
Counting Homomorphisms from Hypergraphs of
Bounded Generalised Hypertree Width:
A Logical Characterisation
Benjamin Scheidt #

Humboldt-Universität zu Berlin, Germany

Nicole Schweikardt #

Humboldt-Universität zu Berlin, Germany

Abstract
We introduce the 2-sorted counting logic GCk and its restriction RGCk that express properties of
hypergraphs. These logics have available k variables to address hyperedges, an unbounded number
of variables to address vertices of a hypergraph, and atomic formulas E(e, v) to express that a
vertex v is contained in a hyperedge e. We show that two hypergraphs H, H ′ satisfy the same
sentences of the logic RGCk if, and only if, they are homomorphism indistinguishable over the class
of hypergraphs of generalised hypertree width at most k. Here, H, H ′ are called homomorphism
indistinguishable over a class C if for every hypergraph G ∈ C the number of homomorphisms from
G to H equals the number of homomorphisms from G to H ′. This result can be viewed as a lifting
(from graphs to hypergraphs) of a result by Dvořák (2010) stating that any two (undirected, simple,
finite) graphs H, H ′ are indistinguishable by the k+1-variable counting logic Ck+1 if, and only if,
they are homomorphism indistinguishable over the class of graphs of tree-width at most k.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Hypergraphs

Keywords and phrases counting logics, guarded logics, homomorphism counting, hypertree decom-
positions, hypergraphs, incidence graphs, quantum graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.79

Related Version Extended Version: https://arxiv.org/abs/2303.10980 [22]

Funding Nicole Schweikardt: Partially supported by the ANR project EQUUS ANR-19-CE48- 0019;
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 431183758 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer
431183758).

Acknowledgements We thank Isolde Adler for pointing us to the results in [2, 1, 3], which led to
Theorem 2.3.

1 Introduction

Counting homomorphisms from a given class C of graphs induces a similarity measure between
graphs: Consider an arbitrary graph H. The results of the homomorphism counts for all
G ∈ C in H can be represented by a mapping (or, “vector”) HOMC(H) that associates with
every G ∈ C the number hom(G,H) of homomorphisms from G to H. A similarity measure
for the mappings HOMC(H) and HOMC(H ′) can then be viewed as a similarity measure of
two given graphs H,H ′. An overview of this approach, its relations to graph neural networks,
and its usability as a similarity measure of graphs can be found in Grohe’s survey [17].

Two graphs H,H ′ are viewed as “equivalent” (or, indistinguishable) over C if HOMC(H) =
HOMC(H ′), i.e., for every graph G in C the number of homomorphisms from G to H equals
the number of homomorphisms from G to H ′. A classical result by Lovász [19] shows that

© Benjamin Scheidt and Nicole Schweikardt;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 79; pp. 79:1–79:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.scheidt@hu-berlin.de
https://orcid.org/0000-0003-2379-3675
mailto:schweikn@hu-berlin.de
https://orcid.org/0000-0001-5705-1675
https://doi.org/10.4230/LIPIcs.MFCS.2023.79
https://arxiv.org/abs/2303.10980
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

two graphs H,H ′ are indistinguishable over the class of all graphs if, and only if, they
are isomorphic. This inspired a lot of research in recent years, examining the notion of
homomorphism indistinguishability over a class C for various classes C [11, 10, 6, 5, 7, 16, 21].
In particular, Grohe [16] proved that two graphs are homomorphism indistinguishable over
the class of graphs of tree-depth ⩽ k if, and only if, they are indistinguishable by sentences
of first-order counting logic C of quantifier-rank ⩽ k (C is the extension of first-order logic
with counting quantifiers of the form ∃⩾nx meaning “there exist at least n elements x”). A
decade earlier, Dvořák [11] proved that two graphs are homomorphism indistinguishable over
the class of graphs of tree-width ⩽ k if, and only if, they are indistinguishable by sentences
of the k+1-variable fragment Ck+1 of C. From Cai, Fürer, Immerman [8] we know that this
precisely coincides with indistinguishability by the k-dimensional Weisfeiler-Leman algorithm.

An obvious question is if and how these results can be lifted from graphs to hypergraphs.
A first answer was given by Böker in [7]: He introduces a new version of a color refinement
algorithm on hypergraphs and proves that two hypergraphs H,H ′ cannot be distinguished
by this algorithm if, and only if, they are homomorphism indistinguishable over the class
of Berge-acyclic hypergraphs. This is a lifting – from graphs to hypergraphs – of the result
of [11, 8] for the case k = 1 (i.e., trees) to “tree-like” hypergraphs. Note that there are
different concepts of “tree-likeness” for hypergraphs. Berge-acyclicity is a rather restricted
one; it is subsumed by the more general concept of α-acyclic hypergraphs, which coincides
with the hypergraphs of generalised hypertree width 1 (cf., [13, 14, 12]).

This paper gives a further answer to the above question: For arbitrary k ⩾ 1 let GHWk be
the class of hypergraphs of generalised hypertree width ⩽ k. Our main result provides a logical
characterisation of homomorphism indistinguishability over the class GHWk. We introduce
a new logic called GCk and a restriction RGCk of GCk and show that two hypergraphs are
homomorphism indistinguishable over GHWk if, and only if, they are indistinguishable by
sentences of the logic RGCk.

GCk is a 2-sorted counting logic for expressing properties of hypergraphs. It has available
k “blue” variables to address edges, and an unbounded number of “red” variables to address
vertices of a hypergraph, and atomic formulas E(e, v) to express that vertex v is contained in
edge e, as well as atomic formulas e = e′ and v = v′ for expressing equality of edge or vertex
variables. Counting quantifiers are of the form ∃⩾nz where z = (z1, . . . , zℓ) is either a tuple
of edge variables or a tuple of vertex variables; and their meaning is “there exist at least n
tuples z”. In the logic GCk, each vertex variable v has to be guarded by an edge variable e
and an atomic statement E(e, v) (meaning that vertex v is included in edge e); the use of
quantifiers is restricted in a way to ensure that guards are always present. Our design of the
logic GCk is somewhat inspired by the guarded fragment of first-order logic (cf., [4, 15, 14]).
RGCk imposes certain restrictions on the way guards of red variables can change between
quantifications in a formula.

Our main result can be viewed as a lifting – from graphs to hypergraphs – of Dvořák’s [11]
result: Dvořák proves that two graphs are homomorphism indistinguishable over the class
TWk of graphs of tree-width ⩽ k iff they are indistinguishable by the logic Ck+1. We
prove that two hypergraphs are homomorphism indistinguishable over the class GHWk of
hypergraphs of generalised hypertree width ⩽ k iff they are indistinguishable by the logic
RGCk. This is analogous (although not tightly related) to the following classical results:
Kolaitis and Vardi [18] proved that the conjunctive queries of tree-width ⩽ k are precisely
the queries expressible in the k+1-variable fragment of a certain subclass L of first-order
logic. Gottlob et al. [14] proved that the conjunctive queries of hypertree width ⩽ k are
precisely the ones expressible in the k-guarded fragment of L. This is somehow parallel to
our result lifting Dvořák’s characterisation; it is what initially gave us the confidence to work
on our hypothesis.

B. Scheidt and N. Schweikardt 79:3

The proof of our theorem is at its core very similar to Dvořák’s proof – but it is far from
straightforward. Before being able to follow along the lines of Dvořák’s proof, we first have
to perform a number of reduction steps and build the necessary machinery. The first step is
to move over from homomorphisms on hypergraphs to homomorphisms on incidence graphs.
Fortunately, Böker [7] already implicitly achieved what is needed in our setting. The result
is: Two hypergraphs H,H ′ are homomorphism indistinguishable over the class GHWk iff
their incidence graphs I, I ′ are homomorphism indistinguishable over the class IGHWk of
incidence graphs of generalised hypertree width ⩽ k; see Section 3.

