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Abstract
The notion of a real-valued function is central to mathematics, computer science, and many other
scientific fields. Despite this importance, there are hardly any positive results on decision procedures
for predicate logical theories that reason about real-valued functions. This paper defines a first-order
predicate language for reasoning about multi-dimensional smooth real-valued functions and their
derivatives, and demonstrates that – despite the obvious undecidability barriers – certain positive
decidability results for such a language are indeed possible.
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1 Introduction

Predicate logical decision procedures have become a major workhorse in computer science, for
example, as the basic reasoning engines in SAT modulo theory (SMT) solvers [3]. Common
decision procedures support theories such as uninterpreted function symbols, arrays, linear
integer arithmetic, and real arithmetic. However, many areas of computer science (e.g.,
computer aided design, formal verification of physical systems, machine learning) use as
their basic data structure not only real numbers but real-valued functions, for example, to
represent solid objects [13], correctness certificates [30, 29] or neural networks [1]. Moreover,
due to their fundamental role as a basic mathematical object, real-valued functions are
used as a basic modeling tool throughout many further scientific areas. But unfortunately,
real-valued functions have been left almost completely untouched by research on predicate
logical decision procedures. The goal of this paper is to take a first step to fill this gap.

More concretely, the paper provides the following contributions:
We formalize a first-order language of real-valued functions that allows reasoning about
both real numbers and multi-dimensional real-valued smooth functions based on the usual
arithmetical operations, function evaluation and differentiation.
We prove that a quantifier-free fragment of the language that restricts arithmetic to
addition and multiplication of real numbers, but still provides function evaluation and
differentiation, is decidable.
We prove that for a fragment of the language that keeps the restriction of arithmetic
to addition and multiplication of real numbers but allows arbitrary quantification on
real-valued variables (but not on function-valued variables), there is an algorithm that
can detect satisfiability for all input formulas that are robustly satisfiable in the sense
that there is a satisfying assignment that stays satisfying under small perturbations of
the values of function-valued variables.
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76:2 Deciding Predicate Logical Theories of Real-Valued Functions

We neither claim theoretical nor practical efficiency of the resulting decision procedures.
Instead, our goal is to overcome scientific fragmentation by developing a framework that can
be instantiated to more efficient techniques for specific applications.

The paper has the following structure: In the next section, we discuss related work.
In Section 3, we define the syntax and semantics of the mentioned predicate language
for reasoning about smooth real-valued functions. In Section 4 we prove decidability of
the quantifier-free case. In Section 5 we discuss decidability of the case with arbitrary
quantification on real-valued variables. In Section 6 we conclude the paper.

2 Related Work

Reasoning about real-valued functions – that we also simply call real functions – will, of
course, be usually based on reasoning about real numbers. This is facilitated by the fact
that unlike the case of the integers, in the case of the real numbers, its non-linear theory
(i.e., the theory of real closed fields) is decidable [38]. The decidability of the case with
the exponential function is still unknown, but is decidable provided Schanuel’s conjecture
holds [25]. Inclusion of the sine function makes the problem undecidable since – as a periodic
function – it is able to encode the integers. This makes any theory that allows reasoning
about systems of linear ordinary differential equations (ODEs) undecidable, since the sine
function appears as the solution of the linear ODE ẋ = −y, ẏ = x.

In mathematical analysis, real functions are often abstracted to elements of abstract
function spaces such as Banach spaces and Hilbert spaces [24]. However, with one notable
exception [37] we are aware of, corresponding predicate logical decision problems have been
largely ignored by computer science.

An important occurrence of real functions is in the role of solutions of ordinary differential
equations (ODEs) and hybrid dynamical systems. Formal verification of such systems has
been an active research topic over many years [10], with a plethora of decidability and
undecidability results [16, 8, 23, 4, 5]. Deductive verification bases formal verification on
automated reasoning frameworks such as hybrid dynamic logic [29], or proof assistants such as
Isabelle/HOL [15]. Reasoning with functions as the solution of ODEs has been included into
SAT solvers without formulation as a first-order decision problem [12, 18]. ODEs have also
played a role as objects in constraint programming [21]. In contrast to the work mentioned
in this paragraph, in this paper, we introduce a general logical language with variables and
predicate and function symbols ranging over real-valued functions. Especially, we allow
multi-dimensional functions and partial differentiation, whereas ODEs and hybrid systems
are defined using one-dimensional functions, only (the single dimension being time).

Computation in function spaces plays a major role in numerical analysis, where it is
mostly restricted to representing solutions to certain specific computation problems, especially,
solving ordinary or partial differential equations. There are also some general approaches
to computing with functions [11, 9]. However, the basic assumption in numerical analysis
is that the solution to the given problem exists and is unique, and the goal is to compute
an approximation of this solution, whereas in this paper we consider satisfiability questions,
where a proof of existence is the goal, not an assumption.

Computer algebra [41] studies computation with symbolic objects, especially polynomials,
that can be interpreted as representations of real functions. Unlike that, in this paper we
are interested in solving problems of reasoning about functions that are independent from a
certain representation.
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The proof of decidability of the quantifier-free case will be based on abstracting function
variables to uninterpreted function symbols. Abstraction to uninterpreted function symbols is
a classical technique in formal verification [6] that has also been applied to real functions [7],
but with the goal of modeling specific function symbols, while in this paper we are interested
in general reasoning about smooth real functions and their derivatives.

For quite some time, robustness has been recognized as tool for characterizing solvable
cases of undecidable decision problems. It was used for dynamical systems [16, 2] and for
decision procedures for the real numbers [32, 17]. However, all of those results do not allow
a general language for reasoning about real functions.

