
OBDD(Join) Proofs Cannot Be Balanced
Sergei Ovcharov #

St. Petersburg State University, Russia

Abstract
We study OBDD-based propositional proof systems introduced in 2004 by Atserias, Kolaitis, and
Vardi that prove the unsatisfiability of a CNF formula by deduction of an identically false OBDD
from OBDDs representing clauses of the initial formula. We consider a proof system OBDD(∧) that
uses only the conjunction (join) rule and a proof system OBDD(∧, reordering) (introduced in 2017
by Itsykson, Knop, Romashchenko, and Sokolov) that uses the conjunction (join) rule and the rule
that allows changing the order of variables in OBDD.

We study whether these systems can be balanced i.e. every refutation of size S can be reassembled
into a refutation of depth O(log S) with at most a polynomial-size increase. We construct a family
of unsatisfiable CNF formulas Fn such that Fn has a polynomial-size tree-like OBDD(∧) refutation
of depth poly(n) and for arbitrary OBDD(∧, reordering) refutation Π of Fn for every α ∈ (0, 1) the
following trade-off holds: either the size of Π is 2Ω(nα) or the depth of Π is Ω(n1−α). As a corollary
of the trade-offs, we get that OBDD(∧) and OBDD(∧, reordering) proofs cannot be balanced.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof complexity, OBDD, lower bounds, depth of proofs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.72

Acknowledgements The author is grateful to his supervisor Dmitry Itsykson for a suggesting of the
problem, for the many fruitful discussions of it and for his active help in the preparation of this
paper.

1 Introduction

The paper devotes to propositional proof complexity theory. Propositional proof systems are
used for certifying that a given CNF formula is unsatisfiable. Investigation of propositional
proof systems is highly connected with the construction of solvers for the Boolean satisfiability
problem (SAT-solvers). The execution protocol of a SAT solver running on an unsatisfiable
formula may be considered as a certificate of unsatisfiability. Every SAT solver is based on
some proof system. For example, CDCL solvers are based on Resolution [3], Pseudo Boolean
solvers are based on Cutting Planes [8], OBDD-solvers are based on OBDD-based proof
systems [2].

The minimal refutation size of a formula is a natural lower bound on the running time of
the corresponding SAT-Solvers. In this paper, we also study the depth of refutations, i.e.
the length of the longest path from a clause of a refuted formula to a contradiction. The
depth is a very natural but not a much-studied measure of the proofs. The minimal depth of
a refutation is a lower bound on the parallel running time of the corresponding solver.

Balancing proof systems

We consider only refutational proof systems. Each refutational proof system Π operates
with proof lines, and each proof line is a Boolean predicate represented in some fixed way.
Initially, all clauses of refuted formulas are represented by proof lines and new proof lines
may be derived using a finite set of inference rules. The goal is to derive an identically false
proof line. Every refutational proof system is defined by the type of predicates that may be

© Sergei Ovcharov;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 72; pp. 72:1–72:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergei.d.ovcharov@gmail.com
https://orcid.org/0000-0002-9478-1949
https://doi.org/10.4230/LIPIcs.MFCS.2023.72
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 OBDD(Join) Proofs Cannot Be Balanced

used as proof lines and by the list of inference rules. For example, in Resolution proof lines
are clauses, in Cutting Planes [10] proof lines are linear inequalities with integer coefficients
and Boolean variables, in Frege proof systems proof lines are propositional formulas, etc.

The size of a refutation is the total size of representations of all used proof lines.
Every refutation can be represented as a directed acyclic graph with one source corres-

ponding to a contradiction and sinks corresponding to clauses of a refuted formula, and
every proof line is obtained by the descendants using the inference rule. The depth of the
refutation is the depth of the corresponding graph i.e. the length of the longest path from
the source to a sink.

We say that proofs in some proof system can be balanced if it is always possible to
reassemble each refutation in such a way that its depth becomes logarithmic in its size
(perhaps with a polynomial-size increase).

The question of whether Resolution proofs can be balanced is trivial. Indeed, consider
the formula (x1 ∨ . . . ∨ xn) ∧ (¬x1) ∧ . . . ∧ (¬xn). It is easy to see that every refutation of
this formula must have the depth at least n, therefore, Resolution refutations cannot be
balanced in the general case. Urquhart [16] studied if refutations of O(1)-CNF formulas can
be balanced for which the question is less trivial. It was proven that there exists a family of
3-CNF formulas Fni with ni variables having a Resolution refutation of polynomial size but
every its refutation must have depth Ω(ni/ log ni). Therefore Resolution refutations cannot
be balanced even for O(1)-CNF formulas.

Atserias, Bonet, and Levy [1] proved that Cutting Planes proofs cannot be balanced
either. However, it is known that refutations in Frege systems can be balanced (see, for
instance, [15]).

OBDD-based proof systems

In 1986 Bryant [6] proposed an important way to represent a Boolean function. Every such
function can be represented as a branching program with two sinks so that variables on
every path from the source to a sink appear in the same order π. Such representation is
called Ordered Binary Decision Diagram (OBDD or π-OBDD if we need to specify that
the variables are ordered according to π). The restriction on a variables order allows us to
perform many useful operations with OBDD efficiently e.g. check satisfiability, compute the
conjunction of two OBDDs (given they use the same variable order), etc [13].

