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Abstract
Specialized hereditary systems, e.g., matroids, are known to have many applications in algorithm
design. We define a new notion called d-polynomoid as a hereditary system (E, F ⊆ 2E) so that
every two maximal sets in F have less than d elements in common. We study the problem that,
given a d-polynomoid (E, F), asks if the ground set E contains ℓ disjoint k-subsets that are not in F ,
and obtain a complexity trichotomy result for all pairs of k ≥ 1 and d ≥ 0. Our algorithmic result
yields a sufficient and necessary condition that decides whether each hypergraph in some classes of
r-uniform hypergraphs has a perfect matching, which has a number of algorithmic applications.
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1 Introduction

Finding the conditions that decide whether an r-uniform hypergraph H contains a perfect
matching has received much attention. Some conditions are based on the minimum degree
of a vertex in H [14, 34, 35], and some are based on the minimum degree of a set of r − 1
vertices in H [38]. More conditions are known for bipartite hypergraphs, such as Hall’s [24],
Aharoni’s [1, 3], and Haxell’s [27], and multipartite hypergraphs [11, 2]. Because finding a
maximum matching for r-uniform hypergraphs with r ≥ 3 is APX-complete [32, 29], any
computationally efficient conditions to decide whether an r-uniform hypergraph with r ≥ 3
contains a perfect matching cannot be both sufficient and necessary unless P = NP. Indeed,
all the conditions above except Hall’s are sufficient but not necessary. In the literature, a
number of polynomial-time algorithms to compute perfect matchings for dense r-uniform
hypergraphs are known [33, 26, 25].

In this paper, we give a sufficient and necessary condition that, for any pair of integers
k > d ≥ 0, the k-uniform hypergraph

H =
(

V, E =
{

e ∈
(

V

k

)
: e ̸⊂ Si for all i ∈ [m]

})
has a perfect matching, where

(
V
k

)
denotes the collection of all k-subsets of V and

S1, S2, . . . , Sm are subsets of V with |Si ∩ Sj | < d for all i ≠ j ∈ [m] := {1, 2, . . . , m}.
We prove also the hardness of finding a maximum matching for such hypergraphs when k ≤ d.
Combining the above, we obtain a complexity trichotomy for our problem for all pairs of k

and d, detailed in Theorem 2.
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84:2 Dependent k-Set Packing on Polynomoids

To better understand the structure of the hypergraphs defined above and compare our
results with related work, we restate finding a maximum matching for such hypergraphs as
the dependent k-set packing on a kind of hereditary systems that we call polynomoids,
defined in Definition 1. Our notation for hereditary systems follows West [42].

▶ Definition 1 (d-Polynomoid). Let d ≥ 0 be an integer. Let (E,F) be a tuple where E is a
finite set and F ⊆ 2E is a non-empty collection of some subsets of E. The sets in F are
called independent sets, and the other subsets of E are dependent sets. We say that
P = (E,F) is a d-polynomoid if P satisfies the following two properties:

Hereditary Property: For every B ∈ F , if A ⊆ B then A ∈ F .
Join Property: For every A, B ∈ F , if |A ∩B| ≥ d then A ∪B ∈ F .

If the join property is removed, then P = (E,F) is a hereditary system [42]; if the join
property is replaced with the exchange property, then P is a matroid [37].

Given a d-polynomoid P = (E,F) and integers k ≥ 1, ℓ ≥ 0, the dependent k-set
packing for P asks if there exist ℓ pairwise disjoint k-sets not in F , where a set is called
k-set if it consists of k elements. If the ℓ disjoint k-sets exist, then output them. Our main
result is a complexity trichotomy for the dependent k-set packing problem on polynomoids,
stated formally in Theorem 2. An illustration is depicted in Figure 1.

▶ Theorem 2. The time complexities of the dependent k-set packing on d-polynomoids for
all pairs of integers k ≥ 1, d ≥ 0 can be classified into the following three categories:
1. If k ≤ d and k ≥ 3, there exists a d-polynomoid P so that the dependent k-set packing for

P is APX-complete.
2. If k ≤ d and k ≤ 2, then:

for k = 2, there exists a d-polynomoid P so that the dependent k-set packing for P is
as hard as the matching problem on ordinary graphs (i.e. 2-uniform hypergraphs);
for k = 1, this is a degenerate case solvable in O(|E|q(1)) time, where q is a function
defined below.

