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Abstract
The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected
graphs that require constant time and O(n1/2+ϵ) work on the CRCW PRAM model. The work
of these algorithms almost matches the work of the O(log n) time algorithm for connectivity by
Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for
bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique,
which has been used in both mentioned papers, can in principle also be used for constant time
algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees.
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1 Introduction

There has been a lot of research on dynamic algorithms for graph problems.1 Usually, the
setting is that graphs can be changed by edge insertions or deletions and that there are query
operations that allow to check whether the graph has certain properties. Most of this research
has been about sequential algorithms and the goal has been to find algorithms that are as
fast as possible. Some algorithms use randomisation, others are deterministic, sometimes the
time bounds are worst-case bounds per change or query operation and sometimes they are
amortised bounds.

There has been also some research on dynamic parallel graph algorithms. Many of these
algorithms use the EREW PRAM model2 and try to achieve logarithmic or polylogarithmic
running time, while being work-efficient or even work-optimal. That is, the overall work of
all processors should be (almost) the same as for the best sequential algorithm.3

There is an entirely separate line of work that studied the maintenance of graph (and
other) properties in a setting that was inspired by Database Theory. It is often called
Dynamic Complexity in Database Theory. In the setting of Dynamic Complexity, dynamic
algorithms are called dynamic programs and they are not specified in an “algorithmic fashion”

1 Below we will give pointers to literature. For the beginning of the introduction, we try to keep the story
simple.

2 In an EREW PRAM, parallel processors can use shared memory, but at each moment, each memory
cell can be accessed by only one processor. EREW stands for exclusive-read/exclusive-write.

3 We note that in our context of constant-time parallel algorithms work is within a constant factor of the
number of processors.
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but rather by logical formulas. As a classical example from [13], to maintain reachability
information between pairs of nodes in a directed acyclic graph, a dynamic program can use
an auxiliary relation T that is intended to store the transitive closure of the graph. The
program can then be specified by two formulas that specify how the new version T ′ of T is
defined after the insertion or deletion of an edge (u, v):
Insertion: T ′(x, y) def= T (x, y) ∨

(
T (x, u) ∧ T (v, y)

)
. After inserting (u, v) there is a path

from x to y if such a path already existed or if there was a path from x to u and from v

to y.

Deletion: T ′(x, y) def= T (x, y) ∧
(

E(x, y) ∨ ¬T (x, u) ∨ ¬T (v, y) ∨

∃u′, v′
(

(u′ ̸= u ∨ v′ ̸= v) ∧ T (x, u′) ∧ E(u′, v′) ∧ T (v′, y) ∧ T (u′, u) ∧ ¬T (v′, u)
))

.

This formula is slightly more complicated. In the main case, the nodes u′, v′ are chosen
such that neither the path from x to u′ nor the path from v′ to y relies on the edge (u, v).
In the former case this is thanks to T (u′, u) (since if T (x, u′) involved (u, v), the graph
were not be acyclic) and in the latter case it is thanks to ¬T (v′, u).

As in the example, the underlying logic is usually first-order logic, since it corresponds
to the main (theoretical) query language for relational databases, the relational algebra,
which in turn corresponds to the core of SQL. The class of problems or queries that can be
maintained in this way is usually called DynFO.

Dynamic Complexity has existed quite separated from the world of dynamic algorithms,
but there is a direct link that connects the two areas: it follows from a fundamental result4

from Immerman [8, Theorem 1.1] that dynamic programs can be translated into parallel
programs that run in constant time on suitable versions of CRCW PRAMs5 with polynomially
many processors. And vice versa.

Dynamic Complexity has focussed on the question whether a graph property can be
maintained at all by first-order logic (or fragments thereof), but did not care about the
work efficiency of the parallel algorithms that are obtained from translating the update
formulas. It turns out that this automatic translation often does not yield very efficient
parallel algorithms.

As an example, the parallel dynamic algorithm that is obtained by direct translation of
the above formulas, has work O(n4) for deletions, since it would consist of two nested loops
for x and y and two more for u and v. This is far from being work-efficient.6 The translation
of the dynamic program for Connectivity in undirected graphs from [13] even yields a work
bound of O(n5). We will show that this work bound can be improved considerably.

This paper is part of an effort to bridge the gap between Dynamic Complexity and
(parallel) Dynamic Algorithms by developing algorithms that run in constant time on CRCW
PRAMs and are as work efficient as possible. It presents constant-time dynamic parallel
algorithms for Connectivity and Bipartiteness in undirected graphs. In the arbitrary CRCW
model, the algorithms require work at most n

1
2 polylog(n). In the common CRCW model,

the algorithms can be instantiated, for each constant ϵ > 0, such that they obey a work
bound of O(n 1

2 +ϵ), where n is the number of nodes in the graph.

4 Immerman’s result is not about dynamic programs, but each formula of a dynamic program can be
translated separately.

5 In a CRCW PRAM more than one processor can read a memory cell, at the same time. Even more
than one processor can write into the same cell, but there has to be a strategy that deals with conflicts.
This will be explained later in the text.

6 We have to admit that this paper does not present a better algorithm for directed reachability. We
chose that problem only as an example, since its formulas are relatively easy to understand.
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The algorithm for Connectivity follows the parallel EREW PRAM algorithm of Kopelowitz
et al. [12], which in turn was based on a sequential algorithm by Fredrickson [5] and its
sparsification by Eppstein et al. [4]. Thus, the work of our algorithm almost matches the work
bound O(n 1

2 ) of the parallel algorithm of [12] and the worst-case runtime of [4]. However, it
does not match the runtime of the recent breakthrough algorithm by Chuzhoy et al. [1].