Atserias, Kolaitis, and Vardi [2] introduced an OBDD-based refutational proof system.
Among them, we are most interested in OBDD(∧). OBDD(∧) represents clauses of an
unsatisfiable formula as π-OBDDs for some order π and the only refutation rule allows
deriving the conjunction of two OBDDs which were derived earlier. The size of the refutation
is the total size of the OBDDs in it.

Itsykson, Knop, Romashchenko, Sokolov [12] proposed the OBDD(∧, reordering) proof
system. OBDD(∧, reordering) is obtained from OBDD(∧) by adding the reordering derivation
rule that allows changing variables order of the derived OBDDs. While now OBDDs in
the refutation may use different variable orders, the conjunction rule can be only applied
to OBDDs that use the same variable order (otherwise it would be NP-hard to verify the
correctness of such rule, see [14], Lemma 8.14).

Notice that the formula (x1 ∨ . . . ∨ xn) ∧ (¬x1) ∧ . . . ∧ (¬xn) that we considered above
has a tree-like OBDD(∧) refutation of polynomial size and logarithmic depth.

For both the Resolution and the Cutting Planes proof systems there exist a family of
formulas for which a refutation of small depth does not exist at all. We emphasize that it is
not the case for OBDD-based proof systems. Indeed, every CNF formula with m clauses has

S. Ovcharov 72:3

a tree-like OBDD(∧) refutation of the depth log(m); the graph of this refutation is a full
binary tree with m leaves. Note that the size of this proof can differ dramatically from the
size of the minimum refutation. Hence in the notion of balancing we require that the size of
the balanced proof should be bounded by a polynomial from the size of the initial proof.

Our contribution

In Theorem 12 we construct a family of unsatisfiable formulas Fn having poly(n) size tree-like
OBDD(∧) refutations such that the following size vs depth trade-offs holds. For every
α ∈ (0, 1), any OBDD(∧, reordering) refutation of Fn of depth O(n1−α) requires size at least
2Ω(nα). Hence we prove that dag-like and tree-like OBDD(∧), OBDD(∧, reordering) proofs
cannot be balanced.

Formulas for which the trade-offs hold are the Pebbling formulas based on the grid graphs
Peb(Gridn). Pebbling formulas are a well-studied family of formulas ([5], [16], [4]). Moreover,
they were used for proving Resolution depth lower bounds in [16]. However, usually, they
are used together with Pebbling games and Pebbling numbers of graphs. This is not the
case for our result since we rely significantly on the structure of the grid graphs (including
self-similarity and expansion) by themselves and do not use Pebbling games.

In Section 2 we define the main notions. In Subsection 3.1 we prove the OBDD size
lower bounds for some set of hard Peb(Gridn) subformulas. In Subsection 3.2 we prove the
mentioned size vs depth trade-offs.

Open question

It would be interesting to study the similar questions for OBDD(∧, weakening) proof system
which is obtained from OBDD(∧) by adding the weakening rule. The weakening rule allows
deriving from an OBDD any its semantical implication represented by OBDD in the same
order.

2 Preliminaries

▶ Definition 1 (Branching Program). Let X = {x1, . . . , xn} be a set of Boolean variables. A
branching program is a directed acyclic graph with one node with indegree 0 (source) several
inner nodes with outdegree 2 and two nodes with outdegree 0 (sinks). Every node except sinks
is labeled with some variable from X, one of its outgoing edges is labeled with 0 and the other
one is labeled with 1. One sink is labeled with 0 and the other one is labeled with 1.

Every branching program represents some Boolean function of n variables. To compute a
value of the function on input x1 = a1, . . . xi = ai, . . . xn = an we start a path from the
source, and for every vertex labeled with variable xi we continue the path along the edge
labeled with ai, such a path reaches a sink and the label of this sink is the value of the
function.

▶ Definition 2 (Ordered Binary Decision Diagram(OBDD)). A branching program is called
OBDD if variables on every path from the source to sinks appear according to some fixed
order of variables.

Sometimes we write π-OBDD instead of OBDD to emphasize that variables appear
according to the order of variables π.

MFCS 2023

72:4 OBDD(Join) Proofs Cannot Be Balanced

The order restriction in OBDDs allows to perform many useful operations on OBDDs
efficiently e.g. minimize, check satisfiability, compute the conjunction of two OBDDs given
they have a same order of variables, etc. [13].

Let us define a propositional proof system OBDD(∧, reordering).

▶ Definition 3 (OBDD(∧, reordering)). Let φ =
∧
i

Ci be an unsatisfiable CNF formula. A

refutation of φ is a sequence of OBDDs D1, D2, . . . , Dt such that Dt is the constant false
OBDD and for all 1 ≤ i ≤ t the diagram Di either represents a clause of φ or obtained from
the previous Dj’s by one of the following derivation rules.

Conjunction (or join) rule allows deriving an π-OBDD for D1 ∧ D2 from π-OBDDs
D1 and D2. We emphasize here that the conjunction rule can be only applied to OBDDs
with the same order of variables.
Reordering rule allows deriving an OBDD B from an equivalent OBDD A (note that A

and B may use different variable orders).