Next, for an inductive proof in the spirit of Dvořák, we would need an inductive char-
acterisation of the class IGHWk in the spirit of [9]. Unfortunately, generalised hypertree
decompositions seem to be unsuitable for such a characterisation. That is why we work
with severely restricted decompositions that we call entangled hypertree decompositions
(ehds). In Section 4 we prove that homomorphism indistinguishability over the class IGHWk

coincides with homomorphism indistinguishability over the class IEHWk of incidence graphs
of entangled hypertree width ⩽ k. In our opinion this is interesting on its own, since the
requirements of ehds are quite harsh and IEHWk ⊊ IGHWk for arbitrarily large k.

In Section 6 we introduce the logic GCk and its restriction RGCk. The inductive charac-
terisation of IEHWk follows in Section 7, where we also provide the machinery of quantum
incidence graphs as an analogue of the quantum graphs used in Dvořák’s proof, tailored to-
wards our setting. In Section 8 we prove that two incidence graphs I, I ′ are indistinguishable
by the logic RGCk if, and only if, they are homomorphism indistinguishable over the class
IEHWk. This is achieved by two inductive proofs: We use the inductive characterisation
of IEHWk to show that for every incidence graph J in IEHWk and every m ∈ N there
exists an RGCk-sentence that is satisfied by an incidence graph I iff there are precisely m
homomorphisms from J to I. For the opposite direction, we proceed by induction on the
definition of RGCk and construct for every sentence χ in RGCk and certain size parameters
m, d ∈ N a quantum incidence graph Q in IEHWk satisfying the following: for all incidence
graphs I that match the size parameters m, d, the number hom(Q, I) of homomorphisms
from Q to I is either 0 or 1, and it is 1 if and only if I satisfies the sentence χ. Both proofs
are quite intricate, and the details of the syntax definition of RGCk had to be tweaked right
in order to enable proving both directions.

Plugging together the results achieved in the previous sections yields our main theorem,
provided in Section 9: Two hypergraphs are homomorphism indistinguishable over the class
GHWk of hypergraphs of generalised hypertree width ⩽ k iff they are indistinguishable by
the logic RGCk.

Due to space limitations, many proof details had to be deferred to the paper’s extended
version [22].

2 Preliminaries

This section provides basic notions concerning hypergraphs, incidence graphs, hypertree
decompositions, and homomorphisms. We write R for the set of reals, N for the set of
non-negative integers, and we let N⩾1 := N \ {0} and [n] := {1, . . . , n} for all n ∈ N⩾1.

Hypergraphs. The hypergraphs considered in this paper are generalisations of ordinary
undirected graphs, where each edge can consist of an arbitrary number of vertices. For our
proofs it will be necessary to deal with hypergraphs in which the same edge can have multiple
occurrences. Furthermore, it will be convenient to assume that every vertex belongs to at
least one edge. This is provided by the following definition that is basically taken from [7].

MFCS 2023

79:4 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

A hypergraph H := (V (H), E(H), fH) consists of disjoint finite sets V (H) of vertices
and E(H) of edges, and an incidence function fH associating with every e ∈ E(H) the set
fH(e) ⊆ V (H) of vertices incident with edge e, such that V (H) =

⋃
e∈E(H) fH(e). A simple

hypergraph is a hypergraph H where the function fH is injective. We can identify the edges
of a hypergraph H with the multiset MH := {{fH(e) : e ∈ E(H)}}; the number of occurrences
of a set s ⊆ V (H) in this multiset then is the number of occurrences of “edge s” in H. The
simple hypergraphs are the hypergraphs in which every “edge s” has only one occurrence.

Every hypergraph H = (V (H), E(H), fH) can be represented by an ordinary, bipartite
graph IH in the following way: The vertices v ∈ V (H) occur as red nodes of IH , i.e.,
R(IH) := V (H). The edges e ∈ E(H) occur as blue nodes of IH , i.e., B(IH) := E(H).
And there is an edge from each blue node e to all red nodes v ∈ fH(e). I.e., E(IH) :=
{(e, v) ∈ B(IH) × R(IH) : v ∈ fH(e)}. The condition V (H) =

⋃
e∈E(H) fH(e) implies that

every red node is adjacent to at least one blue node. It is straighforward to see that the
mapping H 7→ IH provides a bijection between the class of all hypergraphs and the class of
all incidence graphs, where the notion of incidence graphs is as follows.

An incidence graph I = (R(I), B(I), E(I)) consists of disjoint finite sets R(I) and B(I)
of red nodes and blue nodes, resp., and a set of edges E(I) ⊆ B(I) ×R(I), such that each
red node is adjacent to at least one blue node. As usual for graphs, the neighbourhood of a
node v is the set NI(v) of all nodes adjacent to v. Thus, if I is the incidence graph IH of
a hypergraph H, the neighbourhood of every blue node e is NI(e) = fH(e), i.e., the set of
all vertices of H that are incident with edge e. The neighbourhood of every red node v is
NI(v) = {e ∈ E(H) : v ∈ fH(e)}, i.e., the set of all edges of H that are incident with vertex v.
Two incidence graphs I, I ′ are isomorphic (I ∼= I ′, for short) if there exists an isomorphism
π = (πR, πB) from I to I ′, i.e, bijections πR : R(I) → R(I ′) and πB : B(I) → B(I ′) such
that for all (e, v) ∈ B(I) × R(I) we have: (e, v) ∈ E(I) ⇐⇒ (πB(e), πR(v)) ∈ E(I ′). We
sometimes drop the subscript and write π(e) and π(v) instead of πB(e) and πR(v).

Generalised Hypertree Decompositions. We use the same notation as [12] for decomposi-
tions of hypergraphs, but we write bag(t) and cover(t) instead of χ(t) and λ(t), respectively,
and we formalise them with respect to incidence graphs rather than hypergraphs.

▶ Definition 2.1. A complete generalised hypertree decomposition (ghd, for short) of an
incidence graph I is a tuple D := (T, bag, cover), where T := (V (T), E(T)) is a finite
undirected tree, and bag and cover are mappings that associate with every tree-node t ∈ V (T)
a set bag(t) ⊆ R(I) of red nodes of I and a set cover(t) ⊆ B(I) of blue nodes of I, having
the following properties:
1. Completeness: For each e ∈ B(I) there is a t ∈ V (T) with NI(e) ⊆ bag(t) and e ∈ cover(t).
2. Connectedness for red nodes: For every v ∈ R(I) the subgraph Tv of T induced on

Vv := {t ∈ V (T) : v ∈ bag(t)} is a tree.
3. Covering of Bags: For every t ∈ V (T) we have bag(t) ⊆

⋃
e∈cover(t) NI(e).

It is straightforward to see that this notion of a ghd of an incidence graph I coincides
with the classical notion (cf., [13, 12]) of a complete generalised hypertree decomposition of a
hypergraph H where IH = I. The width w(D) of a ghd D is defined as the maximum number
of blue nodes in the cover of a tree-node, i.e., w(D) := max{|cover(t)| : t ∈ V (T)}. We write
ghds(I) to denote the class of all ghds of an incidence graph I. The generalised hypertree
width of an incidence graph I is ghw(I) := min{w(D) : D ∈ ghds(I)}. By IGHWk we denote
the class of all incidence graphs of generalised hypertree width ⩽ k. It is straightforward to
see that ghw(IH) coincides with the classical notion (cf., [12]) of generalised hypertree width
of a hypergraph H, and IGHWk is the class of incidence graphs IH of all hypergraphs H of
generalised hypertree width ⩽ k.