The main technical challenge here is to make the sparsification and the tree-like data
structure of [12] work in constant time, despite their use of trees of logarithmic depth. For
sparsification, this means updating all logarithmically many nodes along the path from the
changed leave to the root of a tree of logarithmic height in parallel constant time although
in classical sparsification the change in the leave is propagated from one node to the other
along the path. For handling the tree-like data structure of [12] in constant parallel time,
data is stored differently by switching from lists to arrays and it is shown (in full version
of this paper) that balanced search trees ((a, b)-trees to be precise) of logarithmic height
are maintainable in constant parallel time. In the classical algorithm for, e.g., splitting an
(a, b)-tree tree into two separate trees, the tree is first split into logarithmically many smaller
trees and then the two new trees are built by merging logarithmically many of those smaller
trees back together. Both steps are done sequentially in O(log n) time by splitting one of
those smaller trees at a time and merging only two of the smaller trees at a time, but for our
purpose have to be done in constant parallel time.

The algorithm for bipartiteness almost matches the runtime of the bipartiteness algorithm
of Eppstein et al. [4]. It is based on the observation that a graph is bipartite if and only
if its distance-2 graph has twice as many connected components as the graph itself. The
algorithm therefore basically maintains two spanning trees, for the graph and its distance-2
graph. Here, the main technical challenge is to show that the same sparsification approach
as for connectivity also works for bipartiteness.

Structure of the paper. We introduce some basic concepts about CRCW PRAMs in
Section 2. The algorithm for connectivity is presented in Section 3. The algorithm for
bipartiteness is given in Section 4.

Related work. Some related work has already been mentioned above. Dynamic Complexity
has started by the work of Patnaik and Immerman [13] and Dong and Su [3]. For a recent
survey on the dynamic complexity of Reachability in directed and undirected graphs, we
refer to [14]. For a recent survey on dynamic graph algorithms, we refer to [6].

Of course, the PRAM model is not the only parallel computation model for parallel
algorithms. Parallel dynamic algorithms for the MPC model can be found, e.g., in [9].

2 Preliminaries

For natural numbers i ≤ j, we write [i, j] for the set {i, . . . , j}. We only deal with undirected
graphs and denote an undirected edge between two vertices u and v by (u, v).

Dynamic algorithmic problems. In this paper, we view a dynamic (algorithmic) problem
basically as the interface of a data type: that is, there is a collection of operations by which
some object can be initialised, changed, and queried. A dynamic algorithm is then a collection
of algorithms, one for each operation. We consider two main dynamic problems in this paper,
Connectivity and Bipartiteness.

The algorithmic problem Connectivity maintains an undirected graph G and has the
following operations.

MFCS 2023
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Init(G, n) yields an initial graph G with n nodes, that are initially deactivated but
without edges;
ActivateNode(G, v) yields an identifier for a new node of G;
DeactivateNode(G, v) deactivates the node v from G. The node u must be isolated;
InsertEdge(G, u, v) inserts edge (u, v) to G;
DeleteEdge(G, u, v) deletes edge (u, v) from G;
Connected(G, u, v) returns true if u and v are in the same connected component, otherwise
false.
#Components(G) yields the number of connected components of G on the activated
nodes.

Bipartiteness has almost the same operations, but instead of Connected and
#Components it has a query operation Bipartite(G) which yields true if the graph G

is bipartite.
Throughout this paper we only consider the effort for change and query operations, but

disregard the effort for the initialisation of a graph. We also note that the number n of nodes
can not grow. The nodes are represented by numbers in {1, . . . , n}.

Parallel Random Access Machines (PRAMs). A parallel random access machine (PRAM)
consists of a number of processors that work in parallel and use a shared memory.7 The
memory is comprised of memory cells which can be accessed by a processor in O(1) time.
Furthermore, we assume that simple arithmetic and bitwise operations, including addition,
can be done in O(1) time by a processor. The work of a PRAM computation is the sum
of the number of all computation steps of all processors made during the computation. We
define the space s required by a PRAM computation as the maximal index of any memory
cell accessed during the computation.

We use the Concurrent-Read Concurrent-Write model (CRCW PRAM), i.e., processors
are allowed to read and write concurrently from and to the same memory location. More
precisely, we will consider two different versions of CRCW PRAMs.

In the arbitrary model, if multiple processors concurrently write to the same memory
location, one of them, “arbitrarily”, succeeds;
In the slightly weaker common model, concurrent write into the same memory location,
is only allowed if all processors write the same value.

The two models will yield slightly different work bounds for our dynamic algorithms for
Connectivity and Bipartiteness: in the arbitrary model, the work will be at most Õ(n 1

2 ),
whereas in the common model, we will have algorithms with work O(n 1

2 +ϵ), for every ϵ > 0.
Here, Õ(f(n)) allows an additional polylogarithmic factor with f(n).

We refer to [10] for more details on PRAMs and to [15, Section 2.2.3] for a discussion of
alternative space measures.

For simplicity, we assume that even if the number n of nodes of the input graph grows, a
number in the range [0, n] can still be stored in one memory cell. This assumption is justified,
since addition of larger numbers N can still be done in constant time and polylogarithmic
work on a CRCW PRAM.

