
Lower Bounds for Choiceless Polynomial Time via
Symmetric XOR-Circuits
Benedikt Pago #

Mathematical Foundations of Computer Science, RWTH Aachen University, Germany

Abstract
Choiceless Polynomial Time (CPT) is one of the few remaining candidate logics for capturing Ptime.
In this paper, we make progress towards separating CPT from polynomial time by firstly establishing
a connection between the expressive power of CPT and the existence of certain symmetric circuit
families, and secondly, proving lower bounds against these circuits. We focus on the isomorphism
problem of unordered Cai-Fürer-Immerman-graphs (the CFI-query) as a potential candidate for
separating CPT from Ptime. Results by Dawar, Richerby and Rossman, and subsequently by
Pakusa, Schalthöfer and Selman show that the CFI-query is CPT-definable on linearly ordered and
preordered base graphs with small colour classes. We define a class of CPT-algorithms, that we call
“CFI-symmetric algorithms”, which generalises all the known ones, and show that such algorithms
can only define the CFI-query on a given class of base graphs if there exists a family of symmetric
XOR-circuits with certain properties. These properties include that the circuits have the same
symmetries as the base graphs, are of polynomial size, and satisfy certain fan-in restrictions. Then
we prove that such circuits with slightly strengthened requirements (i.e. stronger symmetry and
fan-in and fan-out restrictions) do not exist for the n-dimensional hypercubes as base graphs. This
almost separates the CFI-symmetric algorithms from Ptime – up to the gap that remains between
the circuits whose existence we can currently disprove and the circuits whose existence is necessary
for the definability of the CFI-query by a CFI-symmetric algorithm.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases logic in computer science, finite model theory, descriptive complexity,
symmetric computation, symmetric circuits, graph isomorphism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.73

Related Version Full Version: https://arxiv.org/abs/2302.05426 [27]

Acknowledgements I thank Daniel Wiebking for his group-theoretic help.

1 Introduction

A central open question in finite model theory is whether there exists a logic that captures
the complexity class polynomial time. It was first raised by Chandra and Harel in 1980 [5]
and later made precise by Gurevich [20]. According to his definition, the term “logic” refers
to any computation model that operates on finite structures and is isomorphism-invariant, i.e.
yields the same output on isomorphic input structures. The question for a logic for Ptime
thus asks whether there exists some isomorphism-invariant computation model which can
decide exactly the same classes of structures that can be decided by “classical” polynomial
time algorithms (i.e. Turing machines). The latter are not isomorphism-invariant because
every structure, for example a graph, has multiple different representations as a binary string
(e.g. depending on the vertex order that is used for the adjacency list/matrix). The result of a
classical computation depends on this string representation and not on the isomorphism-type
of the graph, which is undesirable for a logic. Another way of phrasing the question is whether
the time and space cost of ensuring symmetry-invariance in computations is necessarily
super-polynomial or not. Gurevich himself conjectured that no logic for Ptime exists, and if
we had a proof for this, it would immediately separate P and NP: It is long known by Fagin’s

© Benedikt Pago;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 73; pp. 73:1–73:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pago@logic.rwth-aachen.de
https://orcid.org/0000-0001-6377-1230
https://doi.org/10.4230/LIPIcs.MFCS.2023.73
https://arxiv.org/abs/2302.05426
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

theorem [14] that NP is captured by existential second order logic. In fact, many candidate
logics that have been proposed in an attempt to capture Ptime have been proven to be only
a strict fragment of it. For a survey on this topic (excluding the results from recent years),
see [18].

One prominent logic for which research on lower bounds has not been so successful yet
is Choiceless Polynomial Time (CPT). It was introduced in 1999 by Blass, Gurevich and
Shelah [3] as a symmetry-invariant machine model. It has been open since then whether
CPT (with counting) does capture Ptime or not. For more background information on CPT,
see for example [17, 28, 32]. CPT can also be viewed as an extension of fixed-point logic
with counting [6] with hereditarily finite sets as data structures. Other (perhaps less studied)
candidates that have not been separated from Ptime so far are logics with witnessed choice
constructs (a concept first introduced in [15]). These include fixed-point logic with witnessed
symmetric choice and interpretations [23] and CPT extended with witnessed symmetric
choice [24]. Prior to Lichter’s breakthrough [22], which separates rank logic from Ptime
using a variation of the famous Cai-Fürer-Immerman (CFI) construction [4], logics with
linear-algebraic operators [7] were also considered reasonable candidates. However, as outlined
in [8], the results from [22] and [7] together imply that no set of isomorphism-invariant linear
algebraic operators can be used to define a logic capturing Ptime. Thus, an important next
step in this program would be to also rule out CPT as a logic for Ptime. In this article, we
make progress towards this goal and propose an approach that allows to infer CPT lower
bounds from lower bounds against certain symmetric Boolean circuit families. Thereby, the
problem is narrowed down to the study of concrete combinatorial objects, for which we can
present a first lower bound.

It should be remarked that the power of CPT is also of interest in another research
context, namely with regards to the graph isomorphism problem: One can roughly divide the
most important graph isomorphism algorithms into group-theoretic and combinatorial ones;
the latter term refers to generalisations of the well-known Weisfeiler-Leman (WL) method,
and these are choiceless. It is in a sense possible to characterise CPT as the class of all
polynomial-time combinatorial graph isomorphism algorithms. A precise description of these
has been given with the Deep Weisfeiler-Leman computation model [19], which was shown
to be equivalent to CPT. Hence, lower bounds against CPT would also imply limitations for
all combinatorial graph isomorphism algorithms.

Concerning CPT lower bounds, only relatively little is known. There is a non-definability
result for a functional problem in Ptime, namely, it is impossible to define the dual of a given
finite vector space in CPT [30]. What we would like to have is, however, the inexpressibility
of a polynomial-time decision problem. We focus on a standard benchmark from finite model
theory, namely the CFI-query [4]. Instances of this query are obtained by applying the
so-called CFI construction to any connected undirected base graph, yielding either an “even”
or an “odd” CFI-graph (see Section 3). The query asks to determine the parity of a given
CFI-graph and it can be seen as a variant of the graph isomorphism problem or as the
problem of solving a certain linear equation system over the finite field F2. Its descriptive
complexity depends highly on the choice of base graphs and whether these come with a
built-in linear order or not. The CFI-query is decidable in polynomial time but not in
fixed-point logic with counting [4]. It is open whether it is CPT-definable on unordered base
graphs, and our goal is to eventually answer this question in the negative. Our approach
starts off from positive results: There do exist CPT-algorithms for linearly ordered and
preordered versions of the CFI-query [9, 29] and also CFI-graphs over base graphs of linear
degree [29]. In [26] it was shown that there exist unordered CFI-graphs (over n-dimensional
hypercubes) whose degree is not linear and which cannot be preordered in CPT in such a
way that the preorder-based algorithm from [29] (or the total-order-based one from [9]) could

B. Pago 73:3

be applied. This shows that these known choiceless algorithms for preordered versions of
the CFI-query do not generalise to the unordered case because the necessary combinatorial
objects (said preorders) are not symmetric enough. In the present paper, we define a general
class of CPT-algorithms for the CFI-query, which encompasses all the known ones mentioned
above, and show that their expressiveness depends on the existence of certain symmetric
combinatorial objects, namely circuits with Boolean XOR-gates. We show that the CFI-query
over a given class K of base graphs is only definable by an algorithm from that class if there
exists a family of polynomial-size symmetric XOR-circuits with the properties in Theorem
1. This means that the non-definability of the CFI-query over K can be shown by proving
the non-existence of such circuits. In Theorem 2, we almost achieve this goal: If we take
as K the family of n-dimensional hypercubes and make the circuit properties slightly more
restrictive than required by our Theorem 1, then we succeed in showing that such circuits
cannot exist. Thus, we come close to showing that the CFI-query over unordered hypercubes
is undefinable by any CPT-algorithm from the class we are considering.