3. Otherwise k > d, for any d-polynomoid P = (E,F),

E contains ⌊|E|/k⌋ disjoint dependent k-sets if and only if r(E) ≤ (1− 1/k)|E|,

where r(E) is the size of a maximum independent subset of E. The dependent k-set
packing can be found in O (k|E|q(2k)) time, where q(t)1 denotes a monotone function
that upper-bounds the running time to test whether a t-subset of E is independent.

It may be worth noting that for some polynomoids computing r(E) requires quadratic
time unless the 3SUM conjecture fails, as shown in Section 2.2. To obtain Theorem 2,
it suffices to test r(E) ≤ (1 − 1/k)|E| without computing the exact value of r(E), which
can be tested in deterministic linear time (Section 4.1). In addition, greedily grouping the
elements in a largest independent set with those from other independent sets in general
cannot work correctly because the condition r(E) ≤ (1 − 1/k)|E| may be violated in the
residual polynomoid obtained from the initial polynomoid with a greedy removal of the
elements in a largest independent set and the corresponding grouped elements from other
independent sets.

In addition to the complexity trichotomy result, Theorem 2 can also be used to yield a
sufficient and necessary condition for each polynomoid when a perfect packing exists, such as
Corollary 3 (also follows from [14]), Corollary 4, Corollary 22, and Corollary 24 (also proven
in [7]).

1 Indeed, it has to be written as qP (t) because it varies among different polynomoids. We suppress the
subscript P when the context is clear.
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Figure 1 A complexity trichotomy for the dependent k-set packing.

▶ Corollary 3. Let G be a 3-uniform hypergraph with at least four vertices. If the number of
vertices in G is a multiple of 3 and every two hyperedges in G have at most one vertex in
common, then the complement of G has a perfect matching.

Proof. Let P = (E,F) where E is the set of vertices in G and F is the set of hyperedges in
G. By definition, P is a 2-polynomoid. By setting (k, d) = (3, 2) and applying Theorem 2 on
P , we are done. ◀

We remark that a number of related works discuss the independent set partition for
hereditary systems [20, 43], and the minimal dependent set packing [39] and partition [17, 41,
31, 13, 21] for matroids. Note that partition problems can be reduced to packing problems.

1.1 Example Polynomoids
There are a number of structures that satisfy the requirements of polynomoids. We list three
of them below, and more can be found in Appendix B.

1. Let E be a finite set of points in R2 and

F = {E′ ⊆ E : all points in E′ are colinear}.

P = (E,F) is a 2-polynomoid because:
Hereditary Property: Let S be a point set in R2. If all points in S are colinear, then
all points in any subset of S also are colinear.
Join Property: Let S1, S2 be two point sets in R2. If all points in each of S1 and S2
are colinear and |S1 ∩ S2| ≥ 2, then all points in S1 ∪ S2 are colinear.

The dependent k-set packing problem for P asks if E contains ℓ disjoint k-sets so that
the points in each k-set are not colinear. In particular, for k = 3, the points in each k-set
are on a circle with a finite radius, as depicted in Figure 2a. By Theorem 2, this problem
can be solved in O(|E|) time as k, q(2k) = O(1).
▶ Remark. More generally, the above example can be generalized to any set of degree-d
univariate polynomials for any d ≥ 1. Let E denote a finite set of distinct points in
R2. We may need a rotation of axes to ensure that no two points in E have the same
x-coordinate. Let L denote a collection of polynomials with degree d. Let F denote the
collection of all the subsets E′ of E that some polynomial in L passes through all points
in E′. It is not hard to check that such an (E,F) is a d-polynomoid. This motivates us
to call the hereditary systems defined in Definition 1 polynomoids.

MFCS 2023
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2. Let G = (V, E) be an undirected simple graph and

F = {E′ ⊆ E : all edges in E′ have a vertex in common}.

Hence, for any A ∈ F , the subgraph of G induced by the edges in A is a star graph.
P = (E,F) is a 2-polynomoid because:

Hereditary Property: Any subgraph of a star graph also is a star.
Join Property: If two star subgraphs have at least two edges in common, then their
union also is a star.