B. Scheidt and N. Schweikardt 79:5

For our proofs we need ghds with specific further properties, defined as follows; we are
not aware of any related work that studies this particular kind of decompositions. Hypertree
decompositions satisfying condition 4 (but not necessarily condition 5) of Definition 2.2 are
known as strong decompositions [14].

▶ Definition 2.2. An entangled hypertree decomposition (ehd, for short) of an incidence
graph I is a ghd D of I that additionally satisfies the following requirements:
4. Precise coverage of bags: For all tree-nodes t ∈ V (T) we have

⋃
e∈cover(t) NI(e) = bag(t).

5. Connectedness for blue nodes: For every e ∈ B(I) the subgraph Te of T induced on
Ve := {t ∈ V (T) : e ∈ cover(t)} is a tree.

We write ehds(I) to denote the class of all ehds of an incidence graph I.

The entangled hypertree width of an incidence graph I is ehw(I) := min{w(D) : D ∈
ehds(I)}. For a hypergraph H we let ehw(H) := ehw(IH). By IEHWk we denote the class
of all incidence graphs of entangled hypertree width ⩽ k.

Applying results from [2, 1, 3] shows that there exist arbitrarily large k such that IEHWk

is a strict subclass of IGHWk. More precisely:

▶ Theorem 2.3. IEHWk ⊆ IGHWk, for every k ∈ N⩾1. Furthermore, IEHW1 = IGHW1,
but IEHWk ⊊ IGHWk for each k ∈ {2, 3}. Moreover, for every n ∈ N there exists a k ∈ N⩾1

such that IGHWk ̸⊆ IEHWk+n (and hence, IEHWk+n ⊊ IGHWk+n).

Proof. IEHWk ⊆ IGHWk holds because every ehd also is a ghd. IEHW1 = IGHW1 holds
because ghds of width 1 are known to be equivalent to so-called join trees, and these can
easily be translated into ehds of width 1. For the remaining statements, we use elaborate
results from [2, 1, 3] that relate the hypertree width hw(H) (cf., [13, 14]) of a hypergraph to
its generalised hypertree width ghw(H):

From [2, Proposition 3.3.2] (cf. also [3, Example 3]) and [1, Claim 6.1] we obtain for each
k ∈ {2, 3} a simple hypergraph Hk such that ghw(Hk) = k and hw(Hk) = k+1. Furthermore,
[2, Fact 3.3.1] and [1, Theorem 4.1] provide for every n ∈ N⩾1 a simple hypergraph Hn such
that hw(Hn) = ghw(Hn)+n.1

It is straightforward to verify that every ehd also is a complete hypertree decomposition
in the sense of [13, 14]. Consequently, for every hypergraph H we have hw(H) ⩽ ehw(H).
Therefore, for each k ∈ {2, 3}, the incidence graph of Hk witnesses that IEHWk ⊊ IGHWk.

To address the theorem’s next statement, consider an arbitrary n ∈ N. Let H := Hn+1

and let k := ghw(H). Then, ehw(H) ⩾ hw(H) = k+n+1. Thus, the incidence graph of H
belongs to IGHWk but not to IEHWk+n. ◀

Homomorphisms. We use the classical notions for hypergraphs and incidence graphs:
A homomorphism from a hypergraph F to a hypergraph H is a pair (hV , hE) of mappings
hV : V (F) → V (H) and hE : E(F) → E(H) such that for all e ∈ E(F) we have fH(hE(e)) =
{hV (v) : v ∈ fF (e)}. We write Hom(F,H) for the set of all homomorphisms from F to H,
and hom(F,H) := | Hom(F,H)| is the number of homomorphisms from F to H.

A homomorphism from an incidence graph J to an incidence graph I is a pair h = (hR, hB)
of mappings hR : R(J) → R(I) and hB : B(J) → B(I) such that for all (e, v) ∈ E(J) we have
(hB(e), hR(v)) ∈ E(I). We sometimes drop the subscript and write h(e) and h(v) instead of
hB(e) and hR(v). By Hom(J, I) we denote the set of all homomorphisms from J to I, and
we let hom(J, I) := | Hom(J, I)| be the number of homomorphisms from J to I.

1 Note that the notions cH - hw(H) and cH - ghw(H) in [2] correspond to hw(H) and ghw(H) for all
hypergraphs H according to [2, Example 2.1.10].

MFCS 2023

79:6 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

As pointed out in [7], every homomorphism from a hypergraph F to a hypergraph
H also is a homomorphism from the incidence graph IF to the incidence graph IH ; but
there exist homomorphisms from IF to IH that do not correspond to any homomorphism
from F to H. In fact, every homomorphism (hR, hB) from IF to IH is a pair of mappings
(hV , hE) := (hR, hB) with hV : V (F) → V (H) and hE : E(F) → E(H) such that for every
e ∈ E(F) we have fH(hE(e)) ⊇ {hV (v) : v ∈ fF (e)} – i.e., the condition “=” of the definition
of hypergraph-homomorphisms is relaxed into the condition “⊇”.

3 Homomorphism Indistinguishability

Let (B,B′, C) be either two incidence graphs and a class of incidence graphs or two hyper-
graphs and a class of hypergraphs. By HOMC(B) we denote the function α : C → N that
associates with every A ∈ C the number hom(A,B) of homomorphisms from A to B. We say
that B and B′ are homomorphism indistinguishable over C if HOMC(B) = HOMC(B′). Note
that HOMC(B) ̸= HOMC(B′) means that there exists an A ∈ C that distinguishes between B
and B′ in the sense that hom(A,B) ̸= hom(A,B′).

Recall from Section 2 that IGHWk is the class of incidence graphs of generalised hypertree
width ⩽ k. We write GHWk for the class of all hypergraphs of generalised hypertree width
⩽ k (i.e., all hypergraphs H for which IH ∈ IGHWk), and sGHWk for the subclass consisting
of all simple hypergraphs (i.e., hypergraphs where each edge has multiplicity 1) in GHWk.

▶ Theorem 3.1 (implicit in [7]). Let H,H ′ be hypergraphs.
(a) If H and H ′ are simple hypergraphs, then

HOMGHWk
(H) = HOMGHWk

(H ′) ⇐⇒ HOMsGHWk
(H) = HOMsGHWk

(H ′).
(b) HOMGHWk

(H) = HOMGHWk
(H ′) ⇐⇒ HOMIGHWk

(IH) = HOMIGHWk
(IH′).

Böker [7] proved the analogous statement for BA, IBA instead of GHWk, IGHWk, where
BA is the class of all Berge-acyclic hypergraphs and IBA is the class of all incidence graphs
of hypergraphs in BA. Böker’s proof, however, works for all classes C of hypergraphs and
the associated class IC of all incidence graphs of hypergraphs in C, provided that C satisfies
some mild closure properties, which GHWk satisfies.

4 Relating IGHWk to IEHWk

Recall from Section 2 that IEHWk ⊆ IGHWk, for the class IEHWk of incidence graphs of
entangled hypertree width ⩽ k. By Theorem 2.3 there exist arbitrarily large k such that
IEHWk is a strict subclass of IGHWk. This section’s main result is that, nevertheless:

▶ Theorem 4.1. For all incidence graphs I and I ′ we have
HOMIGHWk

(I) = HOMIGHWk
(I ′) ⇐⇒ HOMIEHWk

(I) = HOMIEHWk
(I ′).

Proof sketch. The proof heavily relies on our following technical main lemma, which uses
the following notation: For an arbitrary incidence graph J , for s ⊆ R(J), and for n ∈ N we
write J + n·s to denote the incidence graph J ′ obtained from J by inserting n new blue
nodes ê1, . . . , ên and edges (êi, v) for all i ∈ [n] and all v ∈ s – i.e., NJ′(êi) = s.

