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Abstract
The paper completely characterizes the primality of acyclic DFAs, where a DFA A is prime if there
do not exist DFAs A1, . . . , At with L(A) =

⋂t

i=1 L(Ai) such that each Ai has strictly less states
than the minimal DFA recognizing the same language as A. A regular language is prime if its
minimal DFA is prime. Thus, this result also characterizes the primality of finite languages.

Further, the NL-completeness of the corresponding decision problem Prime-DFAfin is proven.
The paper also characterizes the primality of acyclic DFAs under two different notions of composi-
tionality, union and union-intersection compositionality.

Additionally, the paper introduces the notion of S-primality, where a DFA A is S-prime if there
do not exist DFAs A1, . . . , At with L(A) =

⋂t

i=1 L(Ai) such that each Ai has strictly less states
than A itself. It is proven that the problem of deciding S-primality for a given DFA is NL-hard. To
do so, the NL-completeness of 2Minimal-DFA, the basic problem of deciding minimality for a DFA
with at most two letters, is proven.
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1 Introduction

Under intersection compositionality a deterministic finite automaton (DFA) A is composite if
there exist DFAs A1, . . . ,At with L(A) =

⋂t
i=1 L(Ai) such that the size of each Ai is smaller

than the index of A. Otherwise, A is prime [10]. The index of A is the size of the minimal
DFA recognizing the same language as A. Prime-DFA denotes the problem of deciding
primality for a given DFA. Prime-DFAfin denotes the restriction of Prime-DFA to DFAs
recognizing a finite language.

Compositionality in general is a key concept in both practical and theoretical computer
science [3, 16]. The intersection decomposition of finite automata can be motivated by LTL
model checking as well as automaton identification. Both will be briefly discussed below.

The notion of intersection compositionality of finite automata was introduced in [10],
while a limitation of this notion was already studied in [5]. Surprisingly, [10] found even the
complexity of the basic problem Prime-DFA to be open. They proved that Prime-DFA is
in ExpSpace and is NL-hard. So far, this doubly exponential gap has not been closed.

Given the difficulties in tackling the general problem, it has proven fruitful to characterize
the intersection compositionality of fragments of the regular languages [10, 8, 9]. Our study
joins this line of research by completely characterizing the intersection compositionality of
acyclic DFAs (ADFA) and thereby of finite languages. Further, we prove the NL-completeness
of Prime-DFAfin and characterize the compositionality of finite languages under two different
notions of compositionality suggested in [10], union and union-intersection compositionality.
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83:2 Decomposing Finite Languages

Additionally, we present a proof of the NL-completeness of the basic problem 2Minimal-
DFA, the problem of deciding minimality for a DFA with at most two letters. For arbitrary
alphabets, the NL-hardness is a folklore result that seemingly has not been explicitly published
but follows from the constructions in [2], while the NL-hardness of 2Minimal-DFA appears
to be new [4]. We use this result to establish complexity boundaries for S-Prime-DFA, a
modification of Prime-DFA using the size of the given DFA, not its index.

Related Work. The notion of intersection compositionality was introduced in [10], where the
aforementioned complexity boundaries were established. They already considered language
fragments, analyzing safety DFAs and permutation DFAs. This line of research was followed
up in [8, 9], which focused on unary DFAs and permutation DFAs, respectively.

The intersection decomposition of automata can be motivated by LTL model checking,
where the validity of a specification, given as an LTL formula, is checked for a system. The
automata-based approach entails translating the specification into a finite automaton [17].
Since the LTL model checking problem is PSpace-complete in the size of the LTL formula [1],
it is desirable to decompose the formula into a conjunction of subformulas. This can also be
understood as decomposing the finite automaton corresponding to the formula.

Another application of intersection decomposition arises in the field of automaton identi-
fication. The basic task here is, given a set of labeled words, to construct a finite automaton
conforming to this set [6]. An interesting approach is to construct multiple automata instead
of one, which can lead to smaller and more intuitive solutions [11].

An alternative notion of compositionality uses concatenation. Here, a language L is
composite if there exist two non-trivial languages L1, L2 with L = L1L2. The concatenation
primality problem for regular languages is PSpace-complete [12]. The restriction to finite
languages is known to be NP-hard [15], while the conjectured NP-completeness of this
restriction remains open [14, 13, 18].

Contributions. In Section 3 we completely characterize the intersection compositionality of
ADFAs and thereby of finite languages. We expand on this by proving the NL-completeness
of Prime-DFAfin in Section 4, thus showing that finite languages are significantly easier to
handle under intersection compositionality than under concatenation compositionality. We
characterize the union and union-intersection compositionality of finite languages in Section 5,
where we also prove the existence of languages that are union-intersection composite but
both union prime and intersection prime.

In Section 6 we introduce the problem S-Prime-DFA, which is analogous to Prime-DFA
but uses the size for the definition of compositionality, not the index. We prove that S-Prime-
DFA is in ExpSpace and is NL-hard. We also prove these boundaries for 2Prime-DFA
and 2S-Prime-DFA, the restrictions of the respective problems to DFAs with at most two
letters. To establish these boundaries we prove the NL-completeness of 2Minimal-DFA.