The size of a refutation is the sum of the sizes of the OBDDs from it.
Every OBDD(∧, reordering) refutation can be represented as a directed acyclic graph

(DAG) in which nodes are labeled with OBDDs from the refutation such that each sink is
labeled with a OBDD for some clause of φ, the source is labeled with the constant false
OBDD, and an OBDD in every inner node is the result of the application of some derivation
rule to the OBDDs from the descendants.

A refutation is called tree-like if every node except the source has indegree one.
The depth of a refutation is the length of the longest path from the source to a sink.
We call a refutation a π-OBDD(∧) refutation if all OBDDs have the same order (i.e. no

reordering rule was applied).

Note, that in order to call OBDD(∧, reordering) a proof system (in the sense of Cook-
Reckhow [9]) we need to be able to efficiently check if some OBDD is the result of an
application of the derivation rules to some others OBDDs. Fortunately, the restriction on a
variable order allows us to do that, as we mentioned before (for the details see [12]).

▶ Definition 4 (Pebbling formulas (see for instance [16])). Let G = (E, V) be a directed acyclic
graph. We associate with each node of G a distinct Boolean variable x; we will identify nodes
and the associated variables. The Peb(G) formula is the conjunction of the following clauses:

(¬u1 ∨ . . . ∨ ¬un ∨ v), where v ∈ V and {u1, . . . , un} is the set of all nodes such that edge
(ui, v) ∈ E. We denote this clause by (u1, . . . , un → v). Note that if v is a source of the
graph then n = 0. We call such clauses first type clauses.
(¬v), where v is a sink. We call such clauses second type clauses.

Note that for every directed acyclic graph G the formula Peb(G) is unsatisfiable.

Main goal of out work is to prove that OBDD(∧) and OBDD(∧, reordering) refutations
cannot be balanced. In order to do it we construct a family of CNF formulas such that the
formulas have small OBDD(∧) refutations but they do not have refutations with small size
and depth simultaneously.

▶ Lemma 5 ([7]). For every directed acyclic graph G and for every order of variables π

formula Peb(G) has tree-like π-OBDD(∧) refutation of size O(|V |2) and depth O(|V |).

Proof. See Appendix A. ◀

S. Ovcharov 72:5

▶ Definition 6 (Graph Gridn). Let Gridn be a graph of the (n − 1) × (n − 1) grid, with edges
directed top to bottom and left to right.

In other words, the set of vertices is

Vn = {(i, j), i, j ∈ [n]}

and the set of edges is

En = {((i, j), (i + 1, j))| i ∈ [n − 1], j ∈ [n]} ∪ {((i, j), (i, j + 1))| i ∈ [n], j ∈ [n − 1]}

▶ Corollary 7. Formula Peb(Gridn) has π-OBDD(∧) refutation of the size O(n4) and of the
depth O(n2) for every variable ordering π.

Proof. Follows from Lemma 5. ◀

Now, in order to prove that OBDD(join) proofs cannot be balanced, it is sufficient to
prove size vs. depth trade-offs for refutations of Peb(Gridn). We prove such trade-offs in
Theorem 12 but we still need several auxiliary lemmas.

▶ Lemma 8 (Folklore). Let G be a directed acyclic graph with only one sink. Then Peb(G)
minimal unsatisfiable i.e. a conjunction of every proper subset of its set of clauses is satisfiable.

Proof. See Appendix B. ◀

▶ Notation 9. For a graph G(V, E) (directed or undirected) and for two disjoint sets A, B ⊂ V

denote by E(A, B) the set of edges with one end in A and the other one in B.
Note that for directed graphs we include in E(A, B) both the edges directed from A to B

and the edges directed from B to A.

▶ Definition 10 (Graph expansion [5]). Expansion of the graph G(V, E) is the minimum value
of |E(U, V \ U)| among all subsets U ⊂ V such that |V |

3 ≤ |U | ≤ 2|V |
3 .

▶ Lemma 11 (Folklore). e(Gridn) ≥ 1
4 n.

Proof. Consider an arbitrary subset U ⊂ V such that 1
3 |V | ≤ |U | ≤ 2

3 |V |.
Assume that there are at least n

4 columns of the grid containing nodes from both U and
V \ U . Then there is at least one pair of incident nodes in every such column with one node
in U and the other one in V \ U . Then the edges between the vertices from such pairs lie in
E(U, V \ U). Thus, |E(U, V \ U)| ≥ n

4 .
Now assume that there are at least 3n

4 columns lying completely in U or in V \ U . Since
|V |
3 ≤ |U | ≤ 2|V |

3 , there is at least one column completely lying in U and there is at least one
column completely lying in V \U . Therefore, in each row, there is at least one pair of incident
nodes with one node in U and the other one in V \ U . In this case |E(U, V \ U)| ≥ n. ◀

We want to point out that Gridn graphs are not expanders in the conventional sense (see
for example [11]) since Gridn graph has n2 nodes but e(Gridn) = Θ(n) (Lemma 11 shows
only that e(Gridn) = Ω(n) but upper bounds for e(Gridn) are trivial).

3 Depth vs size trade-offs

In this section we prove our main result.

▶ Theorem 12. For every α ∈ (0, 1) and for every OBDD(∧, reordering) refutation of
Peb(Gridn) at least one of the following holds:

the depth of the refutation is Ω(nα);
the size of the refutation is 2Ω(n(1−α)).