▶ Lemma 4.2. Let J, I, I ′ be incidence graphs with hom(J, I) ̸= hom(J, I ′), let e ∈ B(J),
and let s ⊆ NJ (e). For every m ∈ N there exists an n ∈ N with n ⩾ m such that Jn := J+n·s
satisfies hom(Jn, I) ̸= hom(Jn, I

′).

The (combinatorially quite involved) proof of Lemma 4.2 can be found in the paper’s extended
version [22].

B. Scheidt and N. Schweikardt 79:7

The direction “=⇒” of Theorem 4.1 is trivial. For the direction “⇐=” it suffices to prove
the following: If there is a J ∈ IGHWk with hom(J, I) ̸= hom(J, I ′), then there also exists a
J ′ ∈ IEHWk with hom(J ′, I) ̸= hom(J ′, I ′). We construct such a J ′ in a 2-step process. We
start with a ghd D = (T, bag, cover) of J with w(D) ⩽ k. First, we transform D into a ghd
D1 of an incidence graph J1 such that w(D1) ⩽ w(D) and hom(J1, I) ̸= hom(J1, I ′) and D1

satisfies condition 4 of Definition 2.2 (but condition 5 might still be violated). Afterwards,
we transform D1 into a ghd D2 of an incidence graph J2 such that w(D2) = w(D1) and
hom(J2, I) ̸= hom(J2, I ′) and D2 satisfies conditions 4 and 5 of Definition 2.2 and hence is
an ehd. Letting J ′ := J2 then completes the proof.

For the construction of D1, J1 we consider all those t ∈ V (T) and e ∈ cover(t) where
NJ (e) ̸⊆ bag(t) and let s := NJ (e) ∩ bag(t). We use Lemma 4.2 to choose a suitable number
ns ⩾ 1 and replace J by J+ns·s (let us write e′

1, . . . e
′
ns

for the ns newly inserted blue nodes).
In D we replace e with e′

1 in cover(t), and we add new leaves tj for j ∈ {2, . . . , ns} adjacent
to t with cover(tj) = {e′

j} and bag(tj) = s. After having done this for all combinations of t
and e, we end up with the desired incidence graph J1 and ghd D1 = (T 1, bag1, cover1).

For the construction of D2, J2, for each e ∈ B(J1) we let me be the number of connected
components of the subgraph T 1

e , i.e., the subgraph of T 1 induced on Ve := {t ∈ V (T 1) : e ∈
cover1(t)}. Let Ve,0, . . . , Ve,me−1 be the sets of tree-nodes (i.e., nodes in V (T 1)) of these
connected components. We consider all those e ∈ B(J1) where me ⩾ 2 and let s := NJ1(e).
We use Lemma 4.2 to choose a suitable number ne ⩾ me−1 and replace J with J + ne·s
(let us write e′

1, . . . , e
′
ne

for the ne newly inserted blue nodes). In D1 we consider for every
i ∈ {1, . . . ,me−1} all t ∈ Ve,i and replace e with e′

i in cover1(t). Furthermore, we pick an
arbitrary t ∈ Ve,0, and for each i ∈ [ne] with i ⩾ me, we insert into T 1 a new leaf te,i adjacent
to t and let bag1(te,i) := s and cover1(te,i) := {e′

e,i}. After having done this for all e ∈ B(J1)
with me ⩾ 2, we end up with the desired incidence graph J2 and ehd D2. This completes
the proof sketch of Theorem 4.1. ◀

5 Notation for Partial Functions

We introduce some further notation that will be convenient for the remaining parts of the
paper. We write f : A ⇀ B to indicate that f is a partial function from A to B. By dom(f)
we denote the domain of f , i.e., the set of all a ∈ A on which f(a) is defined. By img(f) we
denote the image of f , i.e., img(f) = {f(a) : a ∈ dom(f)}. Two partial functions f : A ⇀ B

and g : A ⇀ B are called compatible if f(a) = g(a) holds for all a ∈ dom(f) ∩ dom(g).
We identify a partial function f with the set {(a, f(a)) : a ∈ dom(f)}. This allows us to

compare and combine partial functions via standard notation from set theory. E.g., f ⊆ g

indicates that dom(f) ⊆ dom(g) and f(a) = g(a) for all a ∈ dom(f). And f ∪ g denotes the
partial function h with dom(h) = dom(f) ∪ dom(g) and h(a) = f(a) for all a ∈ dom(f) and
h(a) = g(a) for all a ∈ dom(g) \ dom(f); note that f has precedence over g in case that f
and g are not compatible. For a set S we write f − S to denote the partial function g with
g ⊆ f and dom(g) = dom(f) \ S.

6 2-Sorted Counting Logic with Guards: GCk and RGCk

This section provides the syntax and semantics of our 2-sorted logics GCk and RGCk. Formulas
of these logics are evaluated on incidence graphs (cf. Section 2). We fix a k ∈ N⩾1.

To address blue nodes (i.e., edges of a hypergraph), we have available k blue variables
e1, . . . , ek. To address red nodes (i.e., vertices of a hypergraph), we have available countably
many red variables v1, v2, v3, An atomic formula E(ej , vi) states that a hypergraph’s

MFCS 2023

79:8 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

vertex vi is included in the hypergraph’s edge ej . Let VarB := {e1, . . . , ek}, VarR := {vi : i ∈
N⩾1}, and Var := VarB ∪ VarR. An interpretation I = (I, β) consists of an incidence graph
I = (R(I), B(I), E(I)) and an assignment β in I, i.e., a mapping β : Var → R(I) ∪B(I) with
β(ej) ∈ B(I) for all ej ∈ VarB and β(vi) ∈ R(I) for all vi ∈ VarR. In the formulas of our
logics, red variables vi have to be guarded by a blue variable ej in the sense that E(ej , vi) holds.
This is formalised by a guard function, i.e., a partial function g : N⩾1 ⇀ [k] with finite domain
dom(g). Every guard function g corresponds to the formula ∆g :=

∧
i∈dom(g) E(eg(i), vi) ,

and for the special case where dom(g) = ∅ we let ∆g := ⊤ where ⊤ is a special atomic
formula satisfied by every interpretation I. We let free(∆g) be the set of all (red or blue)
variables that occur in ∆g. An interpretation I = (I, β) satisfies a guard function g (in
symbols: I |= ∆g) if for all i ∈ dom(g) we have: (β(eg(i)), β(vi)) ∈ E(I). I.e., for every
i ∈ dom(g), the red variable vi is guarded by the blue variable eg(i) in the sense that it is
connected to it by an edge of the incidence graph.

For any formula χ we write ifreeB(χ) for the set of all indices j ∈ [k] such that the
blue variable ej belongs to free(χ). Accordingly, ifreeR(χ) := {i ∈ N⩾1 : vi ∈ free(χ)}. The
definition of the syntax of GCk is inductively given as follows.

Base cases: The atomic formulas in GCk are of the form ⊤, E(ej , vi), ej=ej′ , and vi=vi′

for j, j′ ∈ [k] and i, i′ ∈ N⩾1.
Inductive cases:
1. If ψ ∈ GCk, then ¬ψ ∈ GCk.
2. If ψ1, ψ2 ∈ GCk, then (ψ1 ∧ ψ2) ∈ GCk.
3. If ψ ∈ GCk and g is a guard function with dom(g) = ifreeR(ψ) and n, ℓ ∈ N⩾1 and, for

χ := (∆g ∧ ψ) and i1 < · · · < iℓ with
(a) i1, . . . , iℓ ∈ ifreeR(χ), then φ ∈ GCk for φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ ψ);
(b) i1, . . . , iℓ ∈ ifreeB(χ), then φ ∈ GCk for φ := ∃⩾n(ei1 , . . . , eiℓ

).(∆g ∧ ψ).