Detailed proofs of these results are provided in the appendix.

2 Preliminaries

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, Σ, qI , δ, F ), where Q is a finite
set of states, Σ is a finite non-empty alphabet, qI ∈ Q is an initial state, δ : Q× Σ→ Q is a
transition function, and F ⊆ Q is a set of accepting states. As usual, we extend δ to words:
δ : Q× Σ∗ → Q with δ(q, ε) = q and δ(q, σ1 . . . σn) = δ(δ(q, σ1 . . . σn−1), σn). For q ∈ Q, the
DFA Aq is constructed out of A by setting q as the initial state, thus Aq = (Q, Σ, q, δ, F ).

The run of A on a word w = σ1 . . . σn starting in state q is the sequence
q0, σ1, q1, . . . , σn, qn with q0 = q and qi = δ(qi−1, σi) for each i ∈ {1, . . . , n}. The ini-
tial run of A on w is the run of A on w starting in qI . The run of A on w starting in q
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is accepting if qn ∈ F , otherwise it is rejecting. The DFA A accepts w if the initial run of
A on w is accepting. Otherwise, it rejects w. The language L(A) of A is the set of words
accepted by A. We say that A recognizes L(A). A language is regular if there exists a DFA
recognizing it. Since we only consider regular languages, we use the terms language and
regular language interchangeably.

The size |A| of A is the number of states in Q. The DFA A is minimal if L(A) ̸= L(B)
holds for every DFA B with |B| < |A|. It is well known that for every regular language L

there exists a canonical minimal DFA recognizing L. The index ind(L) of L is the size of
this canonical minimal DFA. The index of A is the index of the language recognized by A,
thus ind(A) = ind(L(A)). Note that A is minimal iff |A| = ind(A).

We borrow a few terms from graph theory. Let q0, σ1, q1, . . . , σn, qn be the run of A on
w = σ1 . . . σn starting in q0. Then q0, . . . , qn is a path in A from q0 to qn. The length of this
path is n. Thus, for two states q, q′ there exists a path from q to q′ in A of length n iff there
exists a w ∈ Σn with δ(q, w) = q′. The state q′ is reachable from q if there exists a path from
q to q′. Otherwise, q′ is unreachable from q. Obviously, if q′ is reachable from q then there
exists a path from q to q′ of a length strictly smaller than |A|. We say that q′ is reachable if
it is reachable from qI . Otherwise, it is unreachable. A cycle in A is a path q0, . . . , qn in A
where q0 = qn and n ∈ N≥1. The DFA A is acyclic (ADFA) if every cycle in A begins in a
rejecting sink. Clearly, a DFA recognizes a finite language iff its minimal DFA is acyclic.

We call a DFA A = (Q, Σ, qI , δ, F ) linear if for every q, q′ ∈ Q with q ̸= q′ either q′ is
reachable from q or q is reachable from q′, but not both. Thus, in a linear DFA reachability
induces a linear order over the states. Obviously, every linear DFA has exactly one sink.
Furthermore, a minimal ADFA A is linear iff |A| = n + 2, where n is the length of the longest
word in L(A).

Consider a word w = σ1 . . . σn ∈ Σn. A word wv with v ∈ Σ+ is an extension of w. A
word σ1 . . . σiσi+l . . . σn with i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} is a compression of w. An
ADFA A has the compression-extension-property (CEP) if for every w ∈ L(A) with |w| = n,
where n is the length of the longest word in L(A), there exists a compression w′ of w such
that every extension of w′ is rejected by A.

We introduce a type of DFA already inspected in [10]. A regular language L ⊆ Σ∗ is a
safety language if w /∈ L implies wy /∈ L for every y ∈ Σ∗. A DFA A is a safety DFA if L(A)
is a safety language. A regular language L ⊆ Σ∗ is a co-safety language if the complement
language L of L is a safety language. A DFA A is a co-safety DFA if L(A) is a co-safety
language. Clearly, every non-trivial minimal safety DFA has exactly one rejecting state, and
this state is a sink. Conversely, every non-trivial minimal co-safety DFA has exactly one
accepting state, and this state is a sink.

We introduce the notions of intersection compositionality and primality of DFAs and
languages, following the definitions in [10]:

▶ Definition 2.1. For k ∈ N≥1, a DFA A is k-decomposable if there exist DFAs A1, . . . ,At

with L(A) =
⋂t

i=1 L(Ai) and |Ai| ≤ k for each i ∈ {1, . . . , t}, where t ∈ N≥1. We call such
DFAs A1, . . . ,At a k-decomposition of A. We call A composite if A is k-decomposable for a
k < ind(A), that is, if it is (ind(A)− 1)-decomposable. Otherwise, we call A prime. ⌟

We use compositionality or ∩-compositionality when referring to intersection compositionality.
When analyzing the compositionality of a given DFA A, it is sufficient to consider minimal

DFAs B strictly smaller than the minimal DFA of A with L(A) ⊆ L(B). Thus, we define
α(A) = {B | B is a minimal DFA with ind(B) < ind(A) and L(A) ⊆ L(B)}. Obviously,
the DFA A is composite iff L(A) =

⋂
B∈α(A) L(B). We call a word w ∈ (

⋂
B∈α(A) L(B))\L(A)

a primality witness of A. Clearly, the DFA A is composite iff A has no primality witness.
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We extend the notions of k-decompositions, compositionality, primality and primality
witnesses to regular languages by identifying a regular language with its minimal DFA.