The following lemma exhibits a simple CRCW PRAM algorithm in the common model
that will be used as a sub-algorithm. It also illustrates the frequent use of arrays in PRAM
algorithms. It will mainly be used as a tie-breaker, if one of several objects has to be chosen,
and it will therefore not be needed in the context of the arbitrary model. The lemma was
shown in a slightly more general form in [11, Proposition 5.4].

7 Some content of this paragraph is copied from [11].
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▶ Lemma 2.1 ([11, Proposition 5.4]). Let A be an array of size n over a finite alphabet Σ.
The minimum/maximum value of A can be computed in constant parallel time on a common
CRCW PRAM with work O(n1+ϵ) for any ϵ > 0.

Proof sketch. We only describe how the minimum can be computed, since finding the
maximum value is completely analogous. A naïve approach is to assign one processor to each
pair i, j of positions in the array. Whenever A[i] < A[j] or A[i] = A[j] and i < j, then a 1 is
written into B[j], where B is an auxiliary array of size n, in which all entries are initially set
to zero. Afterwards, one processor is assigned to each cell of B and the processor assigned
to the only cell B[i] with value 0 outputs A[i] as the minimum. However, this algorithm
requires O(n2) work. The (standard) idea to reduce the work to O(n1+ϵ) is to first compute
the minimum of subarrays of A of size nϵ. This requires time O(n2ϵ), for each of the n1−ϵ

subarrays, resulting in work O(n1+ϵ). The minimal values of the sub-arrays can then be
stored in an array of size n1−ϵ whose minimum can be computed recursively. Since the
number of recursion rounds is bounded by the constant ⌈ 1

ϵ ⌉, the overall work is O(n1+ϵ). ◀

3 Connectivity

In this section, we present the main result of this paper and (most of) its proof.

▶ Theorem 3.1. There are dynamic parallel constant-time algorithms for Connectivity
with the following work bounds per change or query operation.

Õ(n 1
2 ) work on the arbitrary CRCW PRAM model.

O(n 1
2 +ϵ) work on the common CRCW PRAM model, for every ϵ > 0.

As usual, the algorithm basically maintains a spanning forest and the graph G is connected
if and only if #Components(G) yields 1.

In fact, we will consider the data type SpanningForest as an extension of
Connectivity with the following additional operation.

TreeEdge(G, u, v) returns true if (u, v) is a tree edge, otherwise false.

The proof is along the lines of [12] and is split into the same three main steps. For each
step, we need to show that it can be done in constant parallel time on a CRCW PRAM,
as opposed to O(log n) on an EREW PRAM. This strengthening comes with an additional
work factor of polylog(m) or polylog(n) on an arbitrary CRCW PRAM and mϵ or nϵ on a
common CRCW PRAM.

We first show that, for graphs of maximum degree 3, SpanningForest can be maintained
with work Õ(m 1

2 ) and O(m 1
2 +ϵ) per operation, depending on the PRAM model. Then we

show that the case of graphs of unbounded degree can be reduced to the case of graphs with
degree bound three. Finally, we show that, with the help of sparsification, both bounds from
above are translatable to be in n instead of m.

More precisely, we show the following three results.

▶ Proposition 3.2. There are dynamic parallel constant time algorithms for the special
case of SpanningForest, where the maximum degree of the graph never exceeds 3 with the
following work bounds per change or query operation.

Õ(m 1
2 ) on the arbitrary CRCW PRAM model.

O(m 1
2 +ϵ) on the common CRCW PRAM model, for every ϵ > 0.

▶ Proposition 3.3. If SpanningForest can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 3.2 per change or query operation, for
any ϵ > 0, for graphs with maximum degree 3, it can be maintained with the same bounds
for general graphs with the provision that they never have more than cn edges, for some
constant c.

MFCS 2023
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▶ Proposition 3.4. If SpanningForest can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 3.2 per change or query operation, then
it can also be maintained with Õ(n 1

2 ) work per change or query operation on the common
CRCW model and with O(n 1

2 +ϵ) work per change or query operation on the arbitrary CRCW
model.

Proposition 3.2 will be shown in the next two subsections. Proposition 3.3 and Proposi-
tion 3.4 will be shown in Subsection 3.2.

3.1 Maintaining a spanning forest for bounded degree graphs
As mentioned before, our algorithm closely follows [12] and therefore uses a similar data
structure. Some modifications are required though, to achieve constant parallel update and
query time while keeping almost the same amount of work. The data structure maintains
an Euler tour, for each spanning tree in a spanning forest of the graph. More precisely, it
maintains, for each spanning tree, a cyclic list of tree edges that visits each tree edge once in
either direction.

We first concentrate on the change operations InsertEdge(G, u, v) and
DeleteEdge(G, u, v) and the query operations.

The algorithm does not need to change the Euler tour, if a new edge is inserted which
connects two nodes of the same spanning tree or if a non-tree edge is deleted. If an edge e

between two different spanning trees is inserted, the algorithm can just merge the two Euler
tours. If an edge e of a spanning tree is deleted, the algorithm first splits the Euler tour
at both occurrences of e and then tries to find a replacement edge that connects the two
sub-trees resulting from the deletion. The search for a replacement edge is actually the most
critical part of the algorithm, since trying out all edges of the graph would yield linear work.

