma 16. For any b ∈ Σ∗, there exists at most three v ∈ N∗ such that E(v) = b.

Therefore for any b ∈ Σ∗, at most three continued fraction cylinders, say [v], [v, i] and
[v, i, j] get mapped to b. Therefore we pad two additional bits of information to E(v), say
b1(v).b2(v) to identify the continued fraction cylinder that E(v) corresponds to.

▶ Definition 17 (One-one binary encoding). For v ∈ N∗, let E(v) = E(v).b1(v).b2(v). This
forms a one to one binary encoding of v.

We define Kolmogorov complexity of continued fraction string v ∈ N∗ as the Kolmogorov
complexity of E(v).

▶ Definition 18 (Kolmogorov complexity of continued fraction strings). For any v ∈ N∗, define
KE(v) = K(E(v)).

MFCS 2023
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Notation. By the invariance theorem of Vishnoi [28], for any v ∈ Σ∗, KE is at most an
additive constant more than the complexity of v as defined in [28]. Hence, we drop the suffix
and denote the above complexity as K(v).

In the proof of Theorem 14, Mayordomo [16] provides the construction of an s-gale that
succeeds on all X for which s > s′ > lim infn→∞

K(X↾n)
n . We extend the construction to the

setting of continued fractions.
Additionally, we take a convex combination of gales to remove the dependence of the s-gale

on the parameter s′. Due to this, we obtain the notion of an optimal lower semicomputable
continued fraction s-gale. This notion is crucial in the proofs we use in the upcoming sections.

▶ Definition 19. Given 0 < s′ < s ≤ 1 let

Gs′ = {w ∈ N∗ | K(w) ≤ −s′ log(µ(w))}.

Consider the following function ds′ : N∗ → [0, ∞) defined by

ds′(v) = 1
γs(v)

 ∑
w∈Gs′ ;v⊑w

γs′
(w) +

∑
w∈Gs′ ;w⊏v

γs′
(w) γ(v)

γ(w)

 .

Now for each i ∈ N, let si = s(1 − 2−i). Finally, define d∗ : N∗ → [0, ∞) by

d∗(v) =
∞∑

i=1
2−idsi

(v).

We now go on to show that the function d∗ given in Definition 19 is a lower semicomput-
able s-gale. Additionally, it succeeds on all continued fraction sequences Y for which the
Kolmogorov complexity of its prefixes, K(Y ↾ n) dips below s × − log(µ(Y ↿ n)) infinitely
often.

▶ Lemma 20. For any 0 < s ≤ 1, there exists a lower semicomputable continued fraction
s-gale d∗ : N∗ → [0, ∞) that succeeds on all Y ∈ N∞ such that lim inf

n→∞
K(Y ↿n)

− log(µ(Y ↿n)) < s.

We refer to Downey and Hirschfeldt’s (Theorem 13.3.4 [5]) proof of the lower bound
on constructive dimension using Kolmogorov complexity. The proof fundamentally uses
properties of the universal lower semicomputable super-martingale.

For any real having continued fraction dimension less than s, we obtain a lower semicom-
putable binary s-gale that succeeds on it from Lemma 13. We use the success of this binary
s-gale along with the same properties of the universal lower semicomputable super-martingale,
to prove the following lemma.

▶ Lemma 21. For any Y ∈ N∞ and any s > cdimCF (Y ), we have lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) ≤ s.

Therefore, we have the following Kolmogorov complexity based characterization of effective
continued fraction dimension.

▶ Theorem 22. For any Y ∈ N∞,

dimCF (Y ) = lim inf
n→∞

K(Y ↿ n)
− log(µ(Y ↿ n)) .

Proof. For any Y ∈ N∞, let s∗ = lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) .

For any s > s∗, from Lemma 20, it follows that there exists a lower semicomputable
s-gale D that succeeds on Y . Hence dimCF (Y ) ≤ s∗.