MFCS 2023

72:6 OBDD(Join) Proofs Cannot Be Balanced

1 8 9 13
1

8
9

13

Figure 1 Possible partition for n = 15, m = 13, k = 5.

By a configuration we mean a conjunction of a subset of the set of Peb(Gridn) clauses.
In Subsection 3.1 we will show that some hard configurations cannot be represented by a
small OBDD (see Lemma 13). Loosely speaking we are interested in configurations in which
at least one clause from the top left part of the grid is missing and that contain many clauses
from the bottom right part.

In Subsection 3.2 we finish the proof of Theorem 12 using Lemma 13. Namely, we show
that either it is possible to find a hard configuration in the proof graph or the depth of the
proof is large.

3.1 Configurations that are hard for OBDDs
Consider an arbitrary order π of variables of the formula Peb(Gridn).

Let {x0, y0, x1, y1} ⊂ [n]. We denote by [x0, x1] × [y0, y1] the induced subgraph on the
vertices set {(x, y) | x0 ≤ x ≤ x1 y0 ≤ y ≤ y1}.

Let m ∈ [n − 1]. We divide the nodes of the subgraph [1, m] × [1, m] into the four parts:
[1, m − k] × [1, m − k],
[m − k + 1, m] × [m − k + 1, m],
[1, m − k] × [m − k + 1, m],
[m − k + 1, m] × [1, m − k],

where k ∈ [m] (see Fig. 1).
We divide variables associated with the vertices of [m − k + 1, m] × [m − k + 1, m] into

two equal (or differing by at most 1) parts in such a way that each variable from the first
part appears in the order π before each variable of the second part. We denote the first part
by Aπ and the second by Bπ. Recall that we identify each variable with the associated node
and assume that Aπ, Bπ ⊂ V (Gridn).

Subgraph [m − k + 1, m] × [m − k + 1, m] is isomorphic to the Gridk and (|Aπ| − |Bπ|) ≤
1, |Aπ| + |Bπ| = k2, hence |E(Aπ, Bπ)| ≥ k

4 by Lemma 11.
Since the graph is directed, each edge in E(Aπ, Bπ) is directed from Aπ to Bπ or from

Bπ to Aπ. Let us consider the direction with the majority of the edges. We denote the set of
the corresponding edges by E0,π, |E0,π| ≥ |E(Aπ, Bπ)|/2 ≥ k

8 . All edges in E0,π are directed
from Aπ to Bπ or Bπ to Aπ. This gives us two cases that we consider later.

S. Ovcharov 72:7

Using the following procedure we remove some of the edges from E0,π to form a matching
(that we will denote by E1,π).

While E0,π is not empty:
Choose an arbitrary edge e ∈ E0,π, add it to E1,π, remove it from E0,π.
If E0,π still contains edges adjacent to e then we remove them. Since every node in Gridn

has degree at most 4 then we remove at most 6 edges per step.
We obtain matching E1,π ⊂ E0,π and |E1,π| ≥ |E0,π|

7 ≥ k
56 .

We call a node special if it is an head of some edge from E1,π. There are |E1,π| special
nodes since E1,π is a matching.

Using the following procedure we choose a subset Wπ of the set of all special nodes such
that the distance between any two nodes from Wπ is at least 7.

While there are special nodes:
Choose an arbitrary special node v that is not removed at the previous steps and add it
to Wπ.
Remove all special nodes at the distance at most 6 from v. We removed at most
(6 + 1 + 6)2 = 169 nodes, since all removed nodes are in the square of the size 13 × 13
and with the center in v.

Since at each step we remove at most 169 special nodes and add one to Wπ, |Wπ| ≥
|E1,π|/169 ≥ k/9464.

For a node v = (i0, j0) ∈ V (Gridn) we denote by B(v) the set {(i, j) ∈ V (Gridn) | |i−i0| ≤
1, |j − j0| ≤ 1} (i.e. the ball in the l∞ metric). We refer to B(v) as a ball although it is not
a ball in the graph distance sense.

For every node w ∈ Wπ there is a unique edge in E1,π with an endpoint w. Let us denote
the set of start-points of such edges by Uπ.

▶ Lemma 13. Let φ be a conjunction of some subset of Peb(Gridn) clauses. Suppose at
least one clause of first type associated with a variable from the [1, m − k − 1] × [1, m − k − 1]
is not included in φ. Also, suppose that φ contains exactly d clauses associated with variables
from Wπ. Then the minimum size of an π-OBDD for φ is at least 2d.

Proof. To prove that the size of any π-OBDD representation of φ is at least 2d it is sufficient
to split π into two consequent parts and define 2d substitutions into the variables of the first
part such that applications of them to φ lead to 2d different Boolean functions. To show
that two substitutions ρ0 and ρ1 lead to two different functions we just define a substitution
ρ into the second part of variables such that φ|ρ0◦ρ ̸= φ|ρ1◦ρ.

We have already divided the variables of [m − k + 1, m] × [m − k + 1, m] into two parts
Aπ and Bπ according to π. Let us fix a partition of π into two parts such that Aπ lies in the
first and Bπ in the second.