Towards a more efficient algorithm, we follow the same two-tiered approach as [12]: each
Euler tour is chopped into chunks of about

√
m edges, which are represented as arrays of

edges. The underlying idea is that after a change operation the necessary updates can be
divided into low-level manipulations inside only a few chunks and high-level manipulations
on the level of sequences of chunks. Each kind of manipulation should cause not much more
than O(

√
m) work.

Furthermore, it will maintain information about non-tree edges between different chunks,
ultimately allowing to find a replacement edge with work close to O(

√
m).

We fix a number K that will be roughly
√

m later on and enforce that chunks contain
between K

2 and K edges, with the exception of at most one chunk per spanning tree. We
denote the number of chunks by J which is in O( m

K ).
For the lower tier, i.e., creating and removing chunks and changing their content and

additional information, the edge arrays representing the chunks are stored together in one
master array M with O(

√
m) slots of sub-arrays of length K. The slots will contain some

additional information to be specified later. The order of chunks in M can be arbitrary
and M might contain empty slots from deleted chunks. By M(i) we refer to the chunk
that is stored in the i-th slot of the master array. Some entries in M might be unused or
deactivated. For a chunk C, we refer by C also to the entry in M for this chunk.

We say that two chunks C and C ′ are linked, if there is a non-tree edge (u, v) in G such
that u occurs in C and v in C ′. With each chunk C of edges, we associate a link vector BC ,
which is a bit array of length J that reflects which chunks are linked with C. More precisely,
BC(i) = 1 if C and M(i) are linked. Here all slots in M are relevant, even the unused or
deactivated ones (but they will inevitably yield the bit 0).
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The higher tier, which is responsible for maintaining the order of the chunks and inform-
ation about sequences of chunks, maintains, for each Euler tour a chunk array: this is an
array of pointers to chunks such that the concatenation of all edge lists in the order induced
by the array represents the Euler tour. Furthermore, it maintains information about links
between sequences of chunks in a sufficiently work-efficient way.

The algorithm uses a data type ChunkArrays whose operations can be split into two
groups. The first group consists of the following operations, which only access chunks and
their link arrays, but do not directly refer to chunk arrays. In both groups of operations, i, j

and k are always indices, C, C1 and C2 are chunk (pointers), A, A1 and A2 are (pointers to)
chunk arrays, B is a bit vector and E is an edge array.

SetChunk(i, C, E) activates a new chunk C in M(i) and stores the edge array E in C;
Deactivate(C) deactivates chunk C in M;
Link(C1, C2) and Unlink(C1, C2) allow to mark chunks C1 and C2 as linked or unlinked;
BulkSetLinks(C, B) replaces the link vector of chunk C by the bit vector B and changes
the bit that refers to C in all other chunks C ′ according to B. More precisely, if C = M(i)
then, for each j, the i-th bit in the link vector of M(j) is set to B(j).

We note that SetChunk and Deactivate do not automatically change any link vectors.
The operations of the other group are as follows. They explicitly refer to chunk arrays.
InsertChunk(A, i, C) inserts (a pointer to) chunk C at position i of chunk array A,
moving each entry, from i on, by one to the right;
DeleteChunk(A, i) deletes the chunk pointer at position i of chunk array A, moving each
entry, from i + 1 on, one to the left;
Concatenate(A1, A2) concatenates the chunk array A2 to the end of A1;
Split(A, i) splits A into two arrays A1 and A2 getting intervals [1, i] and [i + 1, max(A)]
and yields (pointers to) A1 and A2;
Reorder(A, i, j, k) moves the chunks of positions j, . . . , k to position i < j. That is, the
chunks are ordered as 1, . . . , i − 1, j, . . . , k, i + 1, . . . , j − 1, k + 1, . . . , m, where m is the
size of A;
Query(A, i, j, k, ℓ) yields an arbitrary pair (C, C ′) of linked chunks where C is from [i, j]
and C ′ is from [k, ℓ].

The algorithm will maintain the invariant that each chunk that is present in M occurs in at
most one chunk array. Each chunk in the master array contains a back pointer to its chunk
pointer in its chunk array, and these entries are maintained by the above operations.

The following lemma is shown in the full version of this paper.

▶ Lemma 3.5. There is a dynamic parallel constant-time algorithm for ChunkArrays on
an arbitrary CRCW PRAM that supports all operations with O(J polylog J) work.

Furthermore, for each ϵ > 0, there is a parallel constant-time dynamic algorithm for
ChunkArrays on a common CRCW PRAM that supports Query with O(J1+ϵ) work and
all other operations with O(J polylog J) work.

The implementation of ChunkArrays uses (a, b)-trees [7], which are trees of logarithmic
height in which inner nodes have between a and b children, and support insertion and deletion
of leaves as well as split and join of trees. In the ChunkArrays for each chunk array A

one (2, 6)-tree is maintained, that has the link arrays of the chunks of A at its leaves, in the
order of A. The inner vertices of the tree store link arrays that are the bitwise disjunction of
the link arrays of the leaves below them.

MFCS 2023
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Given Lemma 3.5, we can now show Proposition 3.2, stating that SpanningForest can
be maintained in parallel constant time with Õ(m 1

2 ) work per operation on an arbitrary
CRCW PRAM and, for every ϵ > 0, with work O(m 1

2 +ϵ) work per operation, on a common
CRCW PRAM, if the maximum degree of the graph never exceeds 3. The degree bound
mainly helps by bounding the number of edges incident to one chunk by O(K).