3 Formal Syntax and Semantics

In this section, we define the syntax and semantics of the first-order language for reasoning
about real functions that we will want to decide. As a first example, consider the formula

∃X ∀u, v . app(∂1X, u, v) = 1 ∧ app(∂2X, u, v) ≤ u2,

that asks the question whether there exists a smooth function in R2 → R whose partial
derivative in its first argument is one everywhere, and whose partial dervative in its second
argument is less or equal the square of its first argument. The reader will find more examples
at the beginning of each of the two following sections.

The language will be sorted, allowing variables that range over real numbers and variables
that range over real functions. We denote the sort ranging over real numbers, that we also
call the scalar sort, by R, and the sorts ranging over real-valued functions, that we also call
the function sorts, by Fn, where n ∈ N refers to the number of arguments (i.e., dimension
of the domain). We will also use the symbol F to stand for any sort Fi, i ∈ N. For each of
those sorts, we assume a corresponding set of variables V = VR ∪ VF1 ∪ VF2 . . . . We will
write the elements of VR using lower-case letters and the elements of VF1 ∪ VF2 . . . using
upper case letters. We will also use the symbol VF to denote the set of all function variables
VF1 ∪ VF2 . . . .

We will build formulas based on the usual syntax of many-sorted first-order logic. Here, we
allow rational constants, arithmetical function symbols such as +, ×, exp, sin, and predicate
symbols =, ≤, ≥, <, > that have the usual arity. For every n ∈ N, we allow the function
symbols app : Fn × Rn → R and ∂i : Fn → Fn, i ∈ {1, . . . , n} that we call app-operator
and differentiation operator, respectively. As usual, we will often write the differentiation
operator without parenthesis, and for X ∈ F1, we also write Ẋ instead of ∂1X. We will also
call a term whose outermost symbol is the function symbol app, an app-term.

We will call formulas whose function symbols are restricted to {+, ×, app} ∪ {∂i | i ∈ N},
and hence avoiding transcendental function symbols, function-algebraic. As already mentioned
in the introduction, in this paper, we concentrate on this case.

We define the semantics of formulas by defining a structure R giving the usual real-
valued semantics to all function and predicate symbols. This allows us to avoid questions
of axiomatization and, at the same time, ensures compatibility with the common intuition.
Clearly, satisfiability of a formula based on classical mathematical semantics, implies its
satisfiability wrt. an arbitrary axiomatization compatible with classical mathematics.

In more detail, the structure R will be many-sorted, where the sort R ranges over the
real numbers R and the sorts Fn, n ∈ N range over the set of smooth (i.e., infinitely often
differentiable) functions in Rn → R. We will use the notation that for any smooth function
F : Rn → R, and tuple (β1, . . . , βn) ∈ Nn

0 , D(β1,...,βn)F denotes the function that is the result
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76:4 Deciding Predicate Logical Theories of Real-Valued Functions

of differentiating for every i ∈ {1, . . . , n} the function F βi-times wrt. its i-th component.
The semantics of function and predicate symbols on the real numbers will be as usual. The
app-operator and differentiation operator are defined as follows:

For every n ∈ N, for all X ∈ Fn, R(app)(X, x1, . . . , xn) = X(x1, . . . , xn) (i.e., function
application in its usual mathematical sense)
For every n ∈ N, i ∈ {1, . . . , n}, for every X ∈ Fn, R(∂i)(X) = DdX, where d ∈ Nn

0 with
d(i) = 1 and for every k ̸= i, d(k) = 0 (i.e., the result of taking the derivative of X wrt.
its i-th argument).

We will denote the set of variable assignments assigning to each variable an element of
its respective domain, by ℵ. Given an assignment α ∈ ℵ we can now assign semantics to
formulas in the usual way, writing α |= ϕ iff the interpretation given by structure R and
assignment α satisfies ϕ. We call a formula ϕ satisfiable iff there is an assignment α ∈ ℵ such
that α |= ϕ. In such a case we will also say that ϕ is F-satisfiable. By abuse of notation,
we will use the symbol F to not only denote the function sorts, but also the theory F of
F-satisfiable formulas.

4 Quantifier-Free Case

In this section, we consider formulas that are quantifier-free and function-algebraic. Here are
some examples:

app(X, t) ≥ 1 ∧ app(X, t + 1)2 ≤ 1: This formula restricts the value of the function X at
two different points t and t + 1. Since these points are different, for checking satisfiability
of the formula, it suffices check satisfiability of the algebraic inequalities r ≥ 1 ∧ s2 ≤ 1.
Based on a satisfying assignment for this formula, we get a satisfying assignment for
the original formula by assigning to X a function interpolating between the values for r

and s.
app(X, 0) = 0 ∧ app(Ẋ, 1) = app(X, 1)2. This formula not only restricts values for the
function X, but also states a relationship between the value of X and its derivative. The
formula is satisfiable since the identity function satisfies the properties stated by the
formula.
app(∂1X, t) = 1 ∧ app(∂2X, t) = 1. This formula states a relationship between two partial
derivatives of X at the same value t. This holds, for example, for the function X with
X(u, v) = u + v.

The basic idea for deciding such formulas is, that quantifier-free formulas constrain the
values of function variables only at a finite (but not fixed) subset of their domain which will
allow us to treat them as uninterpreted function symbols. To do so, we have to get rid of the
app- and differentiation operators. For this, observe that the only syntactic elements that
result in terms of function sort are function variables and differentiation operators. Hence,
differentiation operators can only occur in the form of terms of the form ∂i1∂i2 . . . ∂in

V . So
we let τ∂(ϕ) be the formula resulting from replacing every maximal term of this form (i.e.,
every term of this form that is not an argument of a differentiation operator) by a fresh
function variable Vi1,...,in

. For example,

τ∂(app(∂1X, t) + app(∂2X, t) = 1) ≡ app(X1, t) + app(X2, t) = 1.