Let W ′
π be the nodes from Wπ whose associated clauses are in φ. Let U ′

π be the nodes
from Uπ connected with W ′

π. Let W ′
π = {w1, . . . , wd} and U ′

π = {u1, . . . , ud}.
Substitutions we are defining differ only on a small set of nodes. To every variable outside

this set each substitution assigns a fixed value (values may differ for different variables); we
now define these values. Let z = (x0, y0) be an arbitrary node from [1, m−k−1]×[1, m−k−1]
whose first type clause is missing from φ (see Fig. 2).

Assignment to the variables in [1, n] × [1, n] \ [x0, n] × [y0, n]:
To the variables whose corresponding nodes are strictly to the left or strictly at the top
from z all substitutions assign 1. Note that all first-type clauses corresponding to the
nodes in which we substitute 1 are satisfied (follows trivially from the definition of the
Gridn clauses).

MFCS 2023

72:8 OBDD(Join) Proofs Cannot Be Balanced

1 8 9 13
1

8
9

13

x0

y0

Figure 2 Balls B(wi) are shown with light blue; their centers lie in [m − k + 1, m] × [m − k + 1, m]
(blue rectangle). Black bold point is (x0, y0), it lies in [1, m − k − 1] × [1, m − k − 1] (pink rectangle).

Assignment to the variables in [x0, n] × [y0, n] \
⋃

i B(wi):
Consider the rectangle [x0, n] × [y0, n]. It contains square [m − k, n] × [m − k, n] and,
therefore, all balls B(wi) for i ∈ [d] (their centers lie in [m − k + 1, m] × [m − k + 1, m]).
Let L = [x0, n] × [y0, n] \

⋃
i B(wi).

▷ Claim 14. For every node v ∈ L there exists a directed path from z to v that lies
completely in L.

Proof. Let us first note that for every i ∈ [d] and for every (x, y) ∈ B(wi) it holds
that x > x0, y > y0. Indeed, wi ∈ [m − k + 1, m] × [m − k + 1, m] hence (x, y) ∈
[m − k, m] × [m − k, m] but z = (x0, y0) ∈ [1, m − k − 1] × [1, m − k − 1].
It is sufficient to prove that for every x ∈ L\{z} at least one of its immediate predecessors
lies in L. If we prove it we can build a desired path by induction. Suppose that there is a
node x ∈ L \ {z} such that its immediate predecessors lie outside of L. Hence each of
them lies either in

⋃
i B(wi) or in V (Gridn) \ [x0, n] × [y0, n].

Firstly, consider the case in which one of the predecessors lies outside the [x0, n] × [y0, n].
Then coordinates of x look like (x0, ∗) or (∗, y0). Without loss of generality assume that
x = (x0, h) for some h ≥ y0. Then there is the following path: z = (x0, y0), (x0, y0 +
1), . . . , (x0, h) = x between z and x. All its nodes lie in [x0, n] × [y0, n] and none of them
lie in

⋃
i B(wi) due to the restriction on the coordinates of vertices from the balls that

we mentioned earlier. Hence, this case is impossible.
Therefore its predecessors lie in

⋃
i B(wi). But one of its predecessors is above x and the

other is to the left of x. Hence they lie in different balls (otherwise x would also lie in the
ball, and this contradicts the assumption x ∈ L). Hence the distance between the balls is
at most 2 which contradicts the construction from the beginning of the subsection. This
concludes the proof of the claim. ◁

S. Ovcharov 72:9

All the substitutions assign 0 to the variables in L. Now we check that no first-type
clause from φ is falsified after that. There is no z’s clause in φ. For every other node
z′ ∈ L there is a path from z to z′ in L. We assign 0 to the nodes on the path hence we
assign 0 to some immediate predecessor of z′ hence its clause is satisfied (again, by the
definition of the clause).
We have already defined the substitutions into all variables except

⋃
i B(wi). Fix j ∈ [d].

There are two nodes with edges going from them to wj . One of them is uj . We denote
the other one by rj . Note that {uj , rj} ⊂ B(wj). Every substitution will assign 1 to
rj . Hence its first-type clause is always satisfied. To the nodes B(wj) \ {uj , wj , rj} we
always substitute 0. We need to check that it will not falsify their clauses. It is easy to
see that each node from B(wj) \ {uj , wj , rj} has at least one immediate predecessor in
L \ {wi, ui, ri|i ∈ [d]} (see Fig. 3). But we assign zeros to the variables from this set.
Hence clauses corresponding to the B(wj) \ {uj , wj , rj} are always satisfied (see Fig. 3).

Note that we substitute 0 to the sink. Indeed, if the sink does not lie in any ball, then
it lies in L. Hence we substitute 0 to it. Otherwise, the sink lies in some ball; denote the
center of this ball by (x1, y1). Then x1 ≤ n − 1 and y1 ≤ n − 1. But then the sink is the
most right bottom variable of the ball, hence it is substituted with 0.

Therefore, the second-type clause corresponding to the sink is satisfied.
At this point, we have defined substitutions on the set where their values coincide. Now

we define substitutions to the remaining nodes i.e. {wi, ui | i ∈ [d]}. We need to consider to
cases: whether {uj | j ∈ [d]} or {wj | j ∈ [d]} lie in the first part of the variable order.

Case 1: Suppose that {uj | j ∈ [d]} lies in the first part of the variable order. Consider
all possible substitutions of zeros and ones into the {uj | j ∈ [d]}. There are 2d such
substitutions. Note that every node from {uj | j ∈ [d]} has an immediate predecessor from
L \ {uj , wj , rj | j ∈ [d]} hence its clause is satisfied.