Proof (of Proposition 3.2). We first describe the data structure and then how it is main-
tained for the different change operations.

The algorithm maintains a master array and a chunk array as described above. It
uses them to maintain a spanning tree and a corresponding Euler tour for each connected
component of the graph. It uses K = J =

√
m.

Furthermore, the algorithm maintains an array with all nodes of the graph, and three
additional entries for the up to three neighbours of each node, representing the edges.
Additionally, there are pointers to the at most six appearances of a node in edges of Euler
tours in the master array. The algorithm thereby implicitly maintains pointers from each
edge to its at most two appearances in the Euler tours. Finally, a counter for the number of
connected components is maintained.

The two query operations Connected and #Components can be answered in constant
sequential time using the pointers from each node to occurences in an Euler tour or the
maintained counter, respectively.

For the change operation InsertEdge(u, v), we consider two different cases: (1) the
insertion of a new edge (u, v) where u and v are in the same connected component and (2)
the insertion of a new edge (u, v) where u and v are in different connected components.

The algorithm first identifies through the master array two chunk arrays Au and Av in
which u and v reside. If Au = Av, we are in case (1) and it suffices to mark Cu and Cv as
linked by Link(Cu, Cv) for all Cu and Cv that contain u and v respectively. All those chunks
can be found using the maintained pointers from nodes to their appearances in chunks.

If Au and Av are different, we are in case (2) and (u, v) newly connects the two spanning
trees Tu and Tv, yielding a new spanning tree T . To this end, the two Euler tours represented
by Au and Av need to be joined. Let the tour of Au consist of two paths P1, P2, where P1
ends in u and P2 starts in u. Note that the last node of P2 is the same as the first node
of P1. Let the two paths Q1, Q2 be defined analogously for Av and v. Then the combined
Euler tour will be P1, (u, v), Q2, Q1, (v, u), P2.

The algorithm first joins the two chunk arrays by Concatenate(Au, Av). It splits the
edge sequence of Cu into a sequence E1

u that ends in u and the remaining sequence E2
u that

starts in u. The position where Cu needs to be split can be found using the maintained edge
pointers. E1

u remains in Cu and for E2
u a new chunk C ′

u is reserved in M and inserted in Au,
next to Cu. Similarly, the content of Cv is split into Cv and a new chunk C ′

v. Then (u, v) is
added to Cu and (v, u) to Cv.

The algorithm then restructures Au by copying the sub-arrays corresponding to Q2 and
(Q1, (v, u)) to their correct places by two calls to Reorder. This also moves P2 to its right
place. If any of the four modified chunks has fewer than K

2 edges, it is combined with a
neighbour chunk in Au: if possible, the two chunks are joined or otherwise each gets at least
K
2 edges to fulfil the invariant. This completes the restructuring of Au.

It remains to update the link information between chunks. To this end, the algorithm
first computes the link vectors for Cu, C ′

u, Cv and C ′
v. This can be done by initializing the

vector with 0⃗ and then scanning all at most 3K edges of the respective chunk. The four
resulting link vectors are then set by BulkSetLinks. The operation BulkSetLinks takes
also care of the modifications in the link vectors of all other chunks. Finally, the connected
component counter is decreased by 1.
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For the change operation DeleteEdge(u, v), we consider again two different cases: (1) the
deletion of an edge (u, v) that is not in any spanning tree and (2) the deletion of a spanning
tree edge (u, v). If there is no pointer from (u, v) to an occurence in any Euler tour, we are
in case (1) and (u, v) was not a spanning tree edge. The algorithm then checks whether
the chunk pairs linked by (u, v) are still linked without (u, v) by scanning all, thanks to the
degree bound at most 3K many edges of one of the two chunks per pair. If not, it marks the
two chunks as unlinked with Unlink.

If there are pointers from (u, v) to occurences in an Euler tour, we are in case (2) and
(u, v) was a spanning tree edge. Let P1, (u, v), P2, (v, u), P3 be the decomposition of the Euler
tour of its tree T . By two applications of Query the algorithm checks whether there are any
links between P1 and P2 or P3 and P2, respectively.

If there are no such edges then it first reorders the chunk array, so that P1 and P3 are
consecutive, moving P2 towards the end, and then splits it into the two parts P1, P3 and P2.

If there is such an edge, let us assume there are chunks C1 in P1 and C2 in P2 that are
linked. The algorithm inspects all edges in C1 in parallel and tests, whether their partner
edge is in C2. It then either picks an arbitrary edge (if the PRAM model supports that) or
computes the minimum edge with this property. Let the chosen replacement edge be (w1, w2).
Decomposing P1 into P ′

1, P ′′
1 , separated at w1, and P2 into P ′

2, P ′′
2 , separated at w2, the new

Euler cycle is P ′
1, (w1, w2), P ′′

2 , P ′
2, (w2, w1), P ′′

1 , P3. It can be constructed in T by splitting
C1 and C2 into two chunks, with the help of two newly inserted chunks, reordering the array,
and repairing small chunks, similarly to the above case of inserting a new tree edge.