We denote the problem of deciding primality for a given DFA with Prime-DFA. We denote
the restriction of Prime-DFA to DFAs recognizing finite languages with Prime-DFAfin.
Prime-DFA is in ExpSpace and is NL-hard [10].

We denote the connectivity problem in directed graphs, which is NL-complete [7], with
STCON. We denote the restriction of STCON to graphs with a maximum outdegree of
two with 2STCON. Clearly, 2STCON is NL-complete as well. We denote the problem
of deciding minimality for a given DFA with Minimal-DFA. For k ∈ N≥2, the problem
kMinimal-DFA is the restriction of Minimal-DFA to DFAs with at most k letters. As
mentioned in Section 1, the NL-completeness of kMinimal-DFA for k ∈ N≥3 is folklore,
while the NL-hardness of 2Minimal-DFA appears to be open.

3 Compositionality of Finite Languages

We characterize the compositionality of ADFAs and thereby of finite languages by proving:

▶ Theorem 3.1. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Then A is prime iff A is linear and:

(i) σn ∈ L(A) for some σ ∈ Σ, where n ∈ N is the length of the longest word in L(A), or
(ii) A is a safety DFA and A does not have the CEP. ⌟

To prove Theorem 3.1 we will consider five cases in turn.
First, if the ADFA A is not linear we essentially have a surplus of states, allowing us to

construct one DFA rejecting overlong words and one specific DFA for each of the remaining
words also rejected by A. This approach fails with linear ADFAs. Nevertheless, we will come
back to the idea of excluding words longer than a threshold value and tailoring a DFA for
each word shorter than the threshold value which has to be rejected as well.

Second, if A is linear and σn ∈ L(A) holds the DFAs in α(A) do not possess enough states
to differentiate the words σ0, . . . , σn but have to accept σn, which implies cyclic behavior on
the words in {σ}∗ from which primality follows.

Third, if there is no σ ∈ Σ with σn ∈ L(A) and A is not a safety DFA we can return
to the idea of excluding words longer than a threshold value. For each of the words left to
reject, it is possible to construct a DFA similar to A but without the rejecting sink, which
circles back to the rejecting non-sink.

Fourth, if there is no σ ∈ Σ with σn ∈ L(A) and A has the CEP we can utilize DFAs
similar to A possessing a rejecting sink, since the CEP allows us to skip over one state.

Fifth and finally, if A is linear and A is a safety DFA and does not have the CEP both of
the above approaches fail. There is no state to circle back to, and for the word breaching the
CEP skipping over states is not possible either, which implies primality.

Formalizing these five cases, we get:

▷ Claim 3.2. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Let n ∈ N be the length of the longest word in L(A). The following assertions
hold:
(a) A is composite if A is not linear.
(b) A is prime if A is linear and σn ∈ L(A) holds for some σ ∈ Σ.
(c) A is composite if there is no σ ∈ Σ with σn ∈ L(A) and A is not a safety DFA.
(d) A is composite if there is no σ ∈ Σ with σn ∈ L(A) and A has the CEP.
(e) A is prime if A is linear and A is a safety DFA and A does not have the CEP. ⌟
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Formalizing the intuition given above for (a) and (b) is not too complex. Assertions
(c)–(e) prove to be much harder. Thus, we commence by discussing (c) in Section 3.1 and
(d) and (e) in Section 3.2. Henceforth, we consider a minimal ADFA A = (Q, Σ, qI , δ, F )
recognizing the non-empty language L with σn /∈ L for each σ ∈ Σ, where n ∈ N is the length
of the longest word in L. W.l.o.g. we assume Q = {q0, . . . , qn+1} with qj being reachable
from qi for all i < j, which implies qI = q0 and qn ∈ F with qn+1 being the rejecting sink.
Finally, we define Σi,j = {σ ∈ Σ | δ(qi, σ) = qj}.

3.1 Linear non-safety ADFAs
We consider Claim 3.2 (c). Therefore, we assume that A is not a safety DFA, which implies
{qn} ⊆ F ⊂ Q \ {qn+1}. Let d ∈ {0, . . . , n− 1} with qd /∈ F .

We show the compositionality of A by specifying an (n + 1)-decomposition of A. First,
we construct DFAs rejecting words not in L that are not extensions of words u ∈ L, |u| = n.
Afterwards, we turn to such extensions, whose handling poses the main difficulty. Here, we
first construct DFAs rejecting such extensions that are longer than a certain threshold value.
For the remaining extensions we employ the idea of circling back to qd.

We begin by considering words not in L which are not extensions of words u ∈ L, |u| = n.
We introduce three DFA types handling these words.

First, let A0 be the DFA constructed out of A by removing qn, redirecting every transition
q → qn to q0, and including q0 into the acceptance set. Clearly, A0 ∈ α(A) and A0 rejects
every w /∈ L on which A enters the rejecting sink prematurely, that is, without entering qn.