For any s > dimCF (Y ), from Lemma 21, we have that s∗ ≤ s. Therefore, we have
s∗ ≤ dimCF (Y ). ◀
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4.1 Optimal gales and effective continued fraction dimension of a set
Lutz [13] utilizes the notion of the optimal constructive subprobability supermeasure M on
the Cantor space [29] to provide a notion of an optimal constructive supergale.

We note that using Theorem 22, the gale that we obtain from Lemma 20 leads to an
analogous notion in the continued fraction setting. We call the continued fraction s-gale d∗

thus obtained as the optimal lower semicomputable continued fraction s-gale.

▶ Lemma 23. For any s > 0, there exists a lower semicomputable continued fraction s-gale
d∗ : N∗ → [0, ∞) such that for all Y ∈ N∞ with cdimCF (Y ) < s, d∗ succeeds on Y .

Proof. For all Y ∈ N∗ such that cdimCF (Y ) < s, from Theorem 22, it follows that
lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) < s. Now applying Lemma 20, we see that the given lemma holds. ◀

Lutz (Theorem 4.1 in [13]) shows that the effective dimension of a set is precisely the
supremum of effective dimensions of individual elements in the set, that is for all X ⊆ [0, 1],
cdim(X) = supS∈X cdim(S). Using the notion of the optimal lower semicomputable continued
fraction s-gale from Lemma 23, we extend this result to continued fraction dimension.

▶ Theorem 24. For all F ⊆ [0, 1], cdimCF (F) = supY ∈F cdimCF (Y ).

Proof. For any s > cdimCF (F), for all Y ∈ F there exists a lower semicomputable continued
fraction s-gale that succeeds on Y . Thus we have supY ∈F cdimCF (Y ) ≤ s.

Take any any s > supY ∈F cdimCF (Y ). It follows that for all Y ∈ F , cdimCF (Y ) < s.
Therefore from Lemma 23, we have that there exists a lower semicomputable continued
fraction s-gale d∗ : N∗ → [0, ∞) that succeeds on all Y ∈ F . Therefore, cdimCF (F) ≤ s. ◀

5 Reals with unequal Effective Dimension and Effective Continued
Fraction Dimension

In this section, we show that for any set of reals F ⊆ [0, 1], the effective Hausdorff effective
dimension of F cannot exceed its effective continued fraction dimension. We show that this
cannot be improved to an equality. Hence, this inequality is strict in general. We show
this by proving the existence of a real such that its effective continued fraction dimension is
strictly greater its effective dimension.

5.1 Effective Hausdorff dimension is at most the effective continued
fraction dimension

▶ Theorem 25. For any F ⊆ [0, 1], cdim(F) ≤ cdimCF (F).

Proof. Let s > s′ > cdimCF (F). By definition, there exists a lower semicomputable
continued fraction s′-gale d : N∗ → [0, ∞) such that F ⊆ S∞[d].

Take any Y ∈ S∞[d]. Let X ∈ Σ∞ be the corresponding binary representation of Y . By
definition, for any m ∈ N, there exists an n ∈ N such that d(Y ↾ n) > m. Let v = Y ↾ n.

Using Lemma 7, we get two binary cylinders w1 and w2 such that Cv ⊆ Cw1 ∪ Cw2 such
that µ(w1) = µ(w2) ≤ 2µ(v). We have that since v ⊑ Y , w1 ⊑ X or w2 ⊑ X. Without loss
of generality assume that w1 ⊑ X.

From Lemma 13, we obtain a lower semicomputable s-gale h such that h(w1) ≥ cs.d(v) ≥
cs.m for some positive constant cs.

Since m is arbitrary, we see that h succeeds on X. ◀

MFCS 2023



70:10 Effective Continued Fraction Dimension

5.2 Reals with unequal effective Hausdorff and effective continued
fraction dimensions

We now provide the main construction of the paper, utilizing the results we show in previous
sections.

We first require some technical lemmas about the estimation of Lebesgue measure of a
continued fraction cylinder in terms of digits of the continued fraction. Some of the bounds
derived in this section may be of independent interest.

In combinatorial arguments, the Gauss measure is often difficult to deal with directly,
and it is convenient to use the Lebesgue measure, and derive inequalities.