The work of the algorithm is dominated by finding a replacement edge. It requires two
initial calls to Query of the ChunkArrays data type requiring O(J polylog J) or O(J1+ϵ)
work, depending on the PRAM model. Then it requires work O(K) to identify all at most 3K

possible replacement edges. In the arbitrary model the choice of the actual edge is immediate.
In the common model, it might take work O(K1+ϵ). Apart from that, the algorithm applies
a constant number of calls to operations of ChunkArrays that all require O(J polylog J)
work. By Lemma 3.5 and the choice of J and K we get the desired work bounds.

The operations ActivateNode and DeactivateNode can be easily implemented in constant
sequential time. ◀

3.2 From bounded to unbounded degree and from m to n

We first show Proposition 3.3 which alllows us to conclude that Proposition 3.2 can be lifted
to graphs without a degree restriction.

Proof sketch (of Proposition 3.3). Like for [12] our algorithm uses the well known graph
reduction already used by [5]. To maintain connectivity for an unrestricted graph G, the
algorithm maintains a graph G′ of degree at most 3, which is connected if and only if G

is connected. The number of nodes of this graph is initialised as cn, where c is as in the
statement of the proposition. The idea of the reduction is to replace each node v of G of
degree d > 3 in G′ by a cycle of length d and to connect each node of the cycle to one node
adjacent to v.

More formally, G′ has two nodes, denoted as n(u, v) and n(v, u), for each (undirected)
edge (u, v) of G and one node, denoted v, for each isolated node v of G.

For each non-isolated node u of G, the nodes of the form n(u, v) are connected in some
cyclic order. To this end, the algorithm maintains a doubly linked list of nodes of G′, for
each node u of G.
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An insertion of a new edge (u, v) into G translates into activating two new nodes n(u, v)
and n(v, u) in G′, to connect them with each other and to insert them at an arbitrary position
into the cycle of u and v respectively. Together, this yields 2 node additions, 2 edge deletions
and 5 edge insertions.

A deletion of an edge (u, v) boils down to the reverse operations: 5 edge deletions, 2 edge
insertions and 2 node deactivations.

And obviously, a connectivity query towards G can just be translated into a connectivity
query towards G′.

Altogether, each operation for G can be translated into a constant number of operations
for G′. The number of nodes of G′ is linear in the number of edges plus the number of
(isolated) nodes of G. Therefore, the work bounds Õ(m 1

2 ) and O(m 1
2 +ϵ) for G′ translates

into a work bound Õ(m 1
2 ) and O(m 1

2 +ϵ) for G. ◀

The final step towards Theorem 3.1 is to show that the work bounds Õ(m 1
2 ) and O(m 1

2 +ϵ)
for maintaining SpanningForest can be replaced by Õ(n 1

2 ) and O(n 1
2 +ϵ), thus showing

Proposition 3.4. We use the sparsification technique of [4] which has also been used in [12]
to maintain Connectivity in a parallel setting.

In a nutshell, the approach is to maintain a so-called sparsification tree S, that is a rooted
tree of logarithmic depth in n, each node u of which represents a certain subgraph Gu of G

and carries additional structure. The root represents the whole graph, each leaf represents
a subgraph consisting of (at most) one edge, and the graph of each inner node is basically
the union of the edge sets of the graphs of its children. The crucial idea is that S has an
additional base graph Bu, for each tree node, which has a subset of the edges of Gu of linear
size, and has the same connected components (viewed as sets of nodes) as Gu. Furthermore,
the algorithm maintains a spanning forest Fu of Bu (and thus for Gu), for each tree node u,
using the algorithm with work bound Õ(n 1

2 ) or O(m 1
2 +ϵ) depending on the PRAM model.

It has the invariant that, for each inner node u, Bu consists of all edges of the spanning
forests Fv, for all children v of u. As this number will be a constant (in fact: 4), the invariant
guarantees the linear number of edges of Bu.

We will see that each change operation can be basically handled by triggering change
operations along one path of the tree. Since the base graph of a node at level i has
at most cn

2i many edges, for some constant c, and, the overall work can be bounded by
Õ(n 1

2 log n) = Õ(n 1
2 ) and O(n 1

2 +ϵ′ log n) = O(n 1
2 +ϵ), if ϵ′ is chosen appropriately.8

We next describe the underlying tree structure of S in more detail. It relies9 on a node
partition tree N (G): it is a binary tree, in which each node is a set U of nodes of G. The
root is the set V of all nodes and, for each inner node U with children U1, U2, U is the
disjoint union of U1 and U2 and the sizes of U1 and U2 differ by at most 1. The leaves are
the singleton sets. Clearly this tree has depth at most log(n) + 1. We emphasise that the
partitions are independent of the edge set of G, they do not need to partition the graph into
meaningful clusters.

The edge set of G and N (G) determine the structure of the sparsification tree S and its
graphs Gu as follows. For each level i of N (G), S has one node Gu, for each pair (V1, V2)
of nodes of N (G) of level i. Here, V1 = V2 is allowed. The node set of Gu is V1 ∪ V2 and

8 In fact, using the sizes of the base graphs along a path and the “well-behavedness” of n
1
2 +ϵ, one actually

gets a O(n
1
2 +ϵ) bound, directly.

9 We remark that for our algorithm it is actually not important how the (potential) edges of the graph G
are exactly partitioned in the sparsification tree, as long as it has constant branching, logarithmic depth
and the correspondence between edge sets of nodes and of their children. The definition with the help
of the node partition tree is just one concrete way of doing it.
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the edges are the edges of G that connect a node from V1 with a node from V2. If V1 = V2,
then Gu is thus just the subgraph of G induced by V1. If U1 is the parent of V1 and U2 the
parent of V2 in N (G), then the node corresponding to (U1, U2) is the parent of (V1, V2) in S.
For a leaf u, Gu either has one edge or has no edges, if the edge for the pair (x, y) of nodes
corresponding to u is not present in G.