The next step is to get rid of the app operator. For this, we denote, for every quantifier-
free formula ϕ, by τ(ϕ) the result of replacing every app-term app(X, t1, . . . , tk) of τ∂(ϕ) by
X(t1, . . . , tk) where in the resulting formula, we now consider X a k-ary function symbol.
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Continuing the example, we get

τ(app(∂1X, t) + app(∂2X, t) = 1) ≡ X1(t) + X2(t) = 1.

The resulting formula is a formula in the language defined by the combination of the
signature of the theory of real-closed fields and the signature of the theory of uninterpreted
function symbols. The combination of these two theories, that we will denote by RU , is
decidable: The signatures of the theory of uninterpreted function symbols and the theory
of real-closed fields only share equality, and both are stably infinite1, hence the decision
procedures for the individual procedures can be combined to a decision procedure for
the combined theory by the Nelson-Oppen theory combination procedure [27, 6]. As a
consequence, we can algorithmically decide RU-satisfiability of translated formulas τ(ϕ).
Moreover, the translation preserves satisfiability:

▶ Theorem 1. A conjunctive formula ϕ is F-satisfiable if and only if τ(ϕ) is RU-satisfiable.

For proving this theorem, we have to bridge two differences between F- and RU-
satisfiability: First, the semantics of F -satisfiability restricts the domain of function variables
to specific functions, more concretely, to smooth real function. And second, the theories of
real closed fields and uninterpreted function symbols are defined using axioms, unlike our
theory F that we defined semantically, by fixing a certain structure. Before going into the
details of the proof, we state a few lemmas. The first one extracts the non-algorithmic core
of the Nelson-Oppen method [27, 39, 6]:

▶ Lemma 2. Let T1 and T2 be two stably infinite theories of respective signatures Σ1 and Σ2,
having only equality in common. Let ϕ1 be a conjunctive Σ1-formula, and ϕ2 a conjunctive
Σ2-formula. Then ϕ1 ∧ ϕ2 is (T1 ∪ T2)-satisfiable iff there is an equivalence relation E on the
common variables V := var(ϕ1) ∩ var(ϕ2) s.t. ϕ1 ∧ ρ(V, E) is T1-satisfiable and ρ(V, E) ∧ ϕ2
is T2-satisfiable, where ρ(V, E) is the formula∧

u,v∈V . uEv

u = v ∧
∧

u,v∈V . ¬(uEv)

u ̸= v.

Every (Σ1 ∪ Σ2)-formula ϕ can be brought into an equi-satisfiable formula of the form
ϕ1 ∧ ϕ2, where ϕ1 is a Σ1-formula, and ϕ2 is a Σ2-formula using the so-called variable
abstraction phase of the Nelson-Oppen method. In our case, T1 is the theory of real closed
fields, and T2 the theory of uninterpreted function symbols. For the result

X(t) ≥ 1 ∧ X(t + 1)2 ≤ 1,

of translating the first example from the beginnning of the section, the result of the variable
abstraction phase is the equi-satisfiable formula

v1 ≥ 1 ∧ v2 = t + 1 ∧ v2
3 ≤ 1 ∧ v1 = X(t) ∧ v3 = X(v2).

The common variables are {v1, v2, v3, t}, and the equivalence relation induced by the set of
equivalence classes {{v1, v3}, {v2}, {t}} illustrates Lemma 2, since

v1 ≥ 1 ∧ v2 = t + 1 ∧ v2
3 ≤ 1 ∧ v1 = v3 ∧ v1 ̸= v2 ∧ v3 ̸= v2

1 A theory T with signature Σ is called stably infinite iff for every quantifier-free Σ-formula ϕ, if F is
T -satisfiable, then there exists some T -interpretation that satisfies F and has a domain of infinite
cardinality [27, 6].

MFCS 2023



76:6 Deciding Predicate Logical Theories of Real-Valued Functions

is satisfiable in the theory of real-closed fields, and

v1 = X(t) ∧ v3 = X(v2) ∧ v1 = v3 ∧ v1 ̸= v2 ∧ v3 ̸= v2

is satisfiable in the theory of uninterpreted function symbols.
The second lemma states a Hermite-like interpolation property whose proof follows from

standard techniques in mathematical analysis.

▶ Lemma 3. Let p be a function from a finite subset P of Rn × Nn
0 to R. Then there exists

a smooth function F : Rn → R s.t. for every (x, d) ∈ P , (DdF )(x) = p(x, d).

Proof. Let X be the set {x | (x, d) ∈ P}. This set if finite, and hence the elements of X are
isolated. For each c ∈ X, construct a smooth function fc which for all d with (c, d) ∈ P ,
(Ddfc)(c) = p(c, d). Let F : Rn → R be such that for all x ∈ Rn, F (x) =

∑
c∈X Bc(fc(x)),

where Bc is a smooth function that is equal to the identity function in a sufficiently small
neighborhood of c, and zero around all other elements of X (i.e., a so-called bump function).
Then F satisfies the desired property. ◀

Now we return to the proof of Theorem 1:

Proof. To prove the ⇒ direction, we assume a variable assignment α that F-satisfies ϕ

and construct an interpretation that satisfies both the axioms of RU and the formula τ(ϕ).
The interpretation is based on the structure of the real numbers, interprets the symbols
{0, 1, +, ×, ≤, <, ≥, >} in the usual mathematical way, interprets the function symbols
introduced by the translation τ as the corresponding smooth real-valued functions given by
α and their respective derivatives, and assigns to the variables of τ(ϕ) the corresponding real
values given by α. The result satisfies the formula ϕ by construction and satisfies the axioms
of RU since the real numbers are an instance of the theory of real closed fields,

We are left with proving the ⇐ direction. For this, we assume that τ(ϕ) is RU -satisfiable,
and build an assignment that satisfies ϕ, assigning to each variable of ϕ an element of the
domain of its respective sort (i.e., either a real number and or a smooth real function).