The following equation, Proposition 1.2.7 in Kraaikamp and Iosifescu [9], is extremely
useful in deriving an estimate for the Lebesgue measure of continued fraction cylinders. We
derive consequences of this Lemma below, and these are crucial in estimating the dimension
of the continued fraction we construct in Section 5. Note that the bounds for Gauss measure
are not simple to derive directly.

▶ Lemma 26 (Kraaikamp, Iosifescu [9]). For any v = [a1, . . . an] and i ∈ N,

µ([v, i])
µ([v]) = sn + 1

(sn + i)(sn + i + 1)

where sn = [an, . . . a1] is the rational corresponding to the reverse of string v.

The lemma given above gives the following bounds on the Lebesgue measure of a continued
fraction cylinder in terms of the digits of the continued fraction.

▶ Lemma 27. For any v = [a1, . . . ak] ∈ Nk we have

k∏
i=1

1
(ai + 1)(ai + 2) ≤ µ(v) ≤

k∏
i=1

2
ai (ai + 1)

▶ Lemma 28. Let v = [a1 . . . ak] ∈ N∗. Then for any a, b ∈ N such that b > a,

µ

(
b⋃

i=a

[v, i]
)

≤ 2
a

k∏
i=1

2
ai (ai + 1)

The following lemma is a direct constructive extension of the proof by Lutz [12]. Using
this technique, we convert a set of computably enumerable prefix free binary covers into a
lower semicomputable binary s-gale.

▶ Lemma 29 (Lutz [12]). For all n ∈ N, and F ⊆ [0, 1], if there is a computably enumerable
prefix free binary cover {Bn

i } of F , such that
∑

i |Bn
i |s < 2−n, then there exists a lower

semicomputable binary s-gale that succeeds on F .

We now proceed to show the construction of the set F . The definition uses a parameter
s. We later go on to show that for all such F , there exists an element Y ∈ F such that the
effective continued fraction dimension of Y is greater than 0.5. We also go on to show that
cdim(F ) ≤ s.

We first provide the stage-wise construction of a set Fk ⊆ [0, 1], such that for each k ∈ N
Fk+1 ⊆ Fk. We then define the set F using an infinite intersection of the sets Fk.
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▶ Definition 30. Let 0 < s < 0.5. Define a1 = 1. For any k ∈ N, such that k > 1, define ak

inductively as:

ak = 2
(

k

k−1∏
i=1

100ai

)1/s

.

For any k ∈ N, define bk = 50.ak. Take F0 = λ.
Let Fk = {[v1 . . . vk] ∈ Nk such that vi ∈ [ai, bi] for i ∈ 1 to k}. Finally define

F =
∞⋂

k=1
Fk.

We use the bounds obtained from Lemma 26, along with basic properties of harmonic
numbers to prove the following property of measures of continued fraction sub cylinders.

▶ Lemma 31. For any x ∈ N∗ , s ≤ 0.5 and ak, bk ∈ N such that bk = 50.ak,
bk∑

i=ak

γs([x, i]) > cγs([x]) for some c > 1.

Using the bound derived above, we show that for s = 0.5, the optimal s-gale d∗ formulated
in Section 4.1 does not succeed on some sequence in Y ∈ F . Using this we establish that
cdimCF (Y ) ≥ 0.5.

▶ Lemma 32. There exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5.

Proof. Let s = 0.5. Consider the continued fraction s-gale d∗ from Lemma 23. It follows
that for all Y ∈ N∗, if d∗ does not succeed on any Y ∈ N∗, then cdimCF (Y ) ≥ s.

Consider any v ∈ N∗, let rank(v) = k. From lemma 31, we have that for some c > 1,
bk∑

i=ak

γs([v, i]) > c.γs([v]).

Now if ∀i ∈ [ak, bk], d∗([v, i]) ≥ 1
c .d∗(v), from the s-gale condition it follows that

d∗(v)γs(v) ≥ d∗(v)
c

bk∑
i=ak

γs([v, i]) > d∗(v)γs(v), which is a contradiction.