The semantics are defined as expected. In particular, an interpretation I = (I, β) satisfies
the formula φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ψ) iff there are at least n tuples (vi1 , . . . , viℓ
) ∈ R(I)ℓ

such that I ′ = (I, β′) satisfies (∆g ∧ ψ), where β′(vij
) = vij

for all j ∈ [ℓ] and β′(x) = β(x)
for all x ∈ Var\{vi1 , . . . , viℓ

}. Similarly, I = (I, β) satisfies φ := ∃⩾n(ei1 , . . . , eiℓ
).(∆g ∧ψ) iff

there are at least n tuples (ei1 , . . . , eiℓ
) ∈ B(I)ℓ such that I ′ = (I, β′) satisfies (∆g ∧ψ), where

β′(eij) = eij for all j ∈ [ℓ] and β′(x) = β(x) for all x ∈ Var \ {ei1 , . . . , eiℓ
}. Obviously we can

emulate the ∀-quantifier (and disjunction) using ∃⩾1 and ¬ (and ∧ and ¬, respectively).
We write I |= χ to indicate that I satisfies the formula χ; and I ̸|= χ indicates that

I does not satisfy χ. Sentences of GCk are formulas χ ∈ GCk with free(χ) = ∅. For an
incidence graph I and a sentence χ ∈ GCk we write I |= χ to indicate that I |= χ where
I = (I, β) for any assignment β in I (since χ has no free variable, the assignment does not
matter). For a hypergraph H and a sentence χ ∈ GCk we write H |= χ to indicate that
IH |= χ. For two incidence graphs I and I ′ we write I ≡GCk I ′ and say that I and I ′ are
indistinguishable by the logic GCk if for all sentences χ ∈ GCk we have: I |= χ ⇐⇒ I ′ |= χ.

Let us now introduce a restriction of GCk that we call RGCk. Every formula of RGCk will
be of the form (∆g ∧ ψ), where g is a guard function whose domain dom(g) consists of all
indices i ∈ N⩾1 such that the red variable vi is a free variable of ψ. We let free((∆g ∧ ψ)) :=
free(∆g) ∪ free(ψ) denote the set of free variables of the formula. The definition of the syntax
of RGCk is inductively given as follows.

Base cases: (∆g ∧ ψ) ∈ RGCk for all ψ and all g : N⩾1 ⇀ [k] matching one of the following:
1. ψ is E(ej , vi) and dom(g) = {i} and j ∈ [k] (note that g(i) ∈ [k] can be chosen arbitrarily);
2. ψ is ej=ej′ with dom(g) = ∅ and j, j′ ∈ [k];
3. ψ is vi=vi′ with dom(g) = {i, i′}.

B. Scheidt and N. Schweikardt 79:9

Inductive cases:
4. If (∆g ∧ ψ) ∈ RGCk, then (∆g ∧ ¬ψ) ∈ RGCk;
5. If (∆gi

∧ ψi) ∈ RGCk for i ∈ [2] and g1 and g2 are compatible (i.e., they agree on
dom(g1) ∩ dom(g2)), then (∆g ∧ φ) ∈ RGCk for g := g1 ∪ g2 and φ := (ψ1 ∧ ψ2);

6. If (∆g ∧ ψ) ∈ RGCk and n, ℓ ∈ N⩾1, and i1, . . . , iℓ ∈ dom(g) with i1 < · · · < iℓ, then
(∆g̃ ∧φ) ∈ RGCk for φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ψ) and g̃ := g− {i1, . . . , iℓ} (note that
free(φ) = free((∆g ∧ ψ)) \ {vi1 , . . . , viℓ

});
7. If (∆g ∧ ψ) ∈ RGCk and n, ℓ ∈ N⩾1, and S := {i1, . . . , iℓ} ⊆ ifreeB(χ) for χ := (∆g ∧ ψ)

with i1 < · · · < iℓ, and if g̃ : N⩾1 ⇀ [k] with dom(g̃) = dom(g) such that all i ∈ dom(g)
satisfy

g̃(i) = g(i) or g̃(i) ∈ S or g̃(i) ̸∈ img(g) , then (1)

(∆g̃∧φ) ∈ RGCk for φ := ∃⩾n(ei1 , . . . , eiℓ
).(∆g∧ψ) (here, free(φ) = free(χ)\{ei1 , . . . , eiℓ

}).

Let us have a closer look at rule 7): The formula φ has exactly the same free red variables as
the formula χ. But the guard of red variable vi in χ̃ := (∆g̃ ∧φ) is j′ := g̃(i), whereas in χ it
is j := g(i). Condition (1) is equivalent to the following: the guard remains unchanged (i.e.,
j′=j), or the new guard j′ has become “available” by the quantification (i.e., j′ ∈ S) or it
has not been used as a guard by g (i.e., j′ ̸∈ img(g)).

Note that RGCk ⊆ GCk. Furthermore, for all χ := (∆g ∧ ψ) ∈ RGCk we have dom(g) =
{i ∈ N⩾1 : vi ∈ free(χ)}. Sentences of RGCk are formulas χ := (∆g ∧ ψ) in RGCk with
free(χ) = ∅. Since dom(g) = {i ∈ N⩾1 : vi ∈ free(χ)}, this implies that dom(g) = ∅, i.e.,
g = g∅ where g∅ is the uniquely defined partial mapping with empty domain; recall that
∆g∅ = ⊤. For two incidence graphs I and I ′ we write I ≡RGCk I ′ and say that I and I ′ are
indistinguishable by the logic RGCk if for all sentences χ ∈ RGCk we have: I |= χ ⇐⇒ I ′ |= χ.
The subsequent sections of this paper are devoted to proving the following theorem, stating
that indistinguishability by the logic RGCk coincides with homomorphism indistinguishability
over the class IEHWk of incidence graphs of entangled hypertree width at most k.

▶ Theorem 6.1. For all incidence graphs I, I ′ and all k ∈ N⩾1 we have:
I ≡RGCk I ′ ⇐⇒ HOMIEHWk

(I) = HOMIEHWk
(I ′).

This result can be viewed as a lifting of Dvořák’s theorem [11] stating that any two
graphs G,G′ are indistinguishable by the k+1-variable logic Ck+1 if, and only if, they are
homomorphism indistinguishable over the class TWk of graphs of tree-width ⩽ k. Our
proof of Theorem 6.1 is heavily inspired by Dvořák’s proof. But in order to proceed along a
similar construction, we first have to provide a suitable inductive characterisation of the class
IEHWk. This is presented in Section 7, where we also provide the machinery of quantum
incidence graphs as an analogue of the quantum graphs used in Dvořák’s proof. Section 8 is
devoted to the proof of Theorem 6.1.

Before we close this section, let us have a look at some examples. Let k = 2. Consider
the following formula ψ1 ∈ GCk:

ψ1 := ∃⩾1(v1).
(
E(e1, v1) ∧ E(e2, v1)

)
.

ψ1 expresses that the hyperedges e1 and e2 share at least one vertex v1, i.e. they intersect.
Since we quantify over v1, the definition of GCk requires us to insert a guard ranging over
the set of free red variables, i.e. over {v1}. We chose E(e1, v1) as the guard but note that
E(e2, v1) would have been a valid choice as well. Next, consider the formula ψ2 ∈ GCk:

ψ2 :=
∧

j∈{1,2}

∃⩾3(v1).
(
E(ej , v1) ∧ E(ej , v1)

)
.

MFCS 2023

79:10 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

ψ2 expresses that each of the hyperedges e1, e2 contains at least three vertices. Again, we
have to insert a guard after the quantifier, which is why E(ej , v1) appears twice in ψ2 – as a
guard and as our “actual” subformula.