Observe that both the theory of real closed fields and the theory of uninterpreted function
symbols are stably infinite. Hence we can apply the Nelson-Oppen method. Let the formulas
πR and πU be the result of applying the variable abstraction phase of the Nelson-Oppen
method to τ(ϕ). Hence, πR is a formula in the language of real closed fields, and πU a formula
in the language of uninterpreted function symbols s.t. πR ∧ πU is RU-equi-satisfiable with
τ(ϕ). Let V be the common variables of πR and πU , and let E be the equivalence relation
on V ensured by Lemma 2. Then πR ∧ ρ(V, E) is satisfiable in the theory of real closed fields
and ρ(V, E) ∧ πU in the theory of uninterpreted function symbols. Note that those theories
are defined axiomatically, and hence satisfying interpretations do not necessarily have to be
based on real numbers.

The theory of real closed fields is complete, and hence all its models are elementary
equivalent. As a consequence, there is an interpretation IR that satisfies πR ∧ ρ(V, E) and
assigns real numbers to all variables.

Also ρ(V, E) ∧ πU has a satisfying interpretation. However, since the theory of uninter-
preted symbols is not complete, we need a more involved construction to come up with an
interpretation assigning real numbers and real-valued functions.

We observe that for a formula that is satisfiable in the theory of uninterpreted function
symbols, the congruence closure algorithm [28] constructs a satisfying interpretation. Its
domain is formed by equivalence classes T∼ of the set of sub-terms T of the given formula.
This domain is finite since the set T is finite. Moreover, each equivalence class contains only
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finitely many terms. Let IU be such an interpretation satisfying the formula ρ(V, E) ∧ πU .
Observe that the arrangement ρ(V, E) ensures that all variables shared by πR and πU and
belonging to the same equivalence class, must have the same value in IR.

We will combine the interpretations IR and IU into an interpretation I that satisfies τ(ϕ)
and, in addition, uses the real numbers as its domain. Hence, we will translate the elements
in the domain of IU to real numbers, and extend them to real-valued functions corresponding
to the uninterpreted function symbols.

We will now define a function r assigning to each equivalence class in T∼ a distinct real
number. Let this function r be such that it assigns to each equivalence class containing a
variable shared by πR and πU the value of this variable in IR (as we have observed, this
is unique over all such variables belonging to the same equivalence class), and to all other
equivalence classes a further, distinct real number. Let r′ : T → R s.t. for every term t ∈ T ,
r′(t) is the real number that r assigns to the equivalence class containing t.

Based on this, let I be the following interpretation which assigns real numbers to all
variables in τ(ϕ) and partial real functions to the function symbols in τ(ϕ):

for every variable x occurring in πR, I(x) := IR(x),
for every variable x occurring in πU , I(x) := r′(x),
for every function symbol X of arity k, let I(X) be the partial function such that for
every term of the form X(t1, . . . , tk) in T , I(X)(r′(t1), . . . , r′(tk)) := r′(X(t1, . . . , tk)),
and I(X) is undefined for all other values.

The two following observations make this definition well-formed:
The first two items overlap. This is no problem since for shared variables, I(x) and r′(x)
coincide.
The definition in the third item is unique since due to the congruence axioms of the theory
of free function symbols, for all t1, . . . , tk, t′

1 . . . , t′
k ∈ T , r′(t1) = r′(t′

1), . . . , r′(tk) = r′(t′
k)

implies r′(X(t1, . . . , tk)) = r′(X(t′
1, . . . , t′

k)).

We will now build a variable assignment α from I such that α |= ϕ. For every scalar
variable x, α(x) := I(x). For every function variable V , α(V ) will be a smooth real-valued
function whose values coincide with the values of the partial function I(V ) on all points
where this partial function has a defined value, and whose derivatives coincides with the
values of the corresponding partial function I(Vi1,...,in) on all points where the latter has a
defined value. Such a function exists due to Lemma 3, and it satisfies the formula ϕ. ◀

To illustrate the theorem, we continue with the example from above. The real part of
the formula is satisfiable, for example by {v1 7→ 1, v2 7→ 7, v3 7→ 1, t 7→ 6}. Applying the
congruence closure algorithm to the part with uninterpreted function symbols, we work
with the set of sub-terms T = {v1, v2, v3, t, X(t), X(v2)}. The result of the congruence
closure algorithm is the equivalence relation {{v1, v3, X(v2), X(t)}, {t}, {v2}}. Hence r′ is
{v1 7→ 1, v3 7→ 1, X(v2) 7→ 1, X(t) 7→ 1, t 7→ 6, v2 7→ 7}. Since every variable in πU also
occurs in πR, the interpretation I can simply agree with r′ on the scalar variables. Moreover,
it assigns to the function variable X the partial function {7 7→ 1, 6 7→ 1}. The corresponding
assignment α assigns to the scalar variables the same real values as I, and assigns to X a
smooth interpolation of the partial function {7 7→ 1, 6 7→ 1}. For example, this could be the
constant function that has the value 1, everywhere.

Since a disjunction of formulas is satisfiable, if one of the constituting disjuncts is
satisfiable, we get:

▶ Corollary 4. The quantifier free, function-algebraic theory of real functions is decidable.

MFCS 2023
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The proof of Theorem 1 also shows how to compute satisfying assignments: After checking
the satisfiability of τ(ϕ) using the congruence closure algorithm and the Nelson-Oppen
combination procedure, construct the variable assignment α defined in the proof.