Following [9], we denote a CFI-graph over a base graph G or H as GS or HS (where S

denotes the set of vertices whose CFI-gadget is odd). We consider circuits whose internal
gates are XOR-gates and whose input gates are labelled with edges of the associated CFI
base graph G. Therefore, the automorphism group of G has a natural action on the circuits
as well. A circuit is said to be sensitive to a certain input bit if flipping just that bit changes
the output. The other circuit properties will be explained in Section 5.

▶ Theorem 1 (Main Theorem; see Theorem 31 in the full version for more details). Let
(Gn = (Vn, En))n∈N be a sequence of connected base graphs. Let GS

n be a CFI-graph over
Gn, and let twn denote the treewidth of Gn. If there exists a CPT-program Π that is
super-symmetric and CFI-symmetric and decides the CFI-query on all GS

n, then there also
exists a family (Cn)n∈N of XOR-circuits such that
1. The number of gates in Cn is polynomial in |GS

n |.
2. The Aut(Gn)-orbit of the circuit has size polynomial in |GS

n |.
3. Cn is sensitive to Ω(twn) input bits.
4. The fan-in dimension of Cn is O(log |GS

n |).
The terms super-symmetric and CFI-symmetric refer to the properties of a hereditarily finite
set that is constructed by the program Π in order to decide the CFI-query. Super-symmetry is
a property of h.f. sets that goes back to [9] (see Definition 5). CFI-symmetry is a concept that
we define in this paper and which describes the internal structure and “local symmetries” of
a h.f. set (see Section 4). The CFI-algorithms from [9] and [29] are based on super-symmetric
and CFI-symmetric h.f. sets, and arguably, both these properties are crucial for the success
of all these algorithms.

Our second main result shows that if we choose the n-dimensional hypercubes as the
family of base graphs, and impose slightly stronger conditions on the circuits, then it is not
possible to satisfy all of them together.

▶ Theorem 2. Let (Hn)n∈N be the family of n-dimensional hypercubes and let twn denote
the treewidth of Hn. There exists no family of symmetric XOR-circuits (Cn)n∈N such that:
1. The number of gates in Cn is polynomial in |HS

n |.
2. The Aut(Hn)-orbit of the circuit has size exactly one.
3. Cn is sensitive to Ω(twn) input bits.
4. For any two gates g, h in Cn such that h is a parent of g, it holds |Orbit(h)(g)| ∈

O(log |HS
n |) and |Orbit(g)(h)| ∈ O(log |HS

n |).
Here, Orbit(h)(g) denotes the orbit of the gate g with respect to the subgroup of Aut(Hn)
that fixes the gate h (and vice versa for Orbit(g)(h)).

MFCS 2023

73:4 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

If the four circuit properties were the same as in Theorem 1, then this would separate
the class of super- and CFI-symmetric choiceless algorithms from Ptime. The difference
between the two theorems is that here, the circuit has orbit size one, i.e. it is stabilised by
the whole group Aut(Hn), whereas in Theorem 1, the orbit of the circuit is only required to
be polynomial. Moreover, here, we have a logarithmic bound on the parents and children
(per orbit) of every gate, whereas in Theorem 1, the logarithmic bound is on the fan-in
dimension of the gates. We define this notion in Section 5; we do not know if logarithmic
fan-in dimension implies the orbit-wise logarithmic bound on the number of children (or
vice versa), and probably, it does not imply the bound on the number of parents. So the
gap between our two main results concerns how symmetric the circuits have to be and how
restricted the connectivity between two consecutive circuit layers is. It remains a problem
for future work to close this gap. This paper is thus a first step of a potentially longer
programme towards showing CPT ̸= Ptime via circuit lower bounds.

Related work. Lower bounds for symmetric circuits are studied in different contexts in
the literature. For example, families of highly symmetric Boolean circuits with threshold
gates characterise the power of fixed-point logic with counting [1], and certain more general
circuits capture rank logic [11]. Our results are different in the sense that the XOR-circuits
do not characterise CPT; they only represent the relevant structure of the h.f. sets that
CPT uses to decide the CFI-query. Another line of research focuses on lower bounds for
symmetric arithmetic circuits for the determinant and permanent polynomials, with the aim
of making progress towards separating VP from VNP [10, 12]. Other examples of symmetric
circuit lower bounds concern Boolean circuits for the parity function [31] and for computing
products of permutation matrices [21]. The technical methods we employ in the proof of
Theorem 2 might be applicable to the study of symmetric circuits in other contexts as well
but we have not investigated this yet.

2 Choiceless Polynomial Time

Hereditarily finite sets. Let A be a finite set of atoms. The set of hereditarily finite
objects over A, HF(A), is defined as

⋃
i∈N HFi(A), where HF0(A) := A ∪ {∅}, HFi+1(A) :=

HFi(A) ∪ 2HFi(A). The size of a h.f. set x ∈ HF(a) is measured in terms of its transitive
closure tc(x): The set tc(x) is the least transitive set such that x ∈ tc(x). Transitivity means
that for every a ∈ tc(x), a ⊆ tc(x). Intuitively, one can view tc(x) as the set of all sets that
appear as elements at some nesting depth within x.

Choiceless Polynomial Time. By CPT we always mean Choiceless Polynomial Time with
counting. For details and various ways to define CPT formally, we refer to the literature: A
concise survey can be found in [17]. The work by Blass, Gurevich and Shelah in which CPT
was originally introduced as an abstract state machine model is [3]; later, more “logic-like”
presentations of CPT were invented, such as Polynomial Interpretation Logic (see [16, 32])
and BGS-logic [30]. In short, CPT is like fixed-point logic with counting [6] plus a mechanism
to construct isomorphism-invariant hereditarily finite sets of polynomial size. When a CPT-
sentence (also called program) Π is evaluated in a finite structure A, then Π may augment A

with hereditarily finite sets over its universe. The total number of distinct sets appearing in
them (i.e. the sum over the sizes of the transitive closures of the h.f. sets) and the number of
computation steps is bounded by p(|A|), where p(n) is a polynomial that is explicitly part of
the sentence Π. The run of Π on A is formally a sequence of computation stages, each of
which is a h.f. set.