Second, let Âd be the DFA constructed out of A by removing qn+1, redirecting every
transition qi → qn+1 with i < n to qn and every transition qn → qn+1 to qd. Clearly,
Âd ∈ α(A) and Âd rejects every w /∈ L on which A does not enter the rejecting sink.

Third, we construct DFAs rejecting extensions of words w ∈ L, |w| < n with δ(q0, w) = qn.
Let I = {0, . . . , n}. For each m ∈ {1, . . . , n− 1} let Im = {(i0, . . . , im) ∈ Im+1 | 0 = i0 <

· · · < im = n}. For each i ∈ Im define Ai as in Figures 1a and 1b. It is easy to confirm that
each Ai is in α(A) and rejects extensions of words on which A visits the states qi0 , . . . , qim .

Lemma 3.3 formalizes the results concerning A0, Âd and Ai:

▶ Lemma 3.3. The following assertions hold:
(i) A0, Âd,Ai ∈ α(A), where i ∈

⋃n−1
m=1 Im.

(ii) Consider a word w /∈ L, where w is not an extension of a word u ∈ L, |u| = n. Then
w /∈ L(A0) ∩ L(Âd) ∩

⋂n−1
m=1

⋂
i∈Im

L(Ai) holds. ⌟

Next, we turn to the extensions of words u ∈ L, |u| = n. We begin by constructing DFAs
that taken together reject every word strictly longer than n + (n− 2). Then we turn to the
remaining extensions one by one, of which only a finite number are left to reject.

Let σ ∈ Σ. Since σn /∈ L, there exists a value i ∈ {1, . . . , n} with σ /∈ Σi−1,i. Define Aσ,i

as in Figure 1c. First, note that Aσ,i ∈ α(A) because a word rejected by Aσ,i is strictly longer
n or is of length n with letter σ at position i. Next, consider a word w = σ1 . . . σm ∈ Σm

such that σj = σ for a j ∈ {1, . . . , m} with j ≥ i and m ≥ j + (n − i). After reading the
prefix σ1 . . . σj−1 the DFA Aσ,i is at least in state qi−1. Thus, after reading σ1 . . . σj it is at
least in state qi and will reject after reading n− i more letters. Since m ≥ j + (n− i), we
have w /∈ L(Aσ,i). Lemma 3.4 formalizes this result:

▶ Lemma 3.4. Let σ ∈ Σ and i ∈ {1, . . . , n} with σ /∈ Σi−1,i. The following assertions hold:
(i) Aσ,i ∈ α(A).
(ii) Let m ∈ N. Let w ∈ σ1 . . . σm ∈ Σm such that σj = σ for a j ∈ {1, . . . , m} with j ≥ i

and m ≥ j + (n− i). Then w is rejected by Aσ,i. ⌟

MFCS 2023
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q0 qi1 qim−1 qn qn+1

q+

Σ0,i1

Σ0,i1 Σi1,i2

Σim−1,n

Σim−1,n

Σ
Σ

Σ

(a) Ai if m < n − 1.

q0 qj−1 qj+1 qn qn+1

Σ0,1

Σj−1,j+1

Σj−1,j+1 Σj+1,j+2

Σ

Σ

(b) Ai if m = n − 1, where i = (0, . . . , j − 1, j + 1, . . . , n).

q0 q1 qi−1 qi qn−1 qn
Σ Σ

Σ \ {σ}

σ Σ Σ

Σ

(c) Aσ,i.

Figure 1 DFA Ai for i ∈ Im with m ∈ {1, . . . , n − 1} and DFA Aσ,i for σ ∈ Σ, i ∈ {1, . . . , n}.

Now consider a word w = σ1 . . . σm ∈ Σm with m ≥ n + (n− 1) and σ1 . . . σn ∈ L. Note
that Lemma 3.4 implies w /∈ L(Aσn,i) where i ∈ {1, . . . , n} with σn /∈ Σi−1,i. With this
limitation of length, we only need DFAs to reject the extensions of words u ∈ L, |u| = n with
a maximum length of n + (n− 2). Consider such an extension w = σ1 . . . σm ∈ Σm. That is,
n + 1 ≤ m ≤ n + (n− 2) and σ1 . . . σn ∈ L. This implies σi ∈ Σi−1,i for each i ∈ {1, . . . , n}
but provides no information about the σi with i ∈ {n + 1, . . . , m}. Therefore, we construct
DFAs rejecting every such extension not confirming to a certain structure. This structure
will be key to the further DFA constructions.

For a word w ∈ Σ∗, let A!
w be the DFA rejecting exactly the words containing w as a

subsequence. Clearly, the following holds:

▶ Lemma 3.5. Let w /∈ L, |w| = n. Then A!
w ∈ α(A) holds. ⌟

With the DFAs A!
w for every w /∈ L, |w| = n in hand, we only have to consider extensions

of words u ∈ L, |u| = n with a maximum length of n + (n− 2) for which every subsequence
of length n is in L.