Finally, we use the formulas ψ1, ψ2 to construct a sentence φ ∈ GCk:

φ := ¬ ∃⩾1(e1, e2).
(
⊤ ∧ ((ψ1 ∧ ψ2) ∧ ¬ e1=e2)

)
.

φ expresses that there is no pair of non-equal hyperedges (e1, e2) that intersect and that
both contain at least 3 vertices. I.e., φ expresses that all hyperedges that contain at least 3
vertices are pairwise disjoint. Once again, the quantification requires us to insert a guard;
since there are no free red variables, we insert ⊤ as the guard. Note that (⊤ ∧ φ) ∈ RGCk.
For more examples of formulas in GCk and RGCk, consult the paper’s extended version [22].

7 An Inductive Characterisation of IEHWk

In this section we give an inductive definition of what we call guarded k-labeled incidence
graphs (GLIk), and we show that these are equivalent to the incidence graphs in IEHWk.
Throughout this section, we fix an arbitrary number k ∈ N⩾1.

k-Labeled Incidence Graphs and the Class GLIk. We enrich an incidence graph I by
labeling some of its blue (red) nodes with labels in [k] (in N⩾1), and by providing, for every
i ∈ N⩾1 that is used as a label for a red node, a “blue label” g(i) ∈ [k] that should be regarded
as “the guard” of i. Each label can only be used once, not all labels have to be used, not
all vertices have to be labeled, one vertex may have multiple labels, and “guards” can be
chosen arbitrarily. This is formalised as follows: A k-labeled incidence graph L = (I, r, b, g)
consists of an incidence graph I and partial mappings r : N⩾1 ⇀ R(I), b : [k] ⇀ B(I), and
g : N⩾1 ⇀ [k] such that dom(g) = dom(r) is finite. We write IL, rL, bL, gL to address L’s
components I, r, b, g. Let L = (I, r, b, g) be a k-labeled incidence graph. If j ∈ dom(b), the
blue node b(j) of I is labeled with the number j. If i ∈ dom(r), the red node r(i) of I is
labeled with the number i, and g(i) = j indicates that the blue node labeled with the number
j (if it exists) should be regarded as “the guard” of the red node labeled with the number i.

We say that L has real guards if for every i ∈ dom(r) the red node v labeled i is “guarded”
by the blue node e labeled j := g(i) in the sense that I contains an edge from e to v. This is
formalised as follows: A k-labeled incidence graph L = (I, r, b, g) is said to have real guards
w.r.t. f for a partial function f : N⩾1 ⇀ [k] if dom(f) ⊆ dom(r) and for all i ∈ dom(f) we
have f(i) ∈ dom(b) and (b(f(i)), r(i)) ∈ E(I). We say that L has real guards if it has real
guards w.r.t. g. Particularly simple examples of k-labeled incidence graphs with real guards
are provided by the following definition.

▶ Definition 7.1. Let f : N⩾1 ⇀ [k] with finite dom(f) ̸= ∅. The k-labeled incidence graph
Mf defined by f is the k-labeled incidence graph L = (I, r, b, g) with g := f , where I consists
of a red node vi for every i ∈ dom(f), a blue node ej for every j ∈ img(f), and an edge
(ef(i), vi) for every i ∈ dom(f), and where dom(r) = dom(f) and r(i) = vi for all i ∈ dom(r),
and dom(b) = img(f) and b(j) = ej for all j ∈ dom(b). Note that Mf has real guards.

We introduce a number of operations on k-labeled incidence graphs. The first kind of
operations provides ways to modify the labels (the latter two of these do not necessarily
preserve real guards). Let L = (I, r, b, g) be a k-labeled incidence graph. Let Xr ⊆ N⩾1 be
finite, and let Xb ⊆ [k].

B. Scheidt and N. Schweikardt 79:11

1. Removing from the red nodes all the labels in Xr is achieved by the operation
L[Xr→•] := (I, r′, b, g′) with r′ := r −Xr and g′ := g −Xr.

2. Removing from the blue nodes all the labels in Xb is achieved by the operation
L⟨Xb→•⟩ := (I, r, b′, g) with b′ := b−Xb

3. Let Xr = {i1, . . . , iℓ} for ℓ := |Xr| and i1 < · · · < iℓ. For every v = (v1, . . . , vℓ) ∈ R(I)ℓ

we let L[Xr→v] := (I, r′, b, g) with dom(r′) = dom(r) ∪Xr and r′(ij) = vj for all j ∈ [ℓ]
and r′(i) = r(i) for all i ∈ dom(r) \ Xr (i.e., for each j ∈ [ℓ], the red label ij is moved
onto the red node vj , and all other labels remain unchanged).

4. Let Xb = {i1, . . . , iℓ} for ℓ := |Xb| and i1 < · · · < iℓ. For every e = (e1, . . . , eℓ) ∈ B(I)ℓ

we let L⟨Xb→e⟩ := (I, r, b′, g) with dom(b′) = dom(b) ∪Xb and b′(ij) = ej for all j ∈ [ℓ]
and b′(i) = b(i) for all i ∈ dom(b) \Xb (i.e., for each j ∈ [ℓ], the blue label ij is moved
onto the blue node ej , and all other labels remain unchanged).

The next operation enables us to glue two k-labeled incidence graphs L1 and L2. This
is achieved by first taking the disjoint union of L1 and L2 and then merging all red (blue)
nodes that carry the same label into a single red (blue) node that inherits all neighbours
of the merged nodes. We write (L1 · L2) to denote the resulting k-labeled incidence graph.
We need one further operation on k-labeled incidence graphs, namely, one that admits us to
change its guard function:

▶ Definition 7.2 (Applying a transition). Consider a partial function g : N⩾1 ⇀ [k].
(a) A transition for g is a partial function f : N⩾1 ⇀ [k] with ∅ ̸= dom(f) ⊆ dom(g)

satisfying the following: for every i ∈ dom(g) with g(i) ∈ img(f) we have i ∈ dom(f).
(b) Let L = (I, r, b, g) be a k-labeled incidence graph, and let f be a transition for g. Applying

the transition f to L yields the k-labeled incidence graph L[⇝f] := (Mf · L⟨Xb→•⟩) ,
where Xb := img(g) ∩ img(f) ∩ dom(b), and Mf is provided by Definition 7.1.

The idea of applying a transition f to a k-labeled incidence graph L = (I, r, b, g) is to
assign new guards to a set of labeled red vertices (i.e. the domain of f). These new guards
should by newly inserted nodes, and they should be real guards. To this end, for every
j ∈ img(f) we add a new blue node e′

j labeled j; and in case that the label j had already
been used by a blue node e of L (i.e., j ∈ dom(b)) and served as a guard according to g (i.e.,
j ∈ img(g)), we remove this label from e. For each i ∈ dom(f) with f(i) = j we add an edge
from the red node of L labeled i to the new blue node e′

j .
The formal definition L[⇝f] := (Mf · L⟨Xb→•⟩) achieves this as follows: By L⟨Xb→•⟩

we release from L all blue labels j that are present in L and that we want to assign to newly
created nodes. This is achieved by letting Xb = img(g) ∩ img(f) ∩ dom(b). Afterwards,
adding the edges from the nodes of L that carry a red label i ∈ dom(f) to the new blue node
e′

f(i) is achieved by glueing Mf to L⟨Xb→•⟩. Note that releasing from L all blue labels in
Xb might be problematic: Consider a red node v labeled i that was originally guarded by the
blue node e of L that carried the label j := g(i). Releasing the label j from node e means
that v loses its guard in case that i ̸∈ dom(f). Therefore, for f to be a transition for g, we
require in Definition 7.2 that it assigns a new guard to all the affected labeled red vertices,
i.e. we require i ∈ dom(f), if g(i) ∈ img(f). Finally, we are ready to define the class GLIk:

▶ Definition 7.3 (GLIk). The class GLIk of guarded k-labeled incidence graphs is inductively
defined as follows:
Base case: Any k-labeled incidence graph L = (I, r, b, g) with R(I) = img(r), B(I) = img(b),
and with real guards belongs to GLIk.