B. Pago 73:5

The h.f. sets that appear in the run of a program Π on a structure A are called the sets
that are activated by Π on input A. Formally, the set of active objects is the union over the
transitive closures of all the computation stages of the run of Π on A. The precise definition
is not important for the purposes of this article and there exist multiple slightly varying
definitions in the literature [9, 30, 32] which all essentially describe the same concept. The
main limitation of CPT is that the set of objects activated by Π on A is closed under the
automorphisms of A and at the same time of polynomial size in |A|. Thus, objects with
super-polynomially large orbits cannot be activated by a CPT-program. It may be worth
noting that while the whole set of activated objects has an orbit of size one, each activated
object itself need not be fixed by every automorphism – as long as its orbit is only polynomial.

3 Unordered Cai-Fürer-Immerman graphs

Fix an undirected connected graph G = (V, E) as the base graph for the CFI-construction
(whenever we speak of base graphs throughout the paper, we mean connected graphs). We
turn G into a CFI-graph by replacing the edges with certain edge-gadgets and the vertices
with vertex-gadgets. There are two types of vertex-gadgets, called odd and even. To construct
a concrete CFI-graph over G, we have to fix a set S ⊆ V of vertices which are replaced by the
odd gadget. The vertices in V \S will be turned into the even gadget. We denote the resulting
CFI-graph by GS . The precise definition is as follows: Let Ê := {e0, e1 | e ∈ E}. These are the
vertices that will form the edge-gadgets of GS , so there are two vertices per edge-gadget. To
define the vertices in vertex-gadgets, we let, for each v ∈ V , v∗

S := {vX | X ⊆ E(v), |X| even }
if v /∈ S, and otherwise, v∗

S := {vX | X ⊆ E(v), |X| odd }. Here, E(v) ⊆ E are the edges
incident to v in G. The vertices in v∗

S form the vertex-gadget of v. In total, we let
V̂S :=

⋃
v∈V v∗

S . Then the vertex-set of GS is V (GS) := V̂S ∪ Ê. The edges of the CFI-graph
are given by

E(GS) := {{vX , ei} | vX ∈ V̂S , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

In other words, for every v ∈ V , we connect each vX ∈ v∗
S with the edge-gadgets of all edges

e ∈ E(v) in such a way that vX is connected with e0 if e /∈ X, and otherwise with e1. Also,
we connect e0 and e1 to ensure that no automorphism of GS can tear apart the edge-gadgets.
Our CFI-graphs are unordered, so the only relation of the structure GS is the edge relation
E. The CFI-query asks for the parity of |S|, given a CFI-graph GS . This is essentially the

e0

e1

v∅

v{e,f}

v{e,g} v{f,g}

w{e}

w{h}

w{i}w{e,h,i}

Figure 1 Gadgets v∗
S , w∗

S for v /∈ S, w ∈ S, connected by the gadget for the edge e.

same question as the graph isomorphism problem for CFI-graphs:

▶ Theorem 3 ([4, 9]). For two given CFI-graphs over the same base graph, it holds GS ∼=
GR if and only if |S| ≡ |R| mod 2.

Alternatively, deciding the parity of |S| can be phrased as a linear equation system over F2
in the variables Ê [2]. Since the reduction to a linear equation system is easily computable
from the given CFI-graph GS , and linear equation systems can be efficiently solved using,
for example, Gaussian elimination, the CFI-query is decidable in polynomial time.

MFCS 2023

73:6 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

For logics that lack the ability to create higher-order objects, such as bounded-variable
counting logic Ck (and hence fixed-point logic with counting), it is provably impossible to
distinguish non-isomorphic CFI-graphs, provided that the treewidth of the base graphs is
super-constant:

▶ Theorem 4 ([4, 2]). Let G = (V, E) be an undirected connected graph with treewidth t.
Then for any two sets S, S′ ⊆ V , it holds GS ≡Ct GS′

, even if GS ̸∼= GS′ .

3.1 Automorphisms of unordered CFI-graphs
For a CFI-graph GS over an unordered base graph G = (V, E), two different kinds of
automorphisms play a role: Firstly, there are what we call “CFI-automorphisms”. These
are induced by swapping e0 and e1 in some edge-gadgets (this is called “flipping the edge”).
Secondly, there are the automorphisms of the underlying graph G itself.

To speak about the CFI-automorphisms, we use the terminology from [9]: For a given
base graph G, we consider not only a concrete CFI-instance with odd and even vertex gadgets,
but we can also construct the “full” CFI-graph G, in which every vertex gadget is both even
and odd. Formally, for v ∈ V , let v∗ := v∗

∅ ∪ v∗
{v} = {vX | X ⊆ E(v)}, and V̂ :=

⋃
v∈V v∗.

The vertex-set of G is V̂ ∪ Ê, and the edge-set is

E(G) := {{vX , ei} | vX ∈ V̂ , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

Every CFI-instance GS is an induced subgraph of G. Some of the CFI-automorphisms
of G are also automorphisms of GS , but not all of them are. The other automorphisms
of G induce isomorphisms from GS into another isomorphic CFI-graph. For each edge
e = {v, w} ∈ E, let ρe denote the automorphism of G induced by flipping the edge e.
Formally, ρe(e0) = e1, ρe(e1) = e0, and ρe(vX) = vX△{e}, ρe(wX) = wX△{e} for all
vX , wX ∈ v∗ ∪ w∗. All other vertices in V̂ are fixed by ρe. One can check that this is indeed
an automorphism of G; furthermore, ρe is an isomorphism from any CFI-instance GS to
GS△{v,w} (see also [9]). It is easy to see that these edge-flip automorphisms commute, so
for F = {e1, ..., em} ⊆ E we may write ρF for ρe1 ◦ ρe2 ◦ ... ◦ ρem . So in total, for every
F ⊆ E, ρF is an automorphism of G. If every v ∈ V is incident to an even number of
edges in F , then ρF is also an automorphism of GS , not only of G. To sum up, we have
the following groups of CFI-automorphisms of G and GS : AutCFI(G) := {ρF | F ⊆ E}.

This group is isomorphic to the Boolean vector space FE
2 : Each F ⊆ E is identified with

its characteristic vector χ(F) ∈ FE
2 . It holds ρF ◦ ρF ′ = ρF △F ′ , and this corresponds to

the vector χ(F) + χ(F ′) ∈ FE
2 . As already said, for a CFI-instance GS , i.e. an induced

subgraph of G, we have that AutCFI(GS) is isomorphic to a subspace of FE
2 . In addition to

the CFI-automorphisms, we also have to consider Aut(G) ≤ Sym(V), i.e. the automorphism
group of the unordered base graph. In total, the automorphism group of the full CFI-graph
G is isomorphic to the following semi-direct product: Aut(G) ∼= AutCFI(G) ⋊ Aut(G) =
{(ρF , π) | ρF ∈ AutCFI(G), π ∈ Aut(G)}. The automorphism group Aut(GS) of a concrete
CFI-instance is AutCFI(GS) ⋊ Aut(G) ≤ Aut(G).
Sets that are CPT-definable in GS only have to be symmetric with respect to the latter, but
nonetheless, we also consider the full group Aut(G) because it simplifies the analysis. The
sets we call super-symmetric (see below) are also Aut(G)-symmetric.