Therefore, it follows that for all v ∈ N∗, there exists some nv ∈ [ak, bk] such that
d∗([v, i]) < 1

c .d∗([v]).
Let v0 = λ, for each i ∈ N, we define vi = [vi−1, nvi−1 ]. Take Y = ∩∞

i=1Cvi
, it follows that

Y ∈ F . Taking d∗(λ) = k we get d∗(Y ↾ n) < k
cn . Therefore the continued fraction s-gale d∗

does not succeed on Y . Hence cdimCF (Y ) ≥ 0.5. ◀

From this, it follows that the constructive dimension of the entire set F is also greater
than or equal to 0.5.

▶ Lemma 33. cdimCF (F) ≥ 0.5.

Proof. From Theorem 24, we get that cdimCF (F) = supY ∈F cdimCF (Y ). From Lemma 32,
it follows that there exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5. Combining these two, we
get that cdimCF (F) ≥ 0.5. ◀

Now we show that the effective Hausdorff dimension of all points in the set F is less than
s. Using ideas from [2], we devise a set of covers Sk for F , by combining adjacent continued
fraction cylinders into a single cover.

Using the bounds derived on Lebesgue measure of continued fraction cylinders, we show
that for the set of covers Sk for F , the s-dimensional Hausdorff measure shrinks arbitrarily
small.

MFCS 2023



70:12 Effective Continued Fraction Dimension

▶ Lemma 34. For k ∈ N, let Sk = {
bk⋃

i=ak

[v, i] for v ∈ Fk−1}. Then,
∑

S∈Sk

µs(S) ≤ 1/k.

Proof. The largest element in Sk is I = [(a1 . . . ak−1, ak), [(a1 . . . ak−1, bk)]. The number of
elements in Sk equals

∏k−1
i=1 (bi − ai). Additionally, we have bi = 50ai for all i ∈ N. Therefore,

∑
S∈Sk

µs(S) ≤ µs(I)
k−1∏
i=1

50ai.

From Lemma 28, it follows that µ(I) ≤ 2
ak

k−1∏
i=1

2
ai (ai+1) . Therefore,

∑
S∈Sk

µs(S) ≤
( 2

ak

k−1∏
i=1

2
a2

i

)s k−1∏
i=1

(50ai)

≤ 2s

as
k

k−1∏
i=1

100ai

Since ak = 2(k
k−1∏
i=1

100ai)1/s, this value is less than 1/k. ◀

To show that the constructive dimension of F is less than s, we construct a lower
semicomputable binary s-gale that succeeds on F . Using standard techniques, we first
convert the covers obtained in Lemma 34 to a set of binary covers of F . Finally applying
Lemma 29, we convert the binary covers into a semicomputable s-gale that succeeds on F .

▶ Lemma 35. cdim(F) ≤ s.

Proof. Given k ∈ N, from Lemma 34, we have that for Sk = {
⋃bk

i=ak
[v, i] for v ∈ Fk−1},∑

S∈Sk
µs(S) ≤ 1/k. For each S ∈ Sk, using Lemma 7, we get that for the two smallest

consecutive binary cylinders say b1(S) and b2(S) that cover S, we have that µ(b1) = µ(b2) ≤
2µ(C).

Hence the set Bk = {{b1(S)} ∪ {b2(S)} such that S ∈ Sk} forms a binary cover of Sk.
Also from Lemma 7, we have that

∑
b∈Bk

µs(b) ≤ 21+s∑
S∈Sk

µs(S) ≤ 21+s/k.
Note that the set Sk is computable as ak and bk are computable for all k. Given any

interval S, b1(S) and b2(S) are also computable. Hence the set Bk is computable.
Since Bk is a finite set, we can remove all v ∈ Bk such that u ⊏ v for some u ∈ Bk, to

make Bk prefix free.
For an n ∈ N, taking k = ⌈21+s.2n⌉, the set Bk forms a computably enumerable prefix

free binary cover of F such that
∑

b∈Bk
µs(b) ≤ 2−n.