Note that the concluding building block of the proof of Theorem 1 is Lemma 3. Any
analogous lemma that ensures stronger properties of the constructed functions results in
a corresponding strengthening of Theorem 1. For example, we could also be interested in
constructing functions that generalize the constraints given by the input formula as much as
possible, maximizing certain regularity properties [14].

5 Scalar Quantification

We will now allow arbitrary quantification on scalar variables. We will still require formulas
to be function-algebraic and do not allow quantification on function variables. An example is

∀t ∈ [0, 10] ∃t′ ∈ [0, 10] . app(X, t, 2t)2 + 1 ≥ app(∂2X, t′, t′),

where X ∈ F2 and the interval bounds on variables represent the obvious abbreviations.
Many problems resulting from the synthesis of correctness certificates for continuous systems
(e.g., Lyapunov function [22], barrier certificates [30] and their generalizations [29, 20]),
belong to this class.

In Subsection 5.1, we will introduce a method for checking satisfiability under the
condition that the functional variables are instantiated to fixed, user-provided polynomials.
In Subsection 5.2, we will introduce a robustness property of formulas that will allow us to
characterize solvability of formulas. In Subsection 5.3, we will introduce a systematic method
for applying the satisfiability check from Subsection 5.1 and ensuring that it will succeed
for all formulas satisfying the robustness property. In Subsection 5.4, we will discuss the
relevance of the method for practical computation.

5.1 Check Satisfiability Under Polynomial Instantations
The method for checking satisfiability of a formula that we introduce in this sub-section
depends on an instantation of its functional variables to polynomials with rational coefficients.
This will allow us to rewrite the formula into a formula in the language of the theory of
real-closed fields which is decidable. In this sub-section, we still assume these polynomials to
be given (e.g., chosen by the user), and drop this assumption later.

▶ Definition 5. We call a function π that assigns to every function variable of sort Fn

a polynomial with rational coefficients in the variables t1, . . . , tn a polynomial assignment.
Moreover, we call a pair consisting of a formula and a polynomial assignment an instantiated
formula.

The intuition is that the polynomial assignment π in an instantiated formula (ϕ, π)
instantiates each function variable in ϕ to the respective polynomial assigned by π. Let us
define the following rules on instantiated formulas (ϕ, π):

varsep: Rename multiple occurrences of the same function variable in ϕ by fresh function
variables, and extend π to the new variables in such a way that it assigns the same
polynomial to each new variable as to its original one.
∂-elim: Replace a sub-term of ϕ of the form ∂iX, where X is a function variable,
by X and π by π′ that is identical to π except that it assigns the result of symbolic
differentiation of the polynomial π(X) in its i-th argument to the function variable X.
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Table 1 Polynomial Instantiation.

rule formula polynomial assignment
∀p∀q . app(X, q) + p2app(∂1X, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, Y 7→ t}

varsep ∀p∀q . app(X, q) + p2app(∂1X ′, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, X ′ 7→ t2 + 1, Y 7→ t}
∂-elim ∀p∀q . app(X, q) + p2app(X ′, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, X ′ 7→ 2t, Y 7→ t}
app-elim ∀p∀q . q2 + 1 + 2p2rq ≥ 0 {X 7→ t2 + 1, X ′ 7→ 2t, Y 7→ t}

app-elim: Replace a sub-term of ϕ of the form app(X, t̂1, . . . , t̂n), where X is a function
variable, and the terms t̂1, . . . , t̂n do not contain any app-operator, by the result of
evaluating the polynomial π(X) using the values t̂1, . . . , t̂n for the respective variables
t1, . . . , tn.

Now apply first the rule varsep, and then iterate applying the elimination rules until
they cannot be applied any more. This process must terminate since every application of
an elimination rule decreases the total number of ∂- and app-operators by one. Moreover,
the result must be unique since the only possible alternative choices of the rules relate to
independent sub-formulas. So denote by Ππ(ϕ) the formula ϕ′ where (ϕ′, π′) is the final
result of the described rule-application process.

Table 1 shows the results of the individual steps of the process of forming Ππ(ϕ) for an
example of an instantiated formula with X, Y ∈ F1, p, q, r ∈ R, where the result Ππ(ϕ) can
be seen at the bottom of the column “formula”.

Polynomial evaluation completely eliminates any function variables or operators:

▶ Lemma 6. For every instantiated formula (ϕ, π), Ππ(ϕ) does not contain any function
variable, and hence it also does not contain any app- or diff-operator.

Proof. Function variables can only occur as arguments to diff and app operators. In such a
situation, the rules ∂-elim and app-elim are applicable, and hence, such a formula cannot be
the result of Ππ(ϕ). ◀

Therefore, if ϕ is function-algebraic, Ππ(ϕ) is a formula in the language of real-closed
fields, which is decidable [38]. Moreover, instantiated formulas can be used for proving
satisfiability:

▶ Theorem 7. For every instantiated formula (ϕ, π), Ππ(ϕ) is satisfiable iff π |= ∃Rϕ, where
∃R denotes the existential closure of the formula wrt. the scalar variables.

Proof. For an instantiated formula (ϕ, π), let ρ(ϕ, π) be the formula

∃R ϕ ∧
∧

X∈VF

∀t1, . . . , tn . app(X, t1, . . . , tn) = π(X).

Observe that π |= ∃Rϕ iff ρ(ϕ, π) is satisfiable. Moreover, every element of the sequence
ρ(ϕ1, π1), . . . , ρ(ϕn, πn) with (ϕ1, π1) = (ϕ, π), ϕn = Ππ(ϕ), and each (ϕi, πi), i ∈ {2, . . . , n}
being the result of the application of a rewrite rule to (ϕi−1, πi−1), is equi-satisfiable. Finally
ρ(ϕn, πn) and ϕn = Ππ(ϕ) are equi-satisfiable since Ππ(ϕ) does not contain any function
variable. ◀

So we have reduced the satisfiability checking problem to the problem of finding a
polynomial assignment π for which Ππ(ϕ) is satisfiable. However, for some satisfiable
formulas, the search for such a polynomial assignment is bound to fail. This can be easily
seen on the simple initial value problem
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app(X, 0) = 1 ∧ ∀t . t ≥ 0 ⇒ app(Ẋ, t) = app(X, t)

that is satisfiable, but not by any polynomial assignment (the only solution of the given
initial value problem is the exponential function).