3.2 Symmetries and supports of hereditarily finite sets over CFI-graphs
Let GS be a CFI-graph over G = (V, E) and x ∈ HF(Ê). All the groups from the previous
section act on Ê and therefore also on HF(Ê). The action of any permutation π on a
set x ∈ HF(Ê) is given by π(x) = {π(y) | y ∈ x}. If x is an atom ei, with i ∈ {0, 1},

B. Pago 73:7

e = {u, v} ∈ E, and π ∈ Aut(G), then π(x) = π(e)i, where π(e) = {π(u), π(v)} ∈ E. If
π = ρF ∈ AutCFI(G), then π(ei) = ej , where j = i + |F ∩ {e}| mod 2. A permutation
π stabilises an object x ∈ HF(Ê), if π(x) = x. As already said, Aut(GS) is composed
of edge flips and automorphisms of the base graph. We separate the effect of these two
subgroups on the elements of HF(Ê) and consider the following orbits and stabilisers for
x ∈ HF(Ê). The different orbits we consider are OrbE(x) := {ρF (x) | ρF ∈ AutCFI(G)},
OrbG(x) := {π(x) | π ∈ Aut(G)}, and the corresponding stabilisers are StabE(x) =
{χ(F) | ρF ∈ AutCFI(G), ρF (x) = x} and StabG(x) = {π ∈ Aut(G) | π(x) = x}. We
always view StabE(x) as a subspace of the Boolean vector space FE

2 . Furthermore, let
maxOrbE(x) := maxy∈tc(x) |OrbE(y)|.

In [9], the term super-symmetry was introduced for h.f. sets which are fixed by all
automorphisms in AutCFI(G). Here, we use a slightly relaxed notion:

▶ Definition 5 (Super-symmetric objects). Fix a family of CFI-graphs (GS
n)n∈N and a µn ∈

HF(Ên) for every n. The objects µn are super-symmetric if there exists a polynomial p such
that |OrbE(µn)| ≤ p(|GS

n |).

Supports for CFI-automorphisms

Generally, a support of a permutation group Γ ≤ Sym(A) is a subset S ⊆ A such that the
pointwise stabiliser of S in Sym(A) is a subgroup of Γ. A support of a h.f. set is a support of
its stabiliser group. For subgroups of AutCFI(G), we will use a different notion, that we call
CFI-support. The reason why we need a specific type of support for these groups is because
otherwise, the group AutCFI(G) does not admit unique minimum supports.

▶ Definition 6 (CFI-support). A CFI-support of an object x ∈ HF(Ê) is a subset S ⊆ E

such that every ρF ∈ AutCFI(G) with F ∩ S = ∅ fixes x.

For the proof of the next lemma, we refer to the long version; it is not very difficult and
similar to the proof of Lemma 26 in [3]. The lemma entails that every x ∈ HF(Ê) has a
unique smallest CFI-support.

▶ Lemma 7. Let x ∈ HF(Ê). Let A1, A2 ⊆ E be CFI-supports of x. Then A1 ∩ A2 is also a
CFI-support of x.

▶ Definition 8 (Minimal CFI-support). For x ∈ HF(Ê), supCFI(x) ⊆ E denotes the unique
minimal subset of E that is a CFI-support of x.

4 CFI-symmetric hereditarily finite sets and algorithms

The CFI-query is definable in CPT on instances that arise from linearly ordered base graphs,
base graphs that come with a preorder with colour classes of logarithmic size, and base
graphs of linear degree [9, 29]. All these CPT-algorithms depend on the construction of
a particular super-symmetric h.f. set µ ∈ HF(Ê) that encodes the parity of |S|, given an
instance GS . We isolate another property of these h.f. sets, besides super-symmetry, which
is responsible for their small orbit size and suitability for encoding parities. We call this
CFI-symmetry. Intuitively, a set µ ∈ HF(Ê) is CFI-symmetric if its “building blocks” behave
similarly as CFI-gadgets in CFI-graphs, in the sense that they are “flipped” whenever an even
number of “incident gadgets” is flipped. These building blocks are the connected components
of sets. To define these, let a CFI-graph GS and a set µ ∈ HF(Ê) be fixed, and let ∼E be the
following equivalence relation on the elements x ∈ tc(µ): For x, x′ ∈ tc(µ), we write x ∼E x′

MFCS 2023

73:8 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

iff there exists an edge-flip ρF ∈ AutCFI(G) such that x′ = ρF (x). The ∼E-equivalence class
in tc(µ) of an object x ∈ tc(µ) is denoted [x]. The relation ∼E induces a partition C(x) on
each x ∈ tc(µ), namely C(x) := {([y] ∩ x) | y ∈ x}. In [9], the elements of C(x) are called
the connected components of x. Now in a CFI-symmetric object, each connected component
γ ∈ C(x), for each x ∈ tc(µ), behaves like a CFI-gadget. That is, the component has exactly
two images under AutCFI(G), namely itself and its “flip”. Consider the following example of
a small “parity-tracking” h.f. set that is constructed similarly as in the algorithms from [9]
and [29].

▶ Example 9. Here is an example h.f. set µ{e,f,g} ∈ HF(Ê) with E = {e, f, g}. It tracks
the parity of edge-flips for the edges e, f, g. For better readability, the set is printed in a
structured form, so the sets µ{f,g} and µ̃{f,g} are shown in the level below. Each of the

µ{e,f,g} =
{

{µ{f,g}, e0}, {µ̃{f,g}, e1}
}

{{f0, g0}, {f1, g1}} {{f0, g1}, {f1, g0}}

µ-objects has only one connected component that consists of two sets which are related by
∼E . For example, the set µ{e,f,g} is stabilised setwise whenever an even number of edges is
flipped. The two elements of µ{e,f,g} themselves have two connected components: Clearly,
e0 and µ{f,g} cannot be mapped to each other by any edge-flip. The same goes for example
for f0 and g0. They form distinct components of the set {f0, g0}, while {{f0, g0}, {f1, g1}}
again only has one component that is stabilised if and only if an even number of edges in
{f, g} is flipped. This pattern of alternation between sets with two components and sets
with one component is typical of the super-symmetric objects constructed by the known
CFI-algorithms.

▶ Definition 10 (CFI-symmetric components and objects). Let µ ∈ HF(Ê), x ∈ tc(µ), and
γ ⊆ x be a connected component of x. Then we say that γ is CFI-symmetric if |OrbE(γ)| = 2,
and for each ρF ∈ AutCFI(G), it holds that ρF (γ) = γ iff for one/every y ∈ γ, the number
of flipped components of y, that is |{γ′ ∈ C(y) | ρF (γ′) ̸= γ′}|, is even.