The base graphs Bu and the spanning forests Fu can be chosen in any way that is
consistent with the invariant that, for each inner node u, Bu consists of all edges of the
spanning forests Fv, for all children v of u.

Although our presentation slightly differs from [4, 12], the node partition tree and the
sparsification tree are basically the same as there.

Before we present the proof of Proposition 3.4, we state some helpful observations about S.
(1) Each edge (x, y) of G occurs exactly in the graphs Gu along the paths from the leaf with

(x, y) to the root.
(2) If two nodes x, y are in the same connected component in Gu, this also holds in all Gv,

where v is an ancestor of u.
(3) If an edge (x, y) occurs in some spanning forest Fu, then it occurs in all spanning forests

Fv on the path from u to the leaf containing (x, y).

Proof sketch (of Proposition 3.4). The algorithm maintains a sparsification tree S for the
graph G. For each node u of S it maintains a spanning forest Fu for Bu (and implicitly, for
Gu) with the help of the algorithm for SpanningForest from Proposition 3.3, with c = 4.

If an edge (x, y) is inserted to G, the algorithm checks, for each node u on the path π

from the leaf for (x, y) to the root, whether x and y are in the same connected component of
Tu. From Observation (2) it follows that the nodes u, for which this is not the case constitute
some initial segment of π. For all these nodes u, (x, y) is added to Bu and Tu. Furthermore,
it is added to Bv of the parent v of the last node of π.

The deletion of an edge (x, y) is slightly more complicated. For all nodes u on the path
from the leaf v with (x, y) to the root, the algorithm tests in parallel, whether (x, y) occurs
in Fu. Thanks to Observation (3), the nodes v, for which this test is positive form an
initial segment π′ of π up to some node w. For each of these nodes, the algorithm computes
a replacement edge for (x, y), if such exists. Thanks to Observation (2), a replacement
edge that works for some Fv is also a replacement edge for all nodes on π′ above v. In
particular, all edges v, for which Fv has a replacement edge form an upper segment of π′

and the replacement edge for the lowest Fv can be used for all of them. Therefore, after
doing the initial test and computing a replacement edge for each forest, constant time and
work O((log n)2) suffice to determine the lowest node w and its replacement edge e. Since
(log n)2 = O(polylog n) and (log n)2 = O(nϵ), for each ϵ > 0, this work can be neglected.
Afterwards, for each node u of π′ above w, (x, y) is deleted from Bu and Fu and instead e is
added. In the base graph of the parent of w, edge (x, y) is deleted and e added.

As already explained above, the algorithm applies at most a logarithmic (in n) number
of times an operation of the algorithm underlying Proposition 3.3, for a base graph, i.e., a
graph with O(n) edges. The desired work bound Õ(n 1

2 ) for arbitrary CRCW PRAMs is
thus immediate and by choosing in Proposition 3.3, any ϵ′ < ϵ instead of the given ϵ, we can
establish the desired work bound O(n 1

2 +ϵ) for common CRCW PRAMs. ◀

4 Bipartiteness

In this section, we show that the work bound established for Connectivity in Section 3 also
holds for Bipartiteness. In fact, the algorithm will rely on the algorithm of Proposition 3.3.
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▶ Theorem 4.1. There are dynamic parallel constant-time algorithms for Bipartiteness
with the following work bounds per change or query operation.

Õ(n 1
2 ) work on the arbitrary CRCW PRAM model.

O(n 1
2 +ϵ) work on the common CRCW PRAM model, for every ϵ > 0.

The result follows from an analogous series of statements, as for Connectivity (or
SpanningForest, for that matter).

▶ Proposition 4.2. There are dynamic parallel constant time algorithms for the special case
of Bipartiteness, where the maximum degree of the graph never exceeds 3 with the following
work bounds per change or query operation.

Õ(m 1
2 ) on the arbitrary CRCW PRAM model.

O(m 1
2 +ϵ) on the common CRCW PRAM model, for every ϵ > 0.

▶ Proposition 4.3. If Bipartiteness can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 4.2 per change or query operation, for
any ϵ > 0, for graphs with maximum degree 3, it can be maintained with the same bounds
for general graphs with the provision that they never have more than cn edges, for some
constant c.

▶ Proposition 4.4. If Bipartiteness can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 4.2 per change or query operation, then
it can also be maintained with Õ(n 1

2 ) work per change or query operation on the common
CRCW model and with O(n 1

2 +ϵ) work per change or query operation on the arbitrary CRCW
model.

For an undirected graph G = (V, E), we write G(2) for the graph10 (V, E(2)), where a
pair (u, v) of nodes is in E(2), if they are connected by a path of length exactly 2 in G.

Bipartiteness of a graph G can be characterised in the following way by the numbers of
connected components of G and G(2).

▶ Lemma 4.5. An undirected graph G is bipartite, if and only if the number of connected
components of G(2) is twice the number of connected components of G.

Proof. It suffices to show that a connected graph G is bipartite if and only if G(2) has 2
connected components.