The dependent k-set packing problem for P asks if E contains ℓ disjoint k-sets so that the
edges in each k-set do not form a star graph. In particular, for k = 3, the edges in each
k-set edge-induce a triangle or a linear forest, i.e. each component in the forest is a
path, as depicted in Figure 2b. Because the union of the edges in a triangle and those in
any 3-edge non-star graph can be partitioned into two 3-edge linear forests (Lemma 25),
the problem of partitioning the edges in a graph into 3-edge linear forests is linear-time
reducible to the dependent k-set packing for P . By Theorem 2, both problems can be
solved in O(|E|) time as k, q(2k) = O(1).
▶ Remark. It is shown in [9, 6, 4] that an m-edge undirected simple graphs with maximum
degree ∆, except for a finite number of exceptions, can be edge-partitioned into 3P2s, i.e.,
three vertex-disjoint edges if and only if m is a multiple of 3 and ∆ ≤ m/3. By Theorem 2
and the above discussion, we obtain an analogous result that:
▶ Corollary 4. An m-edge undirected simple graph with maximum degree ∆ can be edge-
partitioned into 3-edge linear forests if and only if m is a multiple of 3 and ∆ ≤ 2m/3.
Let {H1, H2, . . . , Ht}-decomposition be the problem that, given an undireted simple
graph G = (V, E), decide whether E can partitioned into subsets so that each subset
edge-induce a subgraph isomorphic to Hi for some i ∈ [t]. It is conjectured in [40]
that {H1, H2, . . . , Ht}-decomposition is NP-complete if and only if {Hi}-decomposition
is NP-complete for all i ∈ [t]. Let Pℓ be a path of ℓ nodes. Let Pi ∪ Pj be the union
of vertex-disjoint Pi and Pj and let kPi be the union of k vertex-disjoint Pis. By the
above conjecture and the fact that P4-decomposition is NP-complete [28, 15] but P3 ∪P2-
decomposition [18, 10] and 3P2-decomposition [9, 6, 4] are polynomial-time solvable,
partitioning the edge set of an undirected simple graph into 3-edge linear forests shall
(assuming the conjecture holds) be solvable in polynomial time. Our above linear-time
algorithm gives an example that supports the conjecture.

3. Let G = (V, A) be an edge-weighted directed graph and

F∆ = {V ′ ⊆ V : a minimum st-cut in G has weight at least ∆ for every s ̸= t ∈ V ′},

where an st-cut is a partition of V into two disjoint sets S and T with s ∈ S, t ∈ T and
the weight of an st-cut is defined to be the sum of weights on the directed edges from
S to T . Note that by definition F∆ contains ∅ and all singleton sets. P = (V,F∆) is a
1-polynomoid because:

Hereditary Property: If a minimum st-cut in G has weight at least ∆ for all pairs of
s ̸= t ∈ V ′, then it also applies for all pairs of vertices in a subset of V ′.
Join Property: Let A, B ∈ F∆ and z be a vertex that A, B have in common. For any
pair of s ∈ A, t ∈ B, a minimum st-cut (S, T ) that separates s, t has either z ∈ S or
z ∈ T . We assume w.l.o.g. that z ∈ S. Since a minimum tz-cut and a minimum zt-cut
both have weights at least ∆, the (S, T )-cut also has weight at least ∆.
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The dependent k-set packing problem for P asks if V contains ℓ disjoint k-sets so that
for each k-set there is a cut in G of weight less than ∆ that separates the vertices in it,
as depicted in Figure 2c. By Theorem 2, this problem can be solved in O(k|V |k2f(G))
time as q(2k) = O(k2f(G)) where f(G) denotes the running time of exact maxflow
computation between two distinct nodes s and t on G.
▶ Remark. A naive approach for this problem needs to compute the minimum st-cuts for
all pairs of s, t ∈ V , but ours needs only O(k3V ) = O(V ) pairs. For undirected graphs,
by Gomory-Hu trees [23] the number of the minimum st-cuts that are needed to compute
is also O(V ). For unweighted directed graphs, the running time also can be reduced by
the approach in [12]. For weighted directed graphs, to the best of our knowledge, our
algorithm is the first one with running time matching the current best algorithm for
weighted undirected graphs.
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Figure 2 (a) The figure to the left: a partition of the given points into 3-sets so that the points
in each 3-set are on a circle with a finite radius. (b) The figure in the middle: a partition of the
edges into 3-sets so that the edges in each 3-set induces a linear forest. (c) The figure to the right: a
partition of the vertices into 2-sets so that for each 2-set there is a cut in G has weight less than 7
that separates vertices in it.

1.2 Sharpness of Our Result
The two properties of polynomoids are essential to make the dependent k-set packing for
polynomoids solvable in linear time for k > d.