We show that we can separate any two such substitutions ρ0 ̸= ρ1 by some substitution
ρ with support W ′. There exists j0 ∈ [d] such that ρ0(uj0) ̸= ρ1(uj0). Without loss of
generality suppose that ρ0(uj0) = 0 then ρ1(uj0) = 1. We define a substitution ρ as follows:
ρ(wj) = ρ0(uj).

On the one hand substitution ρ0 ◦ ρ does not falsify φ since the only clauses that can
be falsified are clauses associated with {wj | j ∈ [d]} (we have already checked that the
other clauses are satisfied). But the clause corresponding to the node wj for {j ∈ [d]} is
falsified iff 0 is substituted into wj and 1 are substituted to all its immediate predecessors.
But if ρ(wj) = 0 then ρ0(uj) = 0. Hence φ|ρ◦ρ0 = 1.
On the other hand, ρ(wj0) = 0. The node wj0 has two immediate predecessors: the node
rj0 , into which we always assign 1, and uj0 such that ρ1(uj0) = 1. Hence (uj0 , rj0 →
wj0)|ρ◦ρ1 = 0 and φ|ρ◦ρ1 = 0.

Case 2: Suppose that {uj | j ∈ [d]} lies in the second part of the variable order.
Similarly to the Case 1, we define 2d substitutions into the variables {wj | j ∈ [d]}. We

need to show that substitutions ρ0 and ρ1 lead to different Boolean functions. Again we find
j0 ∈ [d] such that ρ0(wj0) = 0 and ρ1(wj0) = 1. In this case we define ρ(uj) = ρ1(wj).

Similarly to the Case 1, ρ satisfies clauses for nodes from {uj | j ∈ [d]}. Also ρ ◦ ρ1 satisfy
clauses for nodes from {wj | j ∈ [d]} (we just copy ρ1 from {wj | j ∈ [d]} to {uj | j ∈ [d]}).
At the same time ρ(uj0) = 1, rj0 is always substituted with 1 and ρ0(wj0) = 0. Hence
(uj0 , rj0 → wj0)|ρ◦ρo

= 0 and φ|ρ◦ρ0 = 0. ◀

MFCS 2023

72:10 OBDD(Join) Proofs Cannot Be Balanced

wj

uj

rj

0 0 0 0 0

0 0 0 0 0

0

0

0

0

0 0 0 0 0

0 0

01

Figure 3 An example of a substitution to a ball’s variables.

3.2 Proof of Theorem 12
Proof of Theorem 12. Let us fix α ∈ (0, 1).

Now we show that for every OBDD(∧, reordering) refutation of Peb(Gridn) its depth is
at least n1−α/2 or its size is at least 2nα/18928.

Suppose there exists a refutation with depth less than n1−α/2 and size less than 2nα/18928.
Every refutation can be represented as directed acyclic graph such that:

Each node is labeled with some OBDD from the refutation. Note that every such OBDD
is equivalent to the conjunction of a subset of Peb(Gridn) clauses. For every node, we
add the conjunction to the label for clarity.
Its only source is labeled with the constant false OBDD.
Each sink is labeled with OBDD for some clause of Peb(Gridn).
If an OBDD in a node is obtained by the conjunction rule then the node has outdegree 2
and the OBDD in the node is a conjunction of the OBDDs in the descendants.
If an OBDD in a node is obtained by the reordering rule then the node has outdegree 1
and the OBDD in the node is the result of the reordering rule applied to the OBDD in
the node’s descendant.

Let us divide the subgrid [1, n − 1] × [1, n − 1] into [1, n − nα] × [1, n − nα], [n − nα +
1, n − 1] × [n − nα + 1, n − 1], [n − nα + 1, n − 1] × [1, n − nα], [1, n − nα] × [n − nα + 1, n − 1]
as in Subsection 3.1 (set m = n − 1 and k = nα).

Let φ be a CNF formula and let S be a subset of its clauses. We denote φS =
∧

C∈S C.
Consider an arbitrary OBDD(∧, reordering) refutation of Peb(Gridn). Consider its source.

Since by Lemma 8, Peb(Gridn) is minimal unsatisfiable, the source is labeled with the
conjunction of all clauses (i.e. Peb(Gridn) itself). In particular, all clauses for vertices from
[1, m] × [1, m] lie there. We start a path at the source of the refutation. If the current
node (initially the current node is the source) has only one immediate descendant then
we move into the descendant until the current node has two of them. Assume that the
current node is labeled with π-OBDD for some order of the variables π. By the definition of
the conjunction rule the current node’s descendants are also labeled with π-OBDDs. For
this order π and parameters m and k find sets Uπ, Wπ as was described in Subsection 3.1.
Suppose one of the descendants is labeled with formula φS1 and the other with φS2 . Then

S. Ovcharov 72:11

[1, m] × [1, m] ⊂ S1 ∪ S2. Hence |S1 ∩ Wπ| ≥ |Wπ|/2 or |S2 ∩ Wπ| ≥ |Wπ|/2. Without loss of
generality |S1 ∩ Wπ| ≥ |Wπ|/2. Recall that |Wπ| ≥ k/9464 so |S1 ∩ Wπ| ≥ k/18928. Consider
two cases: whether [1, n−nα −1]× [1, n−nα −1] ̸⊂ S1 or [1, n−nα −1]× [1, n−nα −1] ⊂ S1.