5.2 Robust Satisfiability
Even though differential equations such as ẋ = x (in our notation: ∀t . app(Ẋ, t) = app(X, t))
are ubiquitous in mathematics, they are highly idealized objects: In practice, no real physical
system will satisfy such an equation precisely, and concrete differential equations can only be
used in applications after introducing many simplifying assumptions that are part of the daily
bread of practical engineering. However, this also makes it necessary for engineers to assess the
consequences of such simplifications. Despite the existence of powerful deductive verification
techniques [29, 15], in practice, differential equations are still solved by algorithms [19]
that produce approximation errors both due to discretization and due to floating point
computation. The reliability of the whole process depends essentially on the fact that the
error made by the solver does not dominate the error made by simplifying assumptions.
This is a major complication, that could be avoided if solvers could conservatively bound
the produced errors. For the concrete example ẋ = x, it would be very useful, if a solver
could – instead of solving the differential equation approximately – guarantee the solution
of x − ϵ ≤ ẋ ≤ x + ϵ within a compact set, for a small constant ϵ > 0. In this section, we
will formally characterize such situations and show that in such cases, a formally correct
satisfiability check is not only possible, but that we can even guarantee its success.

For being able to measure the distance between variable assignments, we will adjoin
metrics to the set of variable assignments ℵ, making the pair (ℵ, d) a metric space. These
metrics will be parametric in a family of compact sets Kn ⊆ Rn, n ∈ N which we will call
domain of interest. We will denote this dependence on the domain of interest by an index,
writing dK for the metric associated to domain of interest K. We will call such a metric on
ℵ a variable assignment metric.

▶ Definition 8. A formula ϕ is semantically robustly satisfiable wrt. a variable assignment
metric d iff there is a variable assignment α ∈ ℵ and an ε > 0 (that we call the robustness
margin) such that for every α′ with dK(α, α′) < ε, α′ |= ϕ.

Note that unlike similar definitions [17, 33], this definition only depends on the semantics of
a given formula, but not on its syntax, and hence is invariant wrt. equivalence transformations.
We will later see that this is made possible by the fact that we restrict ourselves to operations
on real numbers allowed by the decidable theory of real closed fields.

We will usually use metrics induced by some norm, and so we will call a formula robustly
satisfiable wrt. a norm ||·||K iff it is robustly satisfiable wrt. the metric dK(x, x′) = ||x−x′||K .
Given metrics dT on T , where T ∈ {R, F1, . . . }, we define their extension to variable
assignments element-wise. So, for α, α′ ∈ ℵ,

dK(α, α′) := max
T ∈{R,F1,... }

max
v∈VT

dT
K(α(v), α′(v)).

Here, we will usually use a family of metrics on function variables of all dimensions. If dR is
a metric on R and dF such a family of metrics on smooth functions Ri → R, i ∈ N, then we
will denote this extension to variable assignments by dR × dF .

On real-numbers we will use the discrete metric d=(x, y) :=
{

1, if x ̸= y,

0, if x = y.



S. Ratschan 76:11

The metric on functions will be based on a norm measuring the size of a given function
and of its derivatives. For a function F : Rn → R, at least k-times differentiable, let

||F ||kK := max
|β|≤k

inf
x∈Kn

|(DβF )(x)|.

We denote the metric induced by this norm || · ||kK by dk
K . Here are some examples:

∀t ∈ [0, 1] . app(X, t) − 0.1 ≤ app(Ẋ, t) ∧ app(Ẋ, t) ≤ app(X, t) + 0.1, with x ∈ F1 is
not robustly satisfiable wrt. the norm || · ||0[0,1], since that norm does not constrain any
derivative of x. However, it is robustly satisfiable wrt. || · ||1[0,1] since, for example, every
function with maximal distance 0.01 from the exponential function wrt. || · ||1[0,1] satisfies
the formula.
∀t ∈ [0, 1] . app(Ẋ, t) = app(X, 0) is not robustly satisfiable wrt. || · ||0[0,1], since for every
function satisfying the formula adding the term ϵt to the function results in a function
not satisfying it.
The formula ∀t . app(X, t) ≥ 0, while satisfiable, is not robustly satisfiable wrt. the norm
|| · ||0[0,1], since this norm only restricts the value of functions in the domain of interest [0, 1].
Due to this, for every variable assignment α satisfying the formula, there is an α′ with
d(α, α′) = 0 that does not satisfy the formula: Simply choose an α′ that is identical to
α on [0, 1] but reaches a negative value outside of this interval. In contrast to that, the
formula ∀t ∈ [0, 1] . app(X, t) ≥ 0, is robustly satisfiable which explains the importance
of bounds on quantified variables for ensuring robustness.

5.3 Robust Completeness
We will now introduce a systematic method that checks satisfiability using the test from
Subsection 5.1 and that will succeed for all formulas satisfying the robustness property from
Subsection 5.2. We will use the fact that one can approximate smooth functions on compact
domains arbitrarily closely by polynomials. For this, recall that a subset X ′ of a metric space
(X, d) is dense in (X, d) iff for every x ∈ X and ε > 0 there is an x′ ∈ X ′ with d(x, x′) < ε.