Applying Lemma 29, we get that there exists a lower semicomputable s-gale that succeeds
on F . Hence the lemma holds. ◀

We sum up the results from Lemma 32 and Lemma 35 into the following theorem.

▶ Theorem 36. Given any 0 < ε < 0.5, there exists a Y ∈ N∗ such that cdimCF (Y ) ≥ 0.5
and cdim(Y ) ≤ ε.

Proof. Given 0 < ε < 0.5, taking s = ε, construct the set F given in Definition 30.
From Lemma 32, it follows that there exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5.
From Lemma 35, it follows that for all X ∈ F , cdim(X) ≤ ε. Hence cdim(Y ) ≤ ε. ◀
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A Appendix

A.1 Proof of Lemma 13
Proof. Given an s′-gale d : N∗ → [0, ∞), let h′ = Hd, the proportional binary s′-gale of d

given in Definition 10.
For a v ∈ N∗, consider the smallest w1, w2 ∈ Σ∗ such that Cv ⊆ Cw1 ∪ Cw2 . Also we can

see that there exists a S ⊆ I(w1) ∪ I(w2) such that Cv = ∪u∈SCu.
Therefore from Lemma 8, we get h′(w1) + h′(w2) ≥ d(v) γs′

(v)
µs′ (w1) . From Lemma 7, we

get that µ(w1) = µ(w2) ≤ 2µ(v). Also from Lemma 5, we have that γ(v) ≤ (ln2)−1µ(v).
Therefore, h′(w1) + h′(w2) ≥ (2ln2)−s′

d(v). Now for any s > s′, we have that h′(w1) +
h′(w2) ≥ c1.d(v), where c1 = 1/(2ln2)s.

Now for any s > s′, consider the smoothed s-gale h = SHd
of the s′-gale Hd given in

Definition 11.
Let |w1| = n , and let W1 = P (P (w1)) be the parent cylinder of parent of w1. Similarly

let W2 = P (P (w2)). We see that for any W ∈ {W1, W2}, hn(W ) ≥ 2s(n−2) h′(w1)+h′(w2)
2 ≥

c2.2sn.d(v), where c2 = 2−(2s+1)c1.
Take any any b ∈ Σ∗ such that Cb ∩ Cv ̸= ϕ and 2.µ(v) ≥ µ(b) ≥ 1

16 µ(v). Since
µ(b) ≤ 2µ(v) and µ(v) ≤ 2.µ(w1), it follows that for some W ∈ {W1, W2}, W ⊑ b. Also since
µ(b) ≥ 1

16 µ(v), we have that, µ(b) ≥ 1
32 µ(w1).

Therefore, we have that hn(b) ≥ 25(s−1)hn(W ) ≥ c3.2sn.d(v), where c3 = c2.25(s−1).
Since h(b) ≥ 2−snhn(b), we have that h(b) ≥ c3.d(v). ◀

A.2 Proof of Lemma 31
Proof. From Lemma 26, it follows that

bk∑
an

µs([x, i])
µs([x]) =

bk∑
an

(
sk + 1

(sk + i)(sk + i + 1)

)s

≥
bk∑
ak

(
1

(i + 1)(i + 2)

)s

The second inequality follows from the fact that sk ∈ [0, 1].

https://arxiv.org/abs/1701.07979
https://doi.org/10.1016/S0304-3975(01)00102-5
https://doi.org/10.1017/S0004972716000101
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Using Lemma 5, we get that

bk∑
an

γs([x, i])
γs([x]) ≥

bk∑
ak

(
1

2(i + 1)(i + 2)

)s

Putting bk = 50ak and s ≤ 0.5, we get

bk∑
an

γs([x, i])
γs([x]) ≥ 1

2

50ak∑
ak

1
i + 2

= 0.5(H(50ak + 2) − H(ak + 1)).

where Hn is the nth Harmonic number. From the fact that ln n ≤ Hn ≤ ln n + 1, we have

H(50ak + 2) − H(ak + 1) ≥ ln(50.ak) − ln(2.ak) − 1
= ln(25) − 1.

The lemma holds as 0.5(ln 25 − 1) is greater than 1. ◀
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