MFCS 2023

79:12 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

Inductive cases: Let L = (I, r, b, g) ∈ GLIk.
1. L[Xr→•] ∈ GLIk for every Xr ⊆ dom(r).
2. L⟨Xb→•⟩ ∈ GLIk for every Xb ⊆ dom(b) \ img(g).
3. L[⇝f] ∈ GLIk for every transition f for g.
4. (L · L′) ∈ GLIk for every L′ = (I ′, r′, b′, g′) ∈ GLIk such that g and g′ are compatible.

An easy inductive proof shows that every L ∈ GLIk has real guards.
A k-labeled incidence graph L is called label-free if dom(rL) = dom(bL) = dom(gL) = ∅. We
are now ready for this section’s technical main result, which states that, essentially, GLIk

provides an inductive characterisaton of IEHWk:

▶ Theorem 7.4.
(a) The incidence graph IL of every L ∈ GLIk is in IEHWk.
(b) For every I ∈ IEHWk there exists a label-free L ∈ GLIk such that I ∼= IL.

The proof of (a) proceeds by induction on the definition of GLIk and explicitly constructs
an ehd of width ⩽ k for each L ∈ GLIk; for this it utilises that L has real guards. The
proof of (b) starts with an ehd of I of width ⩽ k, chooses a suitable root node of the ehd’s
tree and performs a bottom-up traversal of this tree to associate each tree-node t with a
corresponding k-labeled incidence graph Lt. This construction’s details have to be carried
out with care to ensure that Lt ∈ GLIk.

Homomorphisms on k-Labeled Incidence Graphs and their Quantum Analogues. We
define the notion of homomorphisms of k-labeled incidence graphs in such a way that it
respects labels, but ignores the guard function: Let L = (I, r, b, g) and L′ = (I ′, r′, b′, g′) be
k-labeled incidence graphs. If dom(r) ̸⊆ dom(r′) or dom(b) ̸⊆ dom(b′), then there exists no
homomorphism from L to L′. Otherwise, a homomorphism from L to L′ is a homomorphism
h = (hR, hB) from I to I ′ satisfying the following condition: h(r(i)) = r′(i) for all i ∈ dom(r)
and h(b(j)) = b′(j) for all j ∈ dom(b). By Hom(L,L′) we denote the set of all homomorphisms
from L to L′, and we let hom(L,L′) := | Hom(L,L′)| be the number of homomorphisms from
L to L′. In particular, if L is label-free, then hom(L,L′) = hom(IL, IL′).

In order to enable us to “aggregate” homomorphism counts, we proceed in a similar way
as Dvořák [11]: we use a variant of the quantum graphs of Lovász and Szegedy [20], tailored
towards our setting. We say that k-labeled incidence graphs L1, . . . , Ld are compatible if
their labeling functions all have the same domain and they all have the same guard function,
i.e., dom(rL1) = dom(rLi

), dom(bL1) = dom(bLi
), and gL1 = gLi

for all i ∈ [d].
A k-labeled quantum incidence graph Q is a formal finite non-empty linear combination

with real coefficients of compatible k-labeled incidence graphs. We represent a k-labeled
quantum incidence graph Q as

∑d
i=1 αi Li, where d ∈ N⩾1, αi ∈ R, and Li is a k-labeled

incidence graph for i ∈ [d]. We let drQ := dom(rL1) = · · · = dom(rLd
), dbQ := dom(bL1) =

· · · = dom(bLd
), and gQ := gL1 = · · · = gLd

. The αi’s and Li’s are called the coefficients and
components, respectively, and d is called the degree of Q. Note that a k-labeled incidence
graph is a k-labeled quantum incidence graph with degree 1 and coefficient 1. For a k-labeled
quantum incidence graph Q =

∑d
i=1 αiLi and an arbitrary k-labeled incidence graph L′ we

let hom(Q,L′) :=
∑d

i=1 αi· hom(Li, L
′) ∈ R.

We adapt the operations for k-labeled incidence graphs to their quantum equivalent in
the expected way: Q[Xr→•] :=

∑d
i=1 Li[Xr→•], Q⟨Xb→•⟩ :=

∑d
i=1 Li⟨Xb→•⟩, Q[⇝f] :=∑d

i=1 αiLi[⇝f]. Glueing two k-labeled quantum incidence graphs Q =
∑d

i=1 αi Li and
Q′ =

∑d′

j=1 α
′
j L

′
j is achieved by pairwise glueing of their components and multiplication of

their respective coefficients, i.e. (Q ·Q′) :=
∑

i∈[d]
j∈[d′]

(αi·α′
j) (Li · L′

j).

B. Scheidt and N. Schweikardt 79:13

The following can easily be proved for the case where Q,Q′ have degree 1 and coefficient
1 (i.e., Q,Q′ are k-labeled incidence graphs), and then be generalised to quantum incidence
graphs by simple linear arguments.

▶ Lemma 7.5. For all k-labeled quantum incidence graphs Q,Q′ and all k-labeled incidence
graphs L we have:
1. hom((Q ·Q′), L) = hom(Q,L) · hom(Q′, L).
2. hom(Q[Xr→•], L) =

∑
v∈R(IL)ℓ hom(Q,L[Xr→v]), for all Xr ⊆ drQ and ℓ := |Xr|.

3. hom(Q⟨Xb→•⟩, L) =
∑

e∈B(IL)ℓ hom(Q,L⟨Xb→e⟩), for all Xb ⊆ dbQ and ℓ := |Xb|.
4. hom(Q[⇝f], L) = hom(Mf , L) ·

∑
e∈B(IL)ℓ hom(Q,L⟨Xb→e⟩), for all transitions f for

gQ, for Xb := dbQ ∩ img(f) ∩ img(g) and ℓ := |Xb|. Note that hom(Mf , L) ∈ {0, 1}.

The class QGLIk of guarded k-labeled quantum incidence graphs consists of those k-labeled
quantum incidence graphs where all components belong to GLIk. The following lemma
was provided for series-parallel quantum graphs by Lovász and Szegedy [20] and for labeled
quantum graphs of tree-width ⩽ k by Dvořák [11]; their proof also works for QGLIk.

▶ Lemma 7.6. Let X,Y ⊆ N be disjoint and finite, and let Q ∈ QGLIk. There exists a
Q[X,Y] ∈ QGLIk with the same parameters drQ,dbQ, gQ as Q, such that for all k-labeled
incidence graphs L with real guards w.r.t. gQ we have:
1. If hom(Q,L) ∈ X then hom(Q[X,Y], L) = 0.
2. If hom(Q,L) ∈ Y then hom(Q[X,Y], L) = 1.

8 Proof of Theorem 6.1

Finally, we have available all the machinery so that, from a high-level point of view, our
proof of Theorem 6.1 can follow a similar approach as Dvořák’s proof in [11]. Analogously
to the two main lemmas in [11], we provide a key lemma for each of the directions “⇐=”
and “=⇒” of Theorem 6.1. These lemmas use the following notion: The interpretation IL′

associated with a k-labeled incidence graph L′ is an interpretation (I, β) with I := IL′ and
β(vi) := rL′(i) for all i ∈ dom(rL′) and β(ej) := bL′(j) for all j ∈ dom(bL′).