Let w = σ1 . . . σm be an extension satisfying these conditions. We construct a DFA
Ãw ∈ α(A) rejecting w. We utilize the rejecting state qd and define Ãw = (Q̃w, Σ, q0, δ̃w, F̃w)
with Q̃ = {q0, . . . , qn}, F̃w = Q̃w \ {qd} and δ̃w(q0, w) = qd. Further, we have δ̃w(q0, v) = qd

for a v ∈ Σ∗ only if δ(q0, v) ∈ {qd, qn+1}, ensuring Ãw ∈ α(A). In order to utilize qd in this
manner, the DFA Ãw simulates the behavior of A for the states q0, . . . , qd−1. The task then
is to select the transitions of states qd, . . . , qn.

If |σd+1 . . . σm|σm
≤ n− d the DFA Ãw can simply advance for occurrences of σm and

the first n− d− |σd+1 . . . σm−1|σm
occurrences of letters unequal to σm. Thus, we only have

to consider the case |σd+1 . . . σm|σm
> n− d.
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If σn+1 ̸= σm the DFA Ãw can advance for each letter in Σ, ensuring δ̃w(qd, σd+1 . . . σn) =
qn. Further, we can define δ̃w(qn, σn+1) = qn−[(m−1)−(n+2)+1] and δ̃w(qn, σm) = qd. Note
that |σn+2 . . . σm−1| = (m− 1)− (n + 2) + 1. Since every subsequence of w of length n is in
L, we have δ̃w(qn−[(m−1)−(n+2)+1], σn+2 . . . σm−1) = qn.

The case σn+1 = σm is more complex and needs a further case distinction, but the idea
used above of circling back after reading an appropriate prefix can be employed again.

Lemma 3.6 summarizes these ideas:

▶ Lemma 3.6. Let w ∈ Σ∗ with |w| > n such that w ∈ L(A!
v) for each v /∈ L, |v| = n and

w ∈
⋂

σ∈Σ L(Aσ,iσ ), where for each σ ∈ Σ it is iσ = max({i ∈ {1, . . . , n} | σ /∈ Σi−1,i}).
Then there exists a DFA Ãw ∈ α(A) rejecting w. ⌟

Lemmas 3.3–3.6 imply Claim 3.2 (c). To be more precise, we have L(A) = L(A0) ∩
L(Âd) ∩

⋂n−1
m=1

⋂
i∈Im

L(Ai) ∩
⋂

σ∈Σ L(Aσ,iσ
) ∩

⋂
w∈X! L(A!

w) ∩
⋂

w∈X̃ L(Ãw), where X ! =
{w ∈ Σn | w /∈ L} and X̃ is the set of all extensions w of words u ∈ L, |u| = n with
|w| ≤ n + (n − 2) for which every subsequence of length n is in L. This proves the
compositionality of A and thereby Claim 3.2 (c).

3.2 Linear safety ADFAs
Next, we consider Claim 3.2 (d) and (e). For (d) we argue that A is composite if it has the
CEP, even if A is a safety DFA, which makes circling back impossible. For (e) we argue that
A is prime if it is a safety DFA and it does not have the CEP.

First, we consider (d). We assume that A has the CEP and argue that this implies
compositionality. Note that we can reuse the DFAs A0 and Ai, while Âd is not needed. This
again leaves the task of rejecting the extensions of words w ∈ L, |w| = n. But, since for
every such word w = σ1 . . . σn there now exist i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} such that
δ(q0, σ1 . . . σiσi+l . . . σn) ∈ {qn, qn+1}, we can construct a DFA Ai,l ∈ α(A) rejecting every
extension of w.

The DFA Ai,l possesses states q0, . . . , qi+l−2, qi+l, . . . , qn+1. It simulates the behavior
of A for states q0, . . . , qi−1, redirecting transitions qj → qi+l−1 to qi. From qi it directly
advances to qi+l if a letter in

⋃n+1
j=i+l Σi,j is read, otherwise it advances to qi+1. The states

qi, . . . , qi+l−2 form a loop. For states qi+l, . . . , qn, every transition leads to the direct successor
state. The state qn+1 is a rejecting sink.

It is shown in the appendix that every extension of w is rejected by Ai,l, where i is
the largest possible value belonging to w, and that Ai,l ∈ α(A). Thus, L(A) = L(A0) ∩⋂n−1

m=1
⋂

i∈Im
L(Ai) ∩

⋂n−2
i=0

⋂n−i
l=2 Ai,l holds, proving the compositionality of A and thus (d).

Next, we consider (e) and assume that A is a safety DFA and does not have the CEP.
Thus, there is a w = σ1 . . . σn such that δ(q0, σ1 . . . σiσi+l . . . σn) /∈ {qn, qn+1} holds for every
i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i}. This implies the existence of a letter σ ∈ Σn−1,n with
σ /∈ Σj,n+1 for every j ∈ {0, . . . , n − 1}. We show in the appendix that wσ is a primality
witness of A, thus proving the primality of A and thereby (e).

This completes our discussion of Claim 3.2 (a)-(e). Since they imply Theorem 3.1, we
have characterized the compositionality of ADFAs and thereby of finite languages.