The set µ is CFI-symmetric if the following two conditions are satisfied:
1. For each ρF ∈ AutCFI(G), it holds that ρF (µ) = µ iff the number of flipped components

of µ, that is, |{γ ∈ C(µ) | ρF (γ) ̸= γ}|, is even.
2. For every x ∈ tc(µ), every connected component γ ∈ C(x) is CFI-symmetric.
In the full version, we show that the formulation “one/every” in the above definition is
indeed justified. We call a CPT-program Π that decides the CFI-query on a class K of base
graphs CFI-symmetric if it activates a CFI-symmetric h.f. set µ ∈ HF(Ê) on every input
GS over every base graph G ∈ K. To be precise, µ must also have sufficient support size in
order to enable the program to decide the CFI-query. This support lower bound is stated in
Theorem 16. Similarly, we say that Π is super-symmetric if it activates a super-symmetric
object of sufficient support.

5 Translating hereditarily finite sets to XOR-circuits

An XOR-circuit is a connected directed acyclic graph C = (VC , EC) with a unique designated
root r. Its internal nodes are understood as XOR-gates and its leaves correspond to the
input gates of the circuit. If (g, h) ∈ EC , then the output of gate h is an input of gate
g. Every XOR-circuit computes the Boolean XOR-function over a subset of its input bits.

B. Pago 73:9

We say that an XOR-circuit C is a circuit over a graph G = (V, E), if the input gates of
C are labelled with the edges in E. More precisely, let L ⊆ VC be the leaves of C. There
is an injective labelling function ℓ : L −→ E that relates the input gates with edges of
G. To speak about the semantics of the circuit, we introduce a set of formal propositional
variables V(G) := {Xe | e ∈ E}. Every input gate g ∈ L is associated with the formal
variable Xℓ(g). Since every internal gate is an XOR-gate, the function computed by it is
the XOR over a subset of V(G). For our purposes, this variable set (or actually the set of
associated edges) is the main interesting property of a gate, and we call it X (g). Formally, if
g ∈ L, then X (g) := {ℓ(g)} ⊆ E. If g is an internal gate, then X (g) :=

a
h∈gEC

X (h), that
is, the symmetric difference over the X (h) for all children of g. In other words, X (g) ⊆ E

is precisely the set of edges in E such that g computes the Boolean function
⊕

e∈X (g) Xe.
Thus, a gate g is sensitive to an input bit Xe if and only if e ∈ X (g). The function computed
by the circuit C is the XOR over X (r) ⊆ E, where r is the root of C.

5.1 Symmetries of circuits

A circuit C over a graph G is subject to the action of the automorphism group Aut(G) ≤
Sym(V). Any π ∈ Aut(G) changes the labels of the input gates in L. So let g ∈ L with
ℓ(g) = e ∈ E. Then π(g) is an input gate with ℓ(π(g)) = π(e). The circuit π(C) is just C

with the input labels modified accordingly. We say that π extends to an automorphism of C

if there exists a bijection σ : VC −→ VC that is an automorphism of the graph (VC , EC) and
satisfies for each input gate g ∈ VC : ℓ(σ(g)) = π(ℓ(g)). We write StabG(C) = {π ∈ Aut(G) |
π extends to an automorphism of C} ≤ Aut(G), and OrbG(C) = {π(C) | π ∈ Aut(G)}.

5.2 The parameter fan-in dimension

The XOR-circuits we will construct from CFI-symmetric h.f. sets will satisfy a certain fan-in
bound on the gates. However, this bound will not be – as it is more common – on the number
of incoming wires of a gate but rather, on the “linear algebraic complexity of incoming
information”, so to say. The subsets of E form a Boolean vector space together with the
symmetric difference operation. This space is isomorphic to FE

2 .
For each gate g of an XOR-circuit C = (VC , EC), gEC denotes the set of its children

and ECg the set of parents. With each internal gate g of an XOR-circuit C over a graph
G = (V, E), we can associate a Boolean matrix M(g) ∈ FgEC×E

2 , that we call the gate matrix :
The row at index h ∈ gEC is defined as the characteristic vector of X (h) ⊆ E, transposed,
i.e. M(g)h− = χ(X (h))T . Here and in what follows, we write χ for the bijection from
P(E) to FE

2 that associates with each subset of E its characteristic Boolean vector. If g

is an input gate, then we define M(g) ∈ F[1]×E
2 as the one-row matrix whose only row is

χ(X (g)))T = χ({ℓ(g)})T .
The fan-in dimension of a gate g is the dimension of the row-space of M(g); this is the

subspace of FE
2 that is spanned by the characteristic vectors χ(X (h)) ∈ FE

2 , for all children h

of g. Equivalently, the fan-in dimension of g is rk(M(g)). The fan-in dimension of the circuit
C is the maximum fan-in dimension of any of its gates. The notion of fan-in dimension is
unusual but as we will show, it nicely captures the orbit size of the original h.f. set with
respect to the group of edge flips AutCFI(G). The Aut(G)-symmetries of the h.f. set will be
reflected in the symmetries of the circuit.

MFCS 2023

73:10 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

5.3 The circuit construction
▶ Theorem 11. Fix a family (Gn)n∈N of base graphs. For every n ∈ N, let GS

n be a CFI-graph
over Gn = (Vn, En) and let µn ∈ HF(Ên) be a CFI-symmetric h.f. set that is activated by
a CPT-program on input GS

n (by the same CPT-program for the whole family of graphs).
Then for every n ∈ N, there exists an XOR-circuit C(µn) = (VC , EC) over the edges of Gn

which satisfies:
1. The size of the circuit, i.e. |VC |, is polynomial in |GS

n |.
2. The orbit-size |OrbG(C(µn))| of the circuit is polynomial in |GS

n |.
3. C(µn) is sensitive to an edge e ∈ En if and only if e ∈ supCFI(µn).
4. The fan-in dimension of C(µ) is O(log(maxOrbE(µ))). Recall that maxOrbE(µ) =

maxy∈tc(x) |OrbE(y)|.
For the proof, we fix µ ∈ HF(Ê) and denote by C(µ) = (VC , EC) the corresponding XOR-
circuit that we are going to define. The circuit is simply the factorised DAG-structure
(tc(µ), ∈)/∼E

: The gates of the circuit are the ∼E-equivalence classes (i.e. AutCFI(G)-
orbits) of the objects in tc(µ). Note that these orbits need not be subsets of tc(µ), so
whenever we write [x], we formally mean the orbit restricted to tc(µ): [x] = {ρF (x) | ρF ∈
AutCFI(G) such that ρF (x) ∈ tc(µ)}. The circuit C(µ) is defined as follows:

VC := tc(µ)/∼E
= {[x] | x ∈ tc(µ)}.