▶ Lemma 8.1. Let L = (I, b, r, g) ∈ GLIk. For every m ∈ N there is a formula φL,m with
(∆g ∧φL,m) ∈ RGCk and free((∆g ∧φL,m)) = {vi : i ∈ dom(r)}∪{ej : j ∈ dom(b)} such that
for every k-labeled incidence graph L′ with dom(bL′) ⊇ dom(b), dom(rL′) ⊇ dom(r), and
with real guards w.r.t. g we have: IL′ |= ∆g , and hom(L,L′) = m ⇐⇒ IL′ |= φL,m.

▶ Lemma 8.2. Let χ := (∆g ∧ ψ) ∈ RGCk and let m, d ∈ N with m ⩾ 1. There exists a
Q := Qχ,m,d ∈ QGLIk with gQ = g, dbQ = ifreeB(χ), drQ = dom(g) = ifreeR(χ) such that
for all k-labeled incidence graphs L′ = (I ′, b′, r′, g′) with |B(I ′)| = m and max{|NI′(e)| : e ∈
B(I ′)} ⩽ d and dom(b′) ⊇ dbQ, dom(r′) ⊇ drQ, g′ ⊇ g, and with real guards w.r.t. g we
have: IL′ |= ∆g , and hom(Q,L′) = 1 if IL′ |= χ , and hom(Q,L′) = 0 if IL′ ̸|= χ.

The proofs of both lemmas are technically quite intricate because the concept of generalised
hypertree width (as well as the classes IEHWk and GLIk) is much more complicated than
the concept of tree-width. For Lemma 8.1 we proceed by induction based on Definition 7.3;
for Lemma 8.2 we proceed by induction on the construction of χ. Finally, the proof of
Theorem 6.1 can easily be achieved by using Theorem 7.4 and the Lemmas 8.1 (for direction
“⇐=”) and 8.2 (for direction “=⇒”).

MFCS 2023

79:14 Counting Bounded Hypertree Width Homomorphisms: A Logical Characterisation

9 Conclusion

Combining the Theorems 3.1, 4.1, 6.1 yields:

▶ Theorem 9.1 (Main Theorem). Let H,H ′ be hypergraphs.
(a) IH ≡RGCk IH′ ⇐⇒ HOMGHWk

(H) = HOMGHWk
(H ′).

(b) If H and H ′ are simple, then: IH ≡RGCk IH′ ⇐⇒ HOMsGHWk
(H) = HOMsGHWk

(H ′).

An obvious question is whether RGCk-sentences have the same expressive power as GCk-
sentences. Since the submission of this paper, we were able to prove that this is indeed the
case, i.e., any sentence of the logic GCk can be transformed into an equivalent sentence in
RGCk. This implies that IH ≡RGCk IH′ ⇐⇒ IH ≡GCk IH′ . Details are provided in the
paper’s extended version [22].

For our proofs it was crucial to consider ehds instead of generalised hypertree decomposi-
tions. To the best of our knowledge, ehds have not been studied before. From Theorem 2.3
we know that there exist arbitrarily large k such that IEHWk is a strict subclass of IGHWk;
but nevertheless, according to Theorem 4.1 homomorphism indistinguishability coincides
for both classes. Many other questions remain open, in particular: How hard is it, given
a hypergraph H and a number k, to determine whether ehw(H) ⩽ k? For C := IEHWk:
how hard is it to compute the function (or, “vector”) HOMC(H) for a given hypergraph H?
Which properties does it have? What is the expressive power of the logic GCk? How does
a suitable pebble game for GCk look like? Our result lifts Dvořák’s result for tree-width
⩽ k [11] from graphs to hypergraphs. Does there also exist a lifting of Grohe’s result for
tree-depth ⩽ k [16] from graphs to hypergraphs? Seeing that Dvořák’s result lifted nicely to
hypergraphs, we believe that there should also be a lifting of Cai, Fürer and Immerman’s
result [8], i.e., a hypergraph-variant of the Weisfeiler-Leman algorithm, whose distinguishing
power matches precisely the logic GCk. We plan to study this in future work.

References
1 Isolde Adler. Marshals, monotone marshals, and hypertree-width. J. Graph Theory, 47(4):275–

296, 2004. doi:10.1002/jgt.20025.
2 Isolde Adler. Width Functions for Hypertree Decompositions. PhD thesis, Albert-Ludwigs

Universität Freiburg, 2006. Available at https://d-nb.info/979896851/34.
3 Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree width and related hypergraph

invariants. European Journal of Combinatorics, 28(8):2167–2181, 2007. doi:10.1016/j.ejc.
2007.04.013.

4 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded frag-
ments of predicate logic. J. Philos. Log., 27(3):217–274, 1998. doi:10.1023/A:1004275029985.

5 Jan Böker, Yijia Chen, Martin Grohe, and Gaurav Rattan. The complexity of homo-
morphism indistinguishability. In 44th International Symposium on Mathematical Foun-
dations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume
138 of LIPIcs, pages 54:1–54:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.54.

6 Jan Böker. Structural similarity and homomorphism counts. Master’s thesis, RWTH Aachen
University, 2018.

7 Jan Böker. Color Refinement, Homomorphisms, and Hypergraphs. In Ignas Sau and Dim-
itrios M. Thilikos, editors, Graph-Theoretic Concepts in Computer Science, volume 11789 of
Lecture Notes in Computer Science, pages 338–350. Springer, Cham, 2019.

8 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/BF01305232.

https://doi.org/10.1002/jgt.20025
https://d-nb.info/979896851/34
https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.4230/LIPIcs.MFCS.2019.54
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232

B. Scheidt and N. Schweikardt 79:15

9 Bruno Courcelle. Graph Grammars, Monadic Second-Order Logic And The Theory Of Graph
Minors. In Neil Robertson and Paul Seymour, editors, Graph Structure Theory, volume 147 of
Contemporary Mathematics, pages 565–590. AMS, 1993.

10 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

11 Zdeněk Dvořák. On Recognizing Graphs by Numbers of Homomorphisms. Journal of Graph
Theory, 64(4):330–342, 2010.

12 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree decomposi-
tions: Questions and answers. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, June 26 – July 01, 2016, pages 57–74. ACM, 2016.

13 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions and
Tractable Queries. Journal of Computer and System Sciences, 64(3):579–627, May 2002.

14 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. Journal of Computer and System
Sciences, 66(4):775–808, June 2003.

15 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
doi:10.2307/2586808.

16 Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’20, pages 507–520. ACM,
July 2020. doi:10.1145/3373718.3394739.

17 Martin Grohe. Word2vec, Node2vec, Graph2vec, X2vec: Towards a Theory of Vector
Embeddings of Structured Data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20, pages 1–16. ACM, 2020. doi:
10.1145/3375395.3387641.

18 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61(2):302–332, October 2000.

19 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungaricae, 18(3):321–328, 1967.

20 László Lovász and Balázs Szegedy. Contractors and Connectors of Graph Algebras. Journal
of Graph Theory, 60(1):11–30, 2008.

21 Laura Mancinska and David E. Roberson. Quantum isomorphism is equivalent to equality of
homomorphism counts from planar graphs. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 661–672.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00067.

22 Benjamin Scheidt and Nicole Schweikardt. Counting homomorphisms from hypergraphs of
bounded generalised hypertree width: A logical characterisation. CoRR, abs/2303.10980, 2023.
doi:10.48550/arXiv.2303.10980.

MFCS 2023

https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://doi.org/10.2307/2586808
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.48550/arXiv.2303.10980

	1 Introduction
	2 Preliminaries
	3 Homomorphism Indistinguishability
	4 Relating IGHW{k} to IEHW{k}
	5 Notation for Partial Functions
	6 2-Sorted Counting Logic with Guards: GGCk and RGCk
	7 An Inductive Characterisation of IEHW{k}
	8 Proof of Theorem 6.1
	9 Conclusion