▶ Lemma 9. Let ϕ be a formula, d a variable assignment metric and ℵ′ ⊆ ℵ s.t. ℵ′ is dense
in (ℵ, d). Then every formula that is semantically robustly satisfiable wrt. the metric d has a
satisfying assignment from ℵ′.

Proof. Assume that ϕ is semantically robustly satisfiable wrt. d. Then there is a variable
assignment α ∈ ℵ and an ε > 0 such that for every α′ with d(α, α′) < ε, α′ |= ϕ. Since ℵ′

is dense in (ℵ, d), there is an α′ ∈ ℵ′ with d(α, α′) < ε. Hence α′ is within the robustness
margin of α, and hence α′ |= ϕ. ◀

Now we observe:

▶ Lemma 10. For every k ∈ N0, compact K ⊆ Rn, the set of n-dimension polynomial
functions with rational coefficients is dense in the set of n-dimensional polynomial functions
with real coefficients wrt. the metric dk

K .

Proof. Let P be a polynomial function with real coefficients and ε > 0. We will prove
that there is a polynomial P ′ with rational coefficients such that dk

K(P, P ′) < ε, that is
max|β|≤k infx∈K |(DβP )(x) − (DβP ′)(x)| < ε. During this, we will separate any given
polynomial P into its vectors of coefficients CP and monomials MP . Hence P = CT

P MP .
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Let m = max|β|≤k infx∈K ||MDβP (x)|| with || · || denoting the Euclidean metric. The
value m is finite since K is compact. Let P ′ be a polynomial with rational coefficients s.t.
MP (x) = MP ′(x) and s.t. max|β|≤k ||CDβP − CDβP ′ || < ε

m . Now, due to Cauchy-Schwarz,

max
|β|≤k

inf
x∈K

|(DβP )(x) − (DβP ′)(x)| = max
|β|≤k

inf
x∈K

|(CDβP − CDβP ′)T MDβP (x)| ≤

max
|β|≤k

inf
x∈K

||CDβP − CDβP ′ || ||MDβP (x)|| <
ε

m
m = ε ◀

Moreover, the classical Stone-Weierstrass theorem generalizes to dk
K , that is, the polyno-

mials with real coefficients P (R) are dense in the set of Ck-real functions on any compact
set K wrt. dk

K [40, 26]. This allows us to conclude:

▶ Lemma 11. For every k ∈ N0 and compact K ⊆ Rn, the set of n-dimensional polynomial
functions with rational coefficients is dense in the metric space (ℵ, dk

K).

Putting everything together, we get :

▶ Theorem 12. For every k ∈ N0 and and family of compact sets Kn ⊆ Rn, n ∈ N, there
is an algorithm for checking satisfiability of function-algebraic formulas that terminates for
every input formula that is semantically robustly satisfiable wrt. the metric d= × dk

K .

Proof. Assume a semantically robustly satisfiable function-algebraic formula ϕ. Since by
Lemma 11, the set of variable assignments assigning real values to scalar variables and
polynomials with rational coefficients to function variables is dense in the metric space
(ℵ, d= × dk

K), by Lemma 9, there is an assignment α ∈ ℵ that assigns polynomials with
rational coefficients to function variables and that satisfies ϕ. The restriction of α to a
polynomial assignment απ satisfies ∃Rϕ.

Due to Theorem 7 we can algorithmically check whether for a given polynomial assign-
ment π, π |= ∃Rϕ. Moreover, the set of polynomial assignments is recursively enumerable
. Hence, an algorithm that enumerates its elements, checking for each element π whether
Ππ(ϕ) is satisfiable in the theory of real closed fields, will eventually find απ, and hence
terminate proving that ϕ is satisfiable. ◀

Note however, that we do not know how to check a given formula for robustness. Hence,
for a given formula we do not know a-priori whether the enumeration algorithm from the
proof of Theorem 12 will terminate. We just know that it will terminate under the assumption
that the formula is robust.

5.4 Practical Computation – Templates
Of course, the algorithm from the proof of Theorem 12 is hopelessly inefficient in practice.
Still, our approach may provide useful practical insight. In practice, problems of the kind
studied here are solved in many, often distant areas [36, 31, 34, 35]. A common approach is
to restrict the set of potential solutions to a fixed class of functions given by a parameterized
expression (sometimes also called a template), and then searching for values for the parameters
such that the result of instantiating the parameters by those values represents a solution to
the problem.

There are two main classes of templates that are often used here. The first class are
templates given by complex expressions, often called neural networks. The second class
are polynomials whose coefficients are parameters which allows many methods to exploit
the fact that polynomials are linear in their coefficients. If the given template polynomial
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does not represent a solution, one can increase the degree of the polynomial. The resulting
loop amounts to an enumeration of all polynomials with real coefficients. Our approach (1)
formally justifies such algorithms showing that such a loop must terminate for all robust
inputs, and (2) generalizes such algorithms to all formulas belonging to the language used in
this paper.

6 Conclusion

We have developed a framework for decision procedures for a predicate logical theory
formalizing a notion that is central to mathematics, computer science, and many other
scientific fields – real-valued functions. Our long-term vision is to replace the need for
research on application-specific automated reasoning techniques for smooth real-valued
functions by a common framework that results in tools that can be used out-of-the-box in
a similar way as decision procedure for common first-order theories in the frame of SMT
solvers [3].

References
1 Charu C Aggarwal. Neural networks and deep learning. Springer, 10:978–3, 2018.
2 Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid systems. In

Proc. LICS’01, pages 269–278, 2001.
3 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking. Springer International Publishing, 2018.

4 Olivier Bournez and Manuel L. Campagnolo. A survey on continuous time computations. In
S.Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms,
pages 383–423. Springer New York, 2008.

5 Olivier Bournez and Amaury Pouly. Handbook of Computability and Complexity in Analysis,
chapter A Survey on Analog Models of Computation, pages 173–226. Springer, 2018.