4 Complexity of Prime-DFAfin

After characterizing the compositionality of ADFAs and thereby of finite languages in
Section 3, we now analyze the complexity of Prime-DFAfin. We argue:

▶ Theorem 4.1. The problem Prime-DFAfin is NL-complete. The NL-completeness holds
true even when restricting Prime-DFAfin to DFAs with at most two letters. ⌟
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Algorithm 1 NL-algorithm for Prime-DFAfin.

Require: DFA A = (Q, Σ, q0, δ, F ) with Q = {q0, . . . , qm} recognizing a finite language L.
Ensure: The DFA A is prime.

1: Accept if L = ∅.
2: c← 0
3: for all i ∈ {0, . . . , m} do
4: if qi is unreachable then
5: c← c + 1
6: else
7: j ← 0, b← true
8: while j ≤ i− 1 and b do
9: if qj is reachable and L(Aqi) = L(Aqj ) then

10: c← c + 1
11: b← false
12: end if
13: j ← j + 1
14: end while
15: end if
16: end for
17: n← (m + 1)− c− 2
18: Choose nondeterministically a word w ∈ Σn. Reject if w /∈ L.
19: Choose nondeterministically a letter σ ∈ Σ. Accept if σn ∈ L.
20: for all i ∈ {0, . . . , m} where qi is not unreachable do
21: Reject if qi /∈ F and L(Aqi) ̸= ∅.
22: end for
23: for all x ∈ {1, . . . , n} do
24: Choose nondeterministically a word w = σ1 . . . σn ∈ Σn. Reject if w /∈ L.
25: for all i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} with i + l = x do
26: Choose nondeterministically a word w′ = σ′

1 . . . σ′
n ∈ Σn with σ′

i+l = σx and a word
v ∈ Σ+. Reject if w′ /∈ L or if σ′

1 . . . σ′
iσ

′
i+l . . . σ′

nv /∈ L.
27: end for
28: end for
29: Accept.

We begin by arguing that Prime-DFAfin is in NL, providing an NL-algorithm for
Prime-DFAfin with Algorithm 1. The algorithm accepts in line 1 if the given DFA A
recognizes the empty language. Then lines 2-18 ensure that the minimal DFA belonging to
A is linear. Lines 19-22 ensure that A is accepted if a letter σ ∈ Σ with σn ∈ L exists or else
that A is rejected if it is not a safety DFA. Finally, in lines 23-29 the CEP is checked for A.

The NL-hardness of Prime-DFAfin can be proven by L-reducing STCONDAG to
Prime-DFAfin, where STCONDAG is the restriction of STCON to acyclic graphs. The
L-reduction is similar to the L-reduction of STCON to the emptiness problem for DFAs.

5 Finite Languages under Different Notions of Compositionality

So far, we have only considered ∩-compositionality. Now we will define two further notions of
compositionality and characterize the compositionality of finite languages for these notions.
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▶ Definition 5.1. For k ∈ N≥1, a DFA A is k-∪-decomposable (k-DNF-decomposable) if
there exist DFAs A1, . . . ,At (A1,1, . . . ,A1,t1 , . . . ,As,1, . . . ,As,ts

) with L(A) =
⋃t

i=1 L(Ai)
(L(A) =

⋃s
i=1

⋂ti

j=1 L(Ai,j)) and |Ai| < k for every i (|Ai,j | < k for every pair i, j). The
further concepts introduced in Definition 2.1 are defined analogously. ⌟

In [10], it is correctly remarked that many results for ∩-compositionality can be trivially
transferred to ∪-compositionality. For example, the complexity boundaries for Prime-DFA
established in [10] also hold for ∪-compositionality. This does not hold true for results
concerning language fragments that are not closed under complement. In particular, the
complement language of a finite language is not finite, but co-finite. Thus, characterizing the
∪-compositionality of finite languages is equivalent to characterizing ∩-compositionality of
co-finite languages.

Also in [10], the notion of compositionality allowing both union and intersection is
suggested. Note that DNF-compositionality enforces a structure similar to a disjunctive
normal from, but is as strong as unrestricted union-intersection compositionality. It is correctly
remarked in [10] that union-intersection compositionality - and thus, DNF-compositionality
- is strictly stronger than ∩-compositionality. Obviously, it is also strictly stronger than
∪-compositionality. It is less obvious whether languages exist that are DNF-composite, but
are neither ∩- nor ∪-composite. We will see that there are finite languages witnessing this.

The following result characterizes the ∪- and DNF-compositionality of finite languages:

▶ Theorem 5.2. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Let n ∈ N be the length of the longest word in L(A). The following assertions hold:

(i) A is ∪-prime iff A is linear.
(ii) A is DNF-prime iff A is linear and there exists a σ ∈ Σ with σn ∈ L(A). ⌟

These conditions are similar to the conditions in Theorem 3.1, but much simpler. Let A
and n be as required. It is easy to show ∪- and DNF-compositionality if A is not linear.

The proof of ∪-primality if A is linear relies on the observation that every minimal DFA
B with L(B) ⊆ L(A) and ind(B) < ind(A) has to have a rejecting sink. From this follows
that no such DFA B can accept a word w ∈ L(A), |w| = n. Thus, A is ∪-prime.