Let us assume first that G is bipartite and let the nodes of G be coloured with black or
yellow such that no two nodes of the same color are connected by an edge. Clearly, each pair
of nodes of the same color is connected by a path of even length in G and is therefore in the
same connected component in G(2).

Towards a contradiction, let us assume that G(2) is connected. Then there must be a
yellow node u and a black node v that are connected by an edge in G(2). Therefore, there
must be a node w, such that (u, w) and (w, v) are edges in G. But w can neither be black
nor yellow, the desired contradiction.

Let us now assume that G is not bipartite and let C be a cycle of G of odd length. Then
all pairs of nodes of C are connected by paths of even length and therefore all nodes of C are
in the same connected component of G(2). But clearly, each other node of G is connected by
a path of even length to some node of C and thus G(2) is connected. ◀

10 G(2) should not be confused with the square G2 of G, where edges are induced by paths of length at
most 2.
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With the help of Lemma 4.5, it is now easy to find an algorithm for Bipartiteness for
graphs of degree at most 3.

Proof (of Proposition 4.2). To maintain bipartiteness for a graph G of maximum degree 3,
the algorithm maintains two instances of SpanningForest, one for G, and one for G(2). It
answers that G is bipartite, whenever the number of connected components of G(2) is twice
the number of connected components of G.

An edge insertion in G results in at most 6 edge insertions in G(2), and likewise for edge
deletions. Furthermore, the number of edges of G(2) is at most 3m, if m is the number of
edges of G. Therefore, Bipartiteness can be maintained in parallel constant time with
work Õ(m 1

2 ) or rather O(m 1
2 +ϵ), thanks to Proposition 3.3. ◀

Next we lift the bound to graphs of unbounded degree with the help of a bipartiteness
preserving reduction.

Proof (of Proposition 4.3). To maintain bipartiteness of graph G, the algorithm again
maintains bipartiteness for a graph G′ of maximal degree 3, such that G is bipartite if and
only if G′ is bipartite. The graph G′ results from G by applying the following replacement
step, consecutively to all (original) nodes of G.

A node u of degree d > 1 is replaced by a cycle u1, u′
1, u2, · · · , u′

d, u1 with 2d nodes. Each
node ui is connected to a neighbour of u by an edge. It is easy to see that any path that
connects two neighbours of u and uses intermediate nodes of the new cycle has even length.
The construction therefore preserves bipartiteness. Furthermore, each node in G′ has degree
at most 3 and the number of edges of G′ is at most 6 times the number of edges of G. Finally,
each edge insertion or deletion in G triggers at most 5 edge insertions or deletions in G′. ◀

The final step from work Õ(m 1
2 ) to Õ(n 1

2 ) and work O(m 1
2 +ϵ) to O(n 1

2 +ϵ) again uses
sparsification. In fact, it uses the same kind of sparsification tree as the proof of Proposition 3.4.
The crucial observation is that if a graph G is not bipartite, it has a base graph in its
sparsification tree that is not bipartite.

▶ Lemma 4.6. Let G be an undirected graph and S a sparsification tree for G. Then G is
bipartite if and only if all base graphs in S are bipartite.

Proof. Since each base graph of S is a subgraph of G, the “only if” implication is trivial.
To show the “if” implication, let G be a non-bipartite graph. Since the graph Gr for the

root r of S is non-bipartite, but all graphs Gv for leaves v of S are bipartite, there must be
a node u, such that Gu is non-bipartite, but all graphs Gw, for children w of u, are bipartite.
We claim that the base graph Bu is non-bipartite.

Indeed, let C be some cycle of odd length in Gu. By construction of S, each edge (x, y)
of C occurs in some graph Gw, where w is a child of u. Therefore, x and y are in the same
connected component of Gw and there must be a path between x and y in the spanning
forest Fw. Since Gw is bipartite and there is an edge between x and y, the length of this
path must be odd. By definition, all edges of this path are in Bu. Since this holds for every
edge of C, there exists a closed path in Bu, consisting of an odd number of paths of odd
length. This implies that Bu has a cycle of odd length and is therefore not bipartite. ◀

Now we are prepared to give the proof of Proposition 4.4 and thus complete the proof of
Theorem 4.1.
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Proof (of Proposition 4.4). Just like for Proposition 3.4, the algorithm maintains a sparsi-
fication tree S for the graph G. For each node u of S it maintains whether Bu is bipartite
with the algorithm resulting from Proposition 4.2 and Proposition 4.3. This is possible with
work bounds Õ(n 1

2 ) and O(n 1
2 +ϵ) per change operation, just as for Proposition 3.4.

On top of that, the algorithm maintains, for each node u of S, a flag, signalling whether
all base graphs in the tree induced by u are bipartite. These flags can be maintained in
a straightforward fashion with work O(log n). The bipartiteness status of G can then be
inferred from the flag of the root of S, thanks to Lemma 4.6. ◀

5 Conclusion

This paper was motivated by the goal to find graph problems whose sublinear sequential
dynamic complexity carries over to sublinear work of a dynamic parallel constant time
algorithm. In future work it has to be seen whether the faster algorithm from [1] can
be translated equally well. Another challenge is to find a dynamic parallel constant time
algorithm for the reachability problem in directed graphs. The upper work bound of the
algorithm stemming from [2] is roughly O(n12). Another interesting question is whether
the algorithm for Bipartiteness can be adapted so that it also yields a 2-colouring of the
graph.
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