EC := {([x], [y]) | there exists y′ ∈ [y] such that y′ ∈ x}.
By definition, the leaves of C(µ) correspond to ∼E-classes of atoms in tc(µ). The set
of atoms is Ê, so any leaf of C has the form [ei], for some e ∈ E, i ∈ {0, 1}. We let
ℓ([ei]) := e.
The root r of C(µ) is [µ].

One can prove that the set of edges EC can indeed be defined in this way: Whether or not
there is an EC-edge between [x] and [y] is independent of the choice of the representative
of [x] in the definition. This is because all members of [x] are symmetric to each other in
the DAG-structure (tc(µ), ∈). Now we verify that the circuit has the desired properties. We
start with the Aut(G)-symmetry.

▶ Lemma 12. Every π ∈ StabG(µ) ≤ Sym(V) extends to an automorphism of the circuit
C(µ), that is: StabG(µ) ≤ StabG(C(µ)).

Proof sketch. Let π ∈ StabG(µ) ≤ Aut(G). That is, π extends to an automorphism
σ : tc(µ) −→ tc(µ) of (tc(µ), ∈). We define σ′ : VC −→ VC by letting σ′([x]) = [σ(x)]. This
is well-defined because x ∼E x′ if and only if σ(x) ∼E σ(x′) (σ is an automorphism of µ).
One can verify that σ′ is an automorphism of C(µ) that π extends to. ◀

▶ Corollary 13. |OrbG(C(µ))| ≤ |OrbG(µ)|.

Proof. Follows from Lemma 12 together with the Orbit-Stabiliser Theorem, which says that
|OrbG(C(µ))| = |Aut(G)|/|StabG(C(µ))| and |OrbG(µ)| = |Aut(G)|/|StabG(µ)|. ◀

Next, we would like to analyse the fan-in dimension of C(µ), and the connection between
C(µ) and supCFI(µ). The key for this is to establish a connection between the stabilisers
StabE(x), for all x ∈ tc(µ), and the kernels of the corresponding gate matrices. For the
definition of these matrices, we refer back to Section 5.2.

▶ Lemma 14. For every gate [x] ∈ VC and its gate matrix M [x] ∈ F[x]EC×E
2 , it holds:

Ker(M [x]) = StabE(x) = StabE(x′) for every x′ ∈ [x].
For every row M [x][y]−, for every [y] ∈ [x]EC , it holds:

Ker(M [x][y]−) = StabE([y] ∩ x) (⋆)

B. Pago 73:11

Proof. It holds StabE(x) = StabE(x′), for every x′ ∈ [x] and also StabE([y] ∩ x) =
StabE([y] ∩ x′), for every x′ ∈ [x] (because AutCFI(G) is Abelian). Therefore, equation
(⋆) does not depend on the choice of representatives. From (⋆) it immediately follows that
Ker(M [x]) = StabE(x), because: The stabiliser of x is the intersection of the stabilisers
of all connected components of x, and the kernel of M [x] is the intersection of the kernels
of the individual rows of the matrix. We now prove (⋆) via induction from the input gates
to the root. If [x] = [e0] is an input gate, then M [x] has just one row, which is χ(e)T .
The kernel of χ(e)T is the set of all vectors in FE

2 which are zero at index e. This is
precisely StabE(e0) = StabE(e1), as desired. Now suppose [x] is an internal gate, i.e. x is
a non-atomic h.f. set in tc(µ). Each row of M [x] ∈ F[x]EC ×E

2 is the characteristic vector of
X [y] ⊆ E, for a [y] ∈ [x]EC . Now fix such a child y of x. We have X [y] =

a
[w]∈[y]EC

X [w].
In matrix-vector notation, we can write this as:

M [x][y]− = χ(X ([y]))T =
∑

[w]∈[y]EC

(M [y][w]−)T = (1 1 ... 1) · M [y].

Let γ ∈ C(x) be the connected component such that γ = [y] ∩ x. The equation above means
that Ker(M [x][y]−) = Ey, where Ey denotes the set of all vectors in FE

2 whose image under
M [y] has even Hamming weight. Thus we have to show that Ey = StabE(γ). Each row
M [y][w]− corresponds to a connected component γ′ ∈ C(y) with w ∈ γ′.
By the induction hypothesis, we have for each row M [y][w]− and each v ∈ FE

2 that
M [y][w]− · v = 1 iff v /∈ StabE([w] ∩ y). So M [y] · v has even Hamming weight iff ρχ−1(v) ∈
AutCFI(G) flips an even number of connected components of y. This is true iff ρχ−1(v) flips an
even number of components in every y′ ∈ γ. By definition of CFI-symmetry (Definition 10),
this is the case iff v ∈ StabE(γ), because µ is CFI-symmetric, and thus, γ is a CFI-symmetric
component. In total, we have shown that v ∈ Ey iff v ∈ StabE(γ). This proves (⋆) for every
row of M [x]. ◀

As a consequence of this correspondence between kernels and stabilisers, we can bound
the fan-in dimension of C(µ). This proves Property 4 from Theorem 11.

▶ Lemma 15. The fan-in dimension of C(µ) is log(maxOrbE(µ)).

Proof. Let x ∈ tc(µ). From the Orbit-Stabiliser Theorem and the fact that |AutCFI(G)| =
2|E|, it follows that OrbE(x) = 2|E|

|StabE(x)| ≤ maxOrbE(µ). By Lemma 14, StabE(x) =
Ker(M [x]). Applying the Rank Theorem to M [x], we get: rk(M [x]) = |E|−dim StabE(x) ≤
log(maxOrbE(µ)). Since there is an object x ∈ tc(µ) where maxOrbE(µ) is attained,
rk(M [x]) = log(maxOrbE(µ)) is indeed the maximum rank of any gate matrix of C(µ). ◀

Proof of Theorem 11. First of all, since µ is by assumption activated by a CPT-sentence
in the structure GS , the size |tc(µ)| and the orbit |OrbAut(GS)(µ)| are polynomial in |GS |.
Therefore, Property 1 from Theorem 11 clearly holds for C(µ), because |VC | ≤ |tc(µ)|.
Property 2 follows from the bound on |OrbAut(GS)(µ)| together with Corollary 13, and
the fact that |OrbG(µ)| ≤ |OrbAut(GS)(µ)|. Property 4 is proven in Lemma 15. Finally,
Property 3 can be seen as follows: Suppose C(µ) is sensitive to an edge e ∈ E. This means
that e ∈ X (r), for the root r = [µ] of C(µ). This is the case iff e ∈ X [y] for an odd number of
children [y] ∈ [µ]EC . This is the same as saying that the column M [µ]−e has odd Hamming
weight. By equation (⋆) from Lemma 14, this holds if and only if χ(e) /∈ StabE([y] ∩ x) for
an odd number of children [y] ∈ [µ]EC . Since µ is CFI-symmetric, by Definition 10 this is
the case if and only if ρe(µ) ̸= µ. And this holds iff e ∈ supCFI(µ) (because supCFI(µ) is the
smallest possible CFI-support of µ). ◀

MFCS 2023

73:12 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

5.4 Proving the main theorem

So far, we have a translation of CFI-symmetric h.f. sets in HF(Ê) into XOR-circuits with
the properties mentioned in Theorem 11. In order to conclude Theorem 1 from this, we
additionally need the following: Any CPT-algorithm which is both super-symmetric and
CFI-symmetric and decides the CFI-query must construct a h.f. set whose properties translate
into the circuit properties from Theorem 1. Fortunately, a result to this effect exists already.
The following support lower bound for general CPT-programs deciding the CFI-query is due
to Dawar, Richerby, and Rossman [9].