Case 1: [1, n − nα − 1] × [1, n − nα − 1] ̸⊂ S1. In this case we can apply Lemma 13 with d

= |S1 ∩ Wπ| ≥ k/18928 = nα/18928 and variable order π. Hence the size of π-OBDD for
φS1 from the current node is at least 2nα/18928. Therefore the size of the refutation is at
least 2nα/18928. Hence this case is impossible.

Case 2: [1, n − nα − 1] × [1, n − nα − 1] ⊂ S1. All clauses from [1, n − nα − 1] × [1, n − nα − 1]
are still in the conjunction.

We divide this square into 4 subsquares, same as we did with [1, n−1]× [1, n−1]. Now we
set m = n − nα − 1, k = nα and repeat the actions for new values of m and k. Again we can
move down at least one time in the refutation’s graph so that at the current node there will
be all clauses from the top left subsquare (this time it is [1, n − 2nα − 2] × [1, n − 2nα − 2]).

Again, we divide this subsquare into 4 subsubsquares (m = n − 2nα − 2, k = nα) and so
on. Case 1 is always impossible since k is always equal to nα and we assumed that the size
of the refutation is less than 2nα/18928. We can repeat the process n

nα+1 ≥ n1−α/2 times.
Every time we move down in the refutation’s graph at least once, therefore its depth is at
least n1−α/2. ◀

▶ Corollary 15. Dag-like and tree-like OBDD(∧) and OBDD(∧, reordering) proofs cannot
be balanced i.e. there is no polynomial p such that for every unsatisfiable formula φ and
for every its refutation w (dag-like or tree-like) of the size S, there exists a refutation w′

(dag-like or tree-like respectively) of the size p(S) and of the depth O(log(S)).

Proof. By Lemma 5 Formula Peb(Gridn) has tree-like OBDD(∧) refutation of the size O(n4).
But Peb(Gridn) cannot have OBDD(∧, reordering) a refutation of the size poly(n) and of
the depth O(log poly(n)) = O(log n) due to Theorem 12. Hence the proof systems are not
balanced. ◀

References
1 Albert Atserias, Maria Luisa Bonet, and Jordi Levy. On Chvatal rank and cutting planes

proofs. Electron. Colloquium Comput. Complex., TR03-041, 2003. arXiv:TR03-041.
2 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a proof

system. In Mark Wallace, editor, Principles and Practice of Constraint Programming – CP
2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 – October 1,
2004, Proceedings, volume 3258 of Lecture Notes in Computer Science, pages 77–91. Springer,
2004. doi:10.1007/978-3-540-30201-8_9.

3 Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004. doi:10.1613/jair.
1410.

4 Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations
and trade-offs via substitutions. In Bernard Chazelle, editor, Innovations in Computer Science
– ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 401–
416. Tsinghua University Press, 2011. URL: http://conference.iiis.tsinghua.edu.cn/
ICS2011/content/papers/3.html.

5 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J.
ACM, 48(2):149–169, March 2001. doi:10.1145/375827.375835.

6 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.

MFCS 2023

https://arxiv.org/abs/TR03-041
https://doi.org/10.1007/978-3-540-30201-8_9
https://doi.org/10.1613/jair.1410
https://doi.org/10.1613/jair.1410
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/3.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/3.html
https://doi.org/10.1145/375827.375835
https://doi.org/10.1109/TC.1986.1676819

72:12 OBDD(Join) Proofs Cannot Be Balanced

7 Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes
OBDD proof systems stronger. Electron. Colloquium Comput. Complex., TR18-041, 2018.
arXiv:TR18-041.

8 Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 24(3):305–317, 2005. doi:10.1109/TCAD.2004.
842808.

9 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

10 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discret. Appl. Math., 18(1):25–38, 1987. doi:10.1016/0166-218X(87)90039-4.

11 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43(04):439–562, August 2006. doi:10.1090/s0273-0979-06-01126-8.

12 Dmitry Itsykson, Alexander Knop, Andrei E. Romashchenko, and Dmitry Sokolov. On obdd-
based algorithms and proof systems that dynamically change the order of variables. J. Symb.
Log., 85(2):632–670, 2020. doi:10.1017/jsl.2019.53.

13 Christoph Meinel and Anna Slobodová. On the complexity of constructing optimal ordered
binary decision diagrams. In Igor Prívara, Branislav Rovan, and Peter Ruzicka, editors,
Mathematical Foundations of Computer Science 1994, 19th International Symposium, MFCS’94,
Kosice, Slovakia, August 22–26, 1994, Proceedings, volume 841 of Lecture Notes in Computer
Science, pages 515–524. Springer, 1994. doi:10.1007/3-540-58338-6_98.

14 Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI Design:
OBDD – Foundations and Applications. Springer, 1998. URL: http://www.informatik.
uni-trier.de/%7Emeinel/books/obddbook.html.

15 Pavel Pudlák and Samuel R. Buss. How to lie without being (easily) convicted and the length
of proofs in propositional calculus. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer
Science Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-30,
1994, Selected Papers, volume 933 of Lecture Notes in Computer Science, pages 151–162.
Springer, 1994. doi:10.1007/BFb0022253.