If A is linear and there exists no σ ∈ Σ with σn ∈ L(A) the DNF-compositionality of A
follows from [10, Example 3.2]. On the other hand, if A is linear and there exists a σ ∈ Σ
with σn ∈ L(A) DNF-primality can be shown by adapting the proof of Claim 3.2 (b).

As mentioned, Theorems 3.1 and 5.2 immediately imply:

▶ Theorem 5.3. There exists a finite language that is DNF-composite but ∩- and ∪-prime. ⌟

To summarize, Theorems 3.1 and 5.2 characterize the ∩-, ∪- and DNF-compositionality
of ADFAs and thus of finite languages. Obviously, this characterizes the ∩-, ∪- and DNF-
compositionality of co-finite languages as well. The results further imply the existence of
languages that are DNF-composite but ∩- and ∪-prime.

6 2Minimal-DFA and S-Prime-DFA

We defined compositionality using the index of the given DFA. Thus, the compositionality of
a DFA A is a characteristic of L(A). Slightly changing the definition, using the size instead
of the index, turns compositionality of A into a characteristic of A itself. It is interesting to
analyze the effects of this change, which results in the notion of S-compositionality.

Many results known for compositionality hold for S-compositionality as well. The
characterization of finite languages in Section 3 and other results concerning language
fragments [10, 8, 9] are valid with only minor technical modifications. In fact, [8, 9]
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already implicitly used S-compositionality instead of compositionality without discussing the
differences. The upper complexity boundary of Prime-DFA holds for S-Prime-DFA as well.
But the known lower boundary, the NL-hardness of Prime-DFA, cannot simply be adapted
for S-Prime-DFA. The lower boundary for S-Prime-DFA is connected to Minimal-DFA,
since non-minimal DFAs are trivially S-composite. Note that Prime-DFA is connected to
the emptiness problem for DFAs in a similar manner [10].

We begin by discussing Minimal-DFA, proving the NL-hardness of 2Minimal-DFA.
Then we formally introduce S-compositionality and prove the NL-hardness of the restriction
2S-Prime-DFA and thereby of S-Prime-DFA as well. We also prove the NL-hardness of
the restriction 2Prime-DFA, so far only known for the unrestricted problem Prime-DFA.

6.1 NL-hardness of 2Minimal-DFA
As mentioned, the NL-hardness and thus NL-completeness of kMinimal-DFA for k ∈ N≥3
is folklore, while the NL-hardness of 2Minimal-DFA appears to be open. We prove:

▶ Theorem 6.1. The problem 2Minimal-DFA is NL-hard and thus NL-complete. ⌟

The NL-hardness of 3Minimal-DFA can be proven by L-reducing 2STCON to
3Minimal-DFA. This known reduction uses an additional letter and cannot be used to prove
the NL-hardness of 2Minimal-DFA. We give an L-reduction of 2STCON not using an
additional letter, proving the NL-hardness and thus the NL-completeness of 2Minimal-DFA.

Let (G, s, t) be an input for 2STCON. That is, G = (V, E) is a graph with a maximum
outdegree of two and s, t ∈ V are nodes of G. We construct a DFA A = (Q, Σ, qI , δ, F ) with
Σ = {0, 1}, which is minimal iff there exists a path in G from s to t. If s = t such a path
exists trivially and we can construct the minimal DFA for the empty language. Thus, we only
have to consider the case s ̸= t. W.l.o.g. we assume V = {0, . . . , n− 1} and s = 0, t = n− 1.

Let A′ = (Q′, Σ, 0, δ′, F ′) be the DFA constructed out of G in the usual manner, that is,
by turning nodes into states, edges into transitions, setting the state 0 as the initial state
and n − 1 as the only accepting state. For A, we introduce the new states p0, . . . , pn−1,
called p-states, the new states q0, . . . , qn−1 and q′

0, called q-states, and for each i ∈ Q′ the
states i′

0, i′
1, i0, i1. We call the states i, i′

0, i′
1, i0, i1 for i ∈ Q′ v-states. We say that states

pi, qi, i, i′
0, i′

1, i0, i1 for an i ∈ Q′ are located on the same layer. Figure 2 specifies the DFA A
constructed for the L-reduction. We now discuss the key ideas of this construction.

First, note that the idea of the p- and q-states is similar to the known L-reduction of
2STCON to 3Minimal-DFA. The p-states are used to access every state in Q, thus avoiding
unreachable states. The q-states are used to allow the return to 0 from every state.

Second, we cannot use an additional letter to switch from pi to i to qi. Thus, letter 1 is
used to leave the p-states and to exit q0 to state 0. Letter 0 is used to advance to the next
layer in both the p- and q-states. To allow switching from the v-states to the q-states, we
introduce for each i ∈ Q′ a component consisting of i and the two branches i′

0, i0 and i′
1, i1.

The states i′
0, i′

1 are waiting states used to prove the non-equivalence of q- and v-states. The
states i0, i1 implement on the one hand the original transitions in A′, that is, δ(ij , j) = δ′(i, j),
and on the other hand the transitions into the q-states, that is, δ(ij , 1− j) = qi.