▶ Theorem 16 (implicit in the proof of Theorem 40 in [9]). Let (Gn)n∈N be a family of
base graphs and let twn denote the treewidth of Gn. Let G0

n,G1
n denote the even and odd

CFI-structures over Gn. Assume that G0
n and G1

n are Ctwn-homogeneous.
Then any CPT-program that distinguishes G0

n and G1
n for all n ∈ N must activate on input

Gi
n a h.f. set µn whose smallest support has size at least Ω(twn).

A structure GS
n is Cf(n)-homogeneous if whenever two tuples a and b satisfy exactly the

same Cf(n)-formulas in GS
n, then there is an automorphism of GS

n that maps a to b. In
particular, this condition is satisfied by certain ordered CFI-graphs, as stated in [9], and one
can also show that the unordered CFI-graphs over hypercubes, which we use for the lower
bound in Theorem 2, satisfy it. There are other details which must be taken into account
when connecting Theorem 16 with Theorem 11 in order to prove Theorem 1, e.g. one has to
reconcile the different notions of support that these theorems talk about. We gloss over these
things in this extended abstract and refer to Theorem 31 in the long version, which is the
more precise formulation of Theorem 1. For our application to hypercube CFI-structures, it
is shown in the long version that Theorem 1 really holds in this shortened formulation. The
reason why Theorem 1 requires the object to be super-symmetric is that this allows us to
infer that O(log maxOrbE(µ)) ≤ O(log |GS

n |). This is needed to translate Property 4 from
Theorem 11 into Property 4 from Theorem 1. Super-symmetry together with the fact that
|tc(µ)| is polynomial guarantees that maxOrbE(µ) is polynomially bounded in |GS

n | (see
Definition 5).

6 A lower bound for symmetric XOR-circuits

The detailed proof of Theorem 2 is too long for this extended abstract but here is an
outline: The theorem states that no family of XOR-circuits exists which are stabilised by all
automorphisms of the n-dimensional hypercube, are sensitive to sufficiently many input bits,
of polynomial size, and satisfy certain logarithmic bounds on the orbit-wise number of parents
and children of each gate. What the proof concretely shows is that the sensitivity requirement
(condition 3 in Theorem 2) contradicts the other three conditions: Any sufficiently symmetric
circuit C is so highly connected that most input bits cancel themselves out because the
number of distinct (not necessarily vertex-disjoint) paths from the root r to the input is even,
and every operation is XOR. To prove that this self-cancellation effect takes place for an
input gate g, we partition the set of paths between g and r in C into their orbits. Then we
show that each orbit contains an even number of paths. To achieve this, it suffices to look at
one path P in each orbit and to show the existence of an edge (h′, h) in this path such that
Orbit(h)(h′) := {π(h′) | π ∈ Stab(h)} has even size. Then we can conclude that P splits
into an even number of “alternative routes” towards the root at gate h. Thus, the goal is to
show that such an edge (h′, h) exists on every path between r and g.

B. Pago 73:13

We do this by maintaining fine-grained information about the stabiliser groups Stab(hi)
of the gates (h1 = g, h2, h3, ..., r) along a given path (the path here is presented in the reverse
direction of the edges). The automorphism group of the n-dimensional hypercube contains
as a subgroup the symmetric group Symn acting on the n positions of the binary words
{0, 1}n, which form the vertex set of the hypercube. Thus, each Stab(hi) can be seen as
a subgroup of Symn. Such subgroups can be approximated by what we call their coarsest
alternating supporting partition SPA(Stab(hi)) (inspired by a similar concept used in [1]).
This is the coarsest partition P of [n] such that for each P ∈ P, every even permutation
of P is a member of Stab(hi). We know what SPA(Stab(g)) looks like for every input
gate g: This depends on the edge of the hypercube that g is labelled with. For a large
proportion of the hypercube edges, this is a partition of [n] into two parts of size Θ(n).
We also know for the root that SPA(Stab(r)) = {[n]} because the circuit is stabilised by
every permutation in Symn. The bounds on the orbit-wise fan-in and fan-out degree that
we assume in Theorem 2 allow us to prove that when we pass from any hi to hi+1, then
SPA(Stab(hi)) ≈ SPA(Stab(hi+1)), i.e. the supporting partitions hardly change (because
if they did change more, then one would find that there must be more parent/child gates
per orbit than allowed). Since SPA(Stab(g)) differs quite substantially from SPA(Stab(r))
but SPA(Stab(hi)) ≈ SPA(Stab(hi+1)) for every i, we can infer that all “intermediate
partitions” between SPA(Stab(g)) and SPA(Stab(r)) appear for the gate stabilisers along
the path. Then we show that one of these “intermediate partitions” which must appear
as SPA(Stab(hi)) for some i has properties which entail what we wanted, namely that
Orbit(hi)(hi+1) has even size. Thus, the edge (hi+1, hi) on the path satisfies what we were
looking for. So in short, the proof works because: Firstly, in order to show that a path has
an even number of automorphic images, it suffices to find one gate on the path where the
number of symmetric predecessors is even. Secondly, whether or not this happens can be
inferred from the supporting partition of the gate. Thirdly, the fan-in and fan-out bounds
enable us to track very precisely how the supporting partitions along the path look like.
With these arguments, we can show for a sufficient number of input gates g, that they do
not contribute to the result of the XOR-computation because they have an even number of
paths to r – thus, circuit property 3 in Theorem 2 is not satisfied when the other conditions
are. Carrying out this proof sketch requires quite some work that we have swept under the
carpet here; for example, one needs certain group-theoretic arguments similar to the proof of
Theorem 5.2 B in [13] in order to be able to describe the stabiliser groups appropriately with
alternating supporting partitions.

7 Conclusion and future research

We have shown that the definability of the CFI-query on a class K of base graphs by means
of a CFI-symmetric algorithm presupposes the existence of symmetric XOR-circuits with the
properties from Theorem 1. We come close to proving the non-existence of these circuits for
K being the family of n-dimensional hypercubes. It remains as a problem for future research
to improve this lower bound and close the gap between the circuit properties in Theorems 1
and 2 in order to separate the class of CFI-symmetric algorithms from Ptime. Once that is
achieved, the next step would be to lift this circuit approach to all CPT-algorithms for the
CFI-query, not just the CFI-symmetric ones. This is a potential route to eventually solve the
extremely difficult problem of separating CPT from Ptime. In the full version of the paper,
we also provide a generalised circuit construction which works for a larger class of h.f. sets than
CFI-symmetric ones. These are sets whose AutCFI(G)-symmetries and Aut(G)-symmetries

MFCS 2023

73:14 Lower Bounds for Choiceless Polynomial Time via Symmetric XOR-Circuits

go well together in the sense that the Boolean vector spaces describing the AutCFI(G)-
stabilisers admit Aut(G)-symmetric bases. However, one can prove that, unfortunately, the
class of h.f. sets with this property is still not the full class of all CPT-definable sets.