16 Alasdair Urquhart. The depth of resolution proofs. Stud Logica, 99(1-3):349–364, 2011.
doi:10.1007/s11225-011-9356-9.

A Proof of Lemma 5

▶ Proposition 16. Let X = {x1, . . . , xn} be a set of Boolean variables and let Y ⊂ X. Let
φ =

∧
y∈Y

y. Then there exists π-OBDD for φ of the size O(|Y |) for every order of variables π.

Proof. We enumerate Y according to the order π: Y = {y1, . . . , y|Y |}. We define π-OBDD
for φ as follows: there is the unique node yi for every i ∈ [|Y |]. We identify node and its
label. The node y1 is the source. For every i ∈ [|Y |], yi’s outgoing edge labeled with 0 goes
to the sink labeled with 0. If i < |Y | then yi’s outgoing edge labeled with 1 goes to yi+1
otherwise it goes to the sink labeled with 1. It is easy to see that there is a unique path
between the source and the sink, labeled with 1, and that all edges on the path are labeled
with 1. Hence the π-OBDD we have defined represents φ. ◀

▶ Lemma 5 ([7]). For every directed acyclic graph G and for every order of variables π

formula Peb(G) has tree-like π-OBDD(∧) refutation of size O(|V |2) and depth O(|V |).

Proof. Let {A1, . . . , An1} be the first-type clauses in topological sort order. Let B be
an arbitrary second-type clause. Consider the following sequence of the CNF formulas:
A1, A1 ∧A2, . . . ,

∧n1
i=1 Ai, (

∧n1
i=1 Ai)∧B. Represent each of this formulas as π-OBDD. Then

it is easy to see that the sequence of OBDDs is a tree-like π-OBDD(∧) refutation. We now
prove that the refutation has the size O(|V |2). It consists of |V | + 1 formulas. It is sufficient
to prove that each formula has the size O(|V |). We consider two cases:

https://arxiv.org/abs/TR18-041
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1090/s0273-0979-06-01126-8
https://doi.org/10.1017/jsl.2019.53
https://doi.org/10.1007/3-540-58338-6_98
http://www.informatik.uni-trier.de/%7Emeinel/books/obddbook.html
http://www.informatik.uni-trier.de/%7Emeinel/books/obddbook.html
https://doi.org/10.1007/BFb0022253
https://doi.org/10.1007/s11225-011-9356-9

S. Ovcharov 72:13

Case 1: The formula is A1 ∧ . . . ∧ Ai for some i ∈ [n1]. We prove by the induction on i

that A1 ∧ . . . ∧ Ai ≡ v1 ∧ . . . ∧ vi, where ≡ stands for logical equivalence. Base: i = 1
so v1 is a source and the corresponding clause is (v1). Induction step: Assume that
A1 ∧ . . . ∧ Ai ≡ v1 ∧ . . . ∧ vi then A1 ∧ . . . ∧ Ai ∧ Ai+1 ≡ v1 ∧ . . . ∧ vi ∧ Ai+1. Let
Ai+1 = (u1, . . . , uk → vi+1) where u1, . . . , uk is the set of all immediate predecessors
of vi+1. Since the clauses {Ai | i ∈ [n1]} appear in the topological sort order then the
first-type clauses that correspond to the variables {u1, . . . , uk} lie in {A1, . . . , Ai}. Then
it is easy to see that v1 ∧ . . . ∧ vi ∧ (u1, . . . , uk → vi+1) ≡ v1 ∧ . . . ∧ vi ∧ vi+1.
Proposition 16 implies that such formulas have OBDD representation of the size O(|V |).

Case 2: The formula is (
∧n1

i=1 Ai) ∧ B. We already have proved that (
∧n1

i=1 Ai) ≡
∧

j vj is
the conjunction of the all nodes. This conjunction implies that the values of variables
of all nodes equal 1. At the same time the clause B implies that the variable of the
corresponding sink equals 0. Hence the formula is unsatisfiable and the corresponding
OBDD is constant false. ◀

B Proof of Lemma 8

▶ Lemma 8 (Folklore). Let G be a directed acyclic graph with only one sink. Then Peb(G)
minimal unsatisfiable i.e. a conjunction of every proper subset of its set of clauses is satisfiable.

Proof. Fix some proper subset S of the set of all clauses of Peb(G). We now prove that∧
C∈S C is satisfiable.

Consider two cases:
Case 1: There is no second type clause in S. Then each clause from S contains literal

without negation. Then the assigment of all 1 is satisfiable.
Case 2: There is no first-type clause in S. Denote the corresponding variable by v. Denote

by t the unique sink of the graph. Note that there is a path from v to t (otherwise there
are at least two sinks in the graph). Then the assignment of 0 to the path’s variables
and 1 to the other variables is satisfiable. Indeed, the first-type clauses corresponding to
the variables substituted with 1 are always satisfied. The second-type clause is satisfied
since the sink is substituted with 0. The other variables substituted with 0 have at least
one immediate predecessor substituted with 0, hence their first type clauses are also
satisfied. ◀

MFCS 2023

	1 Introduction
	2 Preliminaries
	3 Depth vs size trade-offs
	3.1 Configurations that are hard for OBDDs
	3.2 Proof of Theorem 12

	A Proof of Lemma 5
	B Proof of Lemma 8