6 Aaron Bradley and Zohar Manna. The Calculus of Computation. Springer, 2007.
7 Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and Roberto Sebastiani.

Incremental linearization for satisfiability and verification modulo nonlinear arithmetic and
transcendental functions. ACM Transactions on Computational Logic (TOCL), 19(3):1–52,
2018.

8 Pieter Collins and Daniel Silva Graça. Effective computability of solutions of differential
inclusions the ten thousand monkeys approach. J. Univers. Comput. Sci., 15(6):1162–1185,
2009.

9 Pieter Collins, Milad Niqui, and Nathalie Revol. A validated real function calculus. Mathematics
in Computer Science, 5(4):437–467, 2011.

10 Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Verification of hybrid
systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
editors, Handbook of Model Checking. Springer International Publishing, 2018.

11 T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun guide. Pafnuty Publications, Oxford,
2014.

12 Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo ODE: A direct SAT
approach to hybrid systems. In Automated Technology for Verification and Analysis, volume
5311 of LNCS, 2008.

13 Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design – A Practical Guide.
Academic Press, 1988.

14 Charles Fefferman and Arie Israel. Fitting Smooth Functions to Data. AMS, 2020.

MFCS 2023



76:14 Deciding Predicate Logical Theories of Real-Valued Functions

15 Simon Foster, Jonathan Julián Huerta y Munive, Mario Gleirscher, and Georg Struth. Hybrid
systems verification with Isabelle/HOL: Simpler syntax, better models, faster proofs. In
International Symposium on Formal Methods, pages 367–386. Springer, 2021.

16 Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of states.
In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic (CSL’99), number
1683 in LNCS. Springer, 1999.

17 Sicun Gao, Jeremy Avigad, and Edmund Clarke. δ-decidability over the reals. In LICS, pages
305–314. IEEE, 2012.

18 Sicun Gao, Soonho Kong, and Edmund M Clarke. Satisfiability modulo ODEs. In 2013 Formal
Methods in Computer-Aided Design, pages 105–112. IEEE, 2013.

19 Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. Solving Ordinary Differential
Equations I. Springer-Verlag, 1987.

20 Hyejin Han, Mohamed Maghenem, and Ricardo G. Sanfelice. Certifying the LTL formula p
until q in hybrid systems. IEEE Transactions on Automatic Control, 68(7), 2023.

21 Timothy J. Hickey. Analytic constraint solving and interval arithmetic. In Proc. of the 27th
ACM SIGACT-SIGPLAN Symp. on Principles of Progr. Lang., pages 338–351. ACM Press,
2000.

22 Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.
23 Ker-I Ko. Computational complexity of real functions. In Complexity Theory of Real Functions,

Progress in Theoretical Computer Science, pages 40–70. Birkhäuser Boston, 1991.
24 Peter D. Lax. Functional Analysis. Wiley-Interscience, 2002.
25 Angus Macintyre and A.J. Wilkie. On the decidability of the real exponential field. In

Piergiorgie Odifreddi, editor, Kreiseliana – About and Around Georg Kreisel, pages 441–467.
A K Peters, 1996.

26 Raghavan Narasimhan. Analysis on Real and Complex Manifolds. Elsevier, 2nd edition edition,
1973.

27 Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst., 1(2):245–257, 1979.

28 Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
ACM, 27(2):356–364, April 1980.

29 André Platzer. Logical Foundations of Cyber-Physical Systems, volume 662. Springer, 2018.
30 Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier cer-

tificates. In Rajeev Alur and George J. Pappas, editors, HSCC’04, number 2993 in LNCS.
Springer, 2004.

31 Stephen Prajna and Anders Rantzer. Convex programs for temporal verification of nonlinear
dynamical systems. SIAM Journal on Control and Optimization, 46(3):999–1021, 2007.

32 Stefan Ratschan. Continuous first-order constraint satisfaction. In J. Calmet, B. Benhamou,
O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence, Automated Reasoning,
and Symbolic Computation, number 2385 in LNCS, pages 181–195. Springer, 2002.

33 Stefan Ratschan. Quantified constraints under perturbations. Journal of Symbolic Computation,
33(4):493–505, 2002.

34 Stefan Ratschan. Simulation based computation of certificates for safety of dynamical systems.
In Alessandro Abate and Gilles Geeraerts, editors, Formal Modeling and Analysis of Timed
Systems: 15th International Conference, FORMATS 2017, volume 10419, pages 303–317.
Springer International Publishing, 2017.

35 Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control Lyapunov functions from
counterexamples and demonstrations. Autonomous Robots, pages 1–33, 2018.

36 Junuthula Narasimha Reddy. Introduction to the Finite Element Method. McGraw-Hill
Education, 2019.

37 Robert M Solovay, RD Arthan, and John Harrison. Some new results on decidability for
elementary algebra and geometry. Annals of Pure and Applied Logic, 163(12):1765–1802, 2012.



S. Ratschan 76:15

38 A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California
Press, Berkeley, 1951.

39 Cesare Tinelli and Mehdi Harandi. A new correctness proof of the Nelson-Oppen combination
procedure. In Frontiers of Combining Systems, pages 103–119. Springer, 1996.

40 A. Yu. Veretennikov and E. V. Veretennikova. On partial derivatives of multivariate Bernstein
polynomials. Siberian Advances in Mathematics, 26(4):294–305, 2016.

41 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 2003.

MFCS 2023


	1 Introduction
	2 Related Work
	3 Formal Syntax and Semantics
	4 Quantifier-Free Case
	5 Scalar Quantification
	5.1 Check Satisfiability Under Polynomial Instantations
	5.2 Robust Satisfiability
	5.3 Robust Completeness
	5.4 Practical Computation – Templates

	6 Conclusion