A different approach towards CPT lower bounds could be to study the isomorphism
problem of multipedes [25] instead of CFI-graphs. Such structures have been used to obtain
lower bounds against individualization-refinement graph isomorphism algorithms. Multipedes
differ from CFI-graphs in so far as they have no non-trivial automorphisms. Their inherent
symmetries are rather given by counting-logic types (two tuples in a structure have the same
k-type if they satisfy the same Ck-formulas). It could be that the circuit construction is
adaptable to this kind of symmetry. This would be of particular interest in case that the
(unordered) CFI-query turns out to be in fact CPT-definable; then, multipedes might still
provide an example to separate CPT from Ptime.

References
1 Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory of

Computing Systems, 60(3):521–551, 2017.
2 Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affine systems of equations and counting

infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.
3 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Annals of

Pure and Applied Logic, 100(1-3):141–187, 1999.
4 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for

graph identification. Combinatorica, 12:389–410, 1992.
5 Ashok Chandra and David Harel. Structure and complexity of relational queries. In 21st

Annual Symposium on Foundations of Computer Science (sfcs 1980), pages 333–347. IEEE,
1980. doi:10.1109/SFCS.1980.41.

6 Anuj Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2(1):8–21, 2015.

7 Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of Isomorphism and Logics with
Linear-Algebraic Operators. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 112:1–112:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.112.

8 Anuj Dawar, Erich Grädel, and Moritz Lichter. Limitations of the invertible-map equivalences.
Journal of Logic and Computation, September 2022. doi:10.1093/logcom/exac058.

9 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless Polynomial Time, Counting
and the Cai–Fürer–Immerman graphs. Annals of Pure and Applied Logic, 152(1-3):31–50,
2008.

10 Anuj Dawar and Gregory Wilsenach. Symmetric Arithmetic Circuits. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1–36:18, 2020. doi:10.4230/
LIPIcs.ICALP.2020.36.

11 Anuj Dawar and Gregory Wilsenach. Symmetric circuits for rank logic. ACM Transactions on
Computational Logic (TOCL), 23(1):1–35, 2021.

12 Anuj Dawar and Gregory Wilsenach. Lower Bounds for Symmetric Circuits for the Determinant.
In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215
of Leibniz International Proceedings in Informatics (LIPIcs), pages 52:1–52:22, 2022. doi:
10.4230/LIPIcs.ITCS.2022.52.

13 John Dixon and Brian Mortimer. Permutation Groups. Springer, New York, 1996.
14 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-

plexity of computation, 7:43–73, 1974.
15 F. Gire and H.K. Hoang. An extension of fixpoint logic with a symmetry-based choice construct.

Information and Computation, 144(1):40–65, 1998. doi:10.1006/inco.1998.2712.

https://doi.org/10.1109/SFCS.1980.41
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1093/logcom/exac058
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.1006/inco.1998.2712

B. Pago 73:15

16 E. Grädel, W. Pakusa, S. Schalthöfer, and L. Kaiser. Characterising Choiceless Polyno-
mial Time with First-Order Interpretations. In Proceedings of the 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 677–688, 2015.

17 Erich Grädel and Martin Grohe. Is Polynomial Time Choiceless? In Fields of Logic and
Computation II, pages 193–209. Springer, 2015.

18 Martin Grohe. The quest for a logic capturing PTIME. In 2008 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 267–271. IEEE, 2008. doi:10.1109/LICS.2008.11.

19 Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. Deep Weisfeiler Leman, 2020.
arXiv:2003.10935.

20 Yuri Gurevich. Logic and the Challenge of Computer Science. In Current Trends in Theoretical
Computer Science. Computer Science Press, 1988.

21 William He and Benjamin Rossman. Symmetric formulas for products of permutations, 2022.
arXiv:2211.15520.

22 Moritz Lichter. Separating Rank Logic from Polynomial Time. J. ACM, November 2022.
doi:10.1145/3572918.

23 Moritz Lichter. Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with
Counting, 2022. arXiv:2210.07869.

24 Moritz Lichter and Pascal Schweitzer. Choiceless Polynomial Time with Witnessed Symmetric
Choice. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science,
Haifa, Israel, August 2 - 5, 2022, LICS ’22. Association for Computing Machinery, 2022.
doi:10.1145/3531130.3533348.

25 Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 138–150, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188900.

26 Benedikt Pago. Choiceless Computation and Symmetry: Limitations of Definability. In
29th EACSL Annual Conference on Computer Science Logic (CSL 2021), volume 183 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:21, 2021. doi:
10.4230/LIPIcs.CSL.2021.33.

27 Benedikt Pago. Lower bounds for Choiceless Polynomial Time via Symmetric XOR-circuits,
2023. arXiv:2302.05426.

28 Wied Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of
Polynomial Time. PhD thesis, RWTH Aachen, 2015.

29 Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman
problems in Choiceless Polynomial Time. ACM Transactions on Computational Logic (TOCL),
19(2):1–27, 2018. doi:10.1145/3154456.

30 Benjamin Rossman. Choiceless Computation and Symmetry. In Fields of Logic and Computa-
tion, pages 565–580. Springer, 2010.

31 Benjamin Rossman. Subspace-Invariant AC0 Formulas. Logical Methods in Computer Science,
15, 2019.

32 Svenja Schalthöfer. Choiceless Computation and Logic. PhD thesis, RWTH Aachen, 2020.

MFCS 2023

https://doi.org/10.1109/LICS.2008.11
https://arxiv.org/abs/2003.10935
https://arxiv.org/abs/2211.15520
https://doi.org/10.1145/3572918
https://arxiv.org/abs/2210.07869
https://doi.org/10.1145/3531130.3533348
https://doi.org/10.1145/3188745.3188900
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://arxiv.org/abs/2302.05426
https://doi.org/10.1145/3154456

	1 Introduction
	2 Choiceless Polynomial Time
	3 Unordered Cai-Fürer-Immerman graphs
	3.1 Automorphisms of unordered CFI-graphs
	3.2 Symmetries and supports of hereditarily finite sets over CFI-graphs

	4 CFI-symmetric hereditarily finite sets and algorithms
	5 Translating hereditarily finite sets to XOR-circuits
	5.1 Symmetries of circuits
	5.2 The parameter fan-in dimension
	5.3 The circuit construction
	5.4 Proving the main theorem

	6 A lower bound for symmetric XOR-circuits
	7 Conclusion and future research