Third, an extra q-state q′
0 is introduced, which is only directly accessible from q0. Without

q′
0 the situation δ(11, 1) = 0 = δ(q0, 1) and δ(11, 0) = q1 = δ(q0, 0) would be possible,

immediately implying the non-minimality of A. The introduction of q′
0 solves this problem.

Note that there is a path from 0 to n− 1 in A iff there is such a path in G. Using this it
follows that A is minimal iff there exists a path from 0 to n− 1 in G. Since A can obviously
be constructed in logarithmic space, the given construction is indeed an L-reduction of
2STCON to 2Minimal-DFA. Consequently, 2Minimal-DFA is NL-hard.
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Figure 2 DFA A constructed for the L-reduction of 2STCON to 2Minimal-DFA. The j-
transitions exiting states of the form ij are only indicated.

6.2 Complexity of S-Prime-DFA
We end our discussion by using the construction presented in Section 6.1 to establish
complexity boundaries for S-Prime-DFA. First, we define the notion of S-compositionality.

▶ Definition 6.2. A DFA A is S-composite if there is a k ∈ N≥1, k < |A| such that A is
k-decomposable. Otherwise, A is S-prime. ⌟
We denote the problem of deciding S-primality for a given DFA with S-Prime-DFA and the
restriction of S-Prime-DFA to DFAs with at most k ∈ N≥2 letters with kS-Prime-DFA.

Note that the proof used in [10] to show that Prime-DFA is in ExpSpace is applicable
for S-Prime-DFA with only slight modifications. Next, note that the L-reduction of the
emptiness problem for DFAs to Prime-DFA used in [10] to prove the NL-hardness of Prime-
DFA relies on the fact that every DFA recognizing the empty language is prime. Thus, it
is not easily adaptable for S-Prime-DFA. Instead, the NL-hardness of 2S-Prime-DFA
is shown by using a reduction from 2STCON, which adapts the construction outlined in
Section 6.1. We get:

▶ Theorem 6.3. The problems S-Prime-DFA and kS-Prime-DFA for k ∈ N≥2 are in
ExpSpace and they are NL-hard. ⌟
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Further, we denote with kPrime-DFA the restriction of Prime-DFA to DFAs with at
most k ∈ N≥2 letters and remark that the results presented in [10] can be expanded to:

▶ Theorem 6.4. The problems Prime-DFA and kPrime-DFA for k ∈ N≥2 are in ExpSpace
and they are NL-hard. ⌟

This ends our discussion of the complexity of S-Prime-DFA and its restrictions, in which
we have applied the construction outlined in Section 6.1 to prove NL-hardness.

7 Discussion

We studied the intersection compositionality, also denoted with ∩-compositionality, of reg-
ular languages. We added to the existing line of research focusing on fragments of the
regular languages by analyzing the ∩-compositionality of ADFAs and thereby of finite lan-
guages. This research was in part motivated by existing results concerning the concatenation
compositionality of finite languages.

We completely characterized the ∩-compositionality of ADFAs and thus finite languages.
Using this characterization we proved the NL-completeness of Prime-DFAfin. Thus, finite
languages are significantly easier to handle under ∩-compositionality than under concatenation
compositionality, where the respective primality problem for finite languages is NP-hard [15].

With notions of compositionality using union and both union and intersection already
suggested in [10], we formally introduced the notions of ∪- and DNF-compositionality. We
characterized the ∪- and DNF-compositionality of finite languages, which proved to be
far simpler than the characterization of ∩-compositionality. These results also imply the
characterization of the ∩-, ∪- and DNF-compositionality of co-finite languages.

This suggests that the key feature of finite languages regarding compositionality is not the
finiteness of the languages per se, but rather the existence of only finitely many meaningfully
different runs of the respective DFAs, a feature finite languages have in common not only
with co-finite languages, but also with languages whose minimal DFAs allow for cycles in both
accepting and rejecting sinks. A logical next step would therefore be the characterization of
the compositionality of these DFAs.

We also note that in our proofs we employed ∩-compositionality results concerning a
different language fragment, namely co-safety DFAs, studied in [10]. This suggests the
possibility of employing the results concerning finite languages in future analyses and stresses
the usefulness of working with language fragments. We provided one application of the
results concerning finite languages by using them to prove the existence of a language that is
DNF-composite but ∩- and ∪-prime.

Furthermore, we presented a proof of the NL-hardness and thereby NL-completeness of
the basic problem 2Minimal-DFA. While the NL-hardness of kMinimal-DFA for k ∈ N≥3
is folklore, this result appears to be new.

We utilized this result to establish the known complexity boundaries of Prime-DFA
for the here newly introduced problem S-Prime-DFA. We extended these results to the
restrictions kPrime-DFA and kS-Prime-DFA for k ∈ N≥2.

While it is interesting that a slight variation in the definition of ∩-compositionality, which
does not touch the validity of most results, requires a whole new approach to establish the
known lower complexity boundary, the big task of closing the doubly exponential complexity
gap for Prime-DFA still remains. And now, this gap exists for S-Prime-DFA as well.

Therefore, with the analysis of language fragments, further notions of compositionality,
and the complexity gaps for Prime-DFA and S-Prime-DFA, there is still need for further
research.
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