Case I: if the hereditary property is removed from the Definition 1, then we have an
example problem for k > d that cannot be solved in polynomial time unless P = NP.
Let G be an undirected graph. Let (E,F) be a set system where E denotes the vertex
set of G and F consists of all the subsets E′ of E so that the subgraph of G induced by
the vertices in E′ are connected. Note that, for any E1, E2 ∈ F , if |E1 ∩ E2| ≥ 1, then
E1 ∪ E2 ∈ F . Thus, this set system corresponds to the case d = 1.
Set k = 3, so k > d. To find a dependent k-set packing for (E,F), it is equivalent
to asking whether E contains ℓ disjoint k-sets so that the subgraph in G induced by
the vertices in each k-subset is disconnected. For k = 3, this problem is equivalent to
asking whether E contains ℓ disjoint k-sets so that the subgraph in Ḡ (the complement
graph of G) induced by the vertices in each k-set is connected, which is known to be
NP-complete [16].
Case II: if the join property is removed from the Definition 1, then the parameter d

is removed. So the complexity trichotomy in Figure 1 collapses. For k ≥ 3, then it is
APX-complete; for k = 2, then it is as hard as matching [36]. It is not known how to
solve either case in linear time.

MFCS 2023
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1.3 Paper Organization
In Section 2, we devise a polynomial-time algorithm to find a maximum independent set for
any polynomoid P , assuming that the independence oracle can be queried in polynomial
time, and prove that no algorithms can solve this problem in truly subquadratic time
unless the 3SUM conjecture fails. Then, in Section 3, we relate the problem of finding a
maximum independent set and that of finding a largest dependent k-set packing for any
d-polynomoids with k > d. Because finding a maximum independent set for polynomoids is
3SUM-hard in general, we devise a deterministic linear-time algorithm without involving the
exact computation of the maximum independent sets in Section 4. We prove the hardness
for the case of k ≤ d in Appendix A. Finally, we present more applications of our results
in Appendix B and place omitted proofs in Appendix C.

2 Maximum Independent Sets

For any matroid, finding a maximum independent set can be done greedily because all
maximal independent sets have equal size. Since maximal independent sets of a polynomoid
may have different sizes, the greedy approach for matroids cannot be applied to polynomoids.
In what follows, we devise a polynomial-time algorithm to find a maximum independent
set for any polynomoid, assuming that testing whether a set is independent can be done in
polynomial time. In addition, we prove that this problem cannot be solved by any truly
subquadratic-time algorithm even if the independence oracle can be decided in time linear in
the input size unless the 3SUM conjecture fails.

2.1 A Polynomial-Time Algorithm
Our polynomial-time algorithm for finding a maximum independent set is mainly based on
the following key lemma.

▶ Lemma 5. Let P = (E,F) be a d-polynomoid for some d ≥ 0. For any d-subset C of E,
precisely one of the following two statements holds:

No maximal independent sets in P contain C.
Exactly one maximal independent set in P contains C.

Proof. If C is dependent, then no independent set contains C due to the hereditary property
of P . If C is independent and there exist two distinct maximal independent sets M1, M2 of
P that contain C as a subset, then

|M1 ∩M2| ≥ |C| = d.

By the join property of P , M1 ∪M2 is independent. Since M1 ̸= M2 and they are maximal,
we have

|M1 ∪M2| ≥ max{|M1|, |M2|}+ 1,

contradicting the maximality of M1 and M2. Therefore, precisely one maximal independent
set contains C. Each of the above two cases corresponds to one of the claimed statements. ◀

Lemma 5 yields an efficient algorithm that, for any independent set C of a d-polynomoid
with size at least d, finds “the” maximal independent set containing C as a subset. Formally,
we state it in Corollary 6.
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▶ Corollary 6. Let P = (E,F) be a d-polynomoid for some d ≥ 0. For any C ∈ F with size
at least d, finding the maximal independent set MC that contains C as a subset can be done
in O(|E|q(d + 1)) time.

Proof. By Lemma 5, there is a unique independent set MC that contains any d-subset Cd

of C as a subset. Hence, for any x ∈ E, if Cd ∪ {x} ∈ F , then x ∈ MC . Testing whether
Cd ∪ {x} ∈ F for all x ∈ E can be realized by invoking the independence oracle of P on
(d + 1)-subsets of E O(|E|) times. Thus, the total running time is O(|E|q(d + 1)). ◀

Lemma 5 and Corollary 6 imply that for any polynomoid P = (E,F) finding a maximum
independent set can be done in O(|E|d+1q(d + 1)) time. This can be seen from the following
two cases.
1. If the size s of maximum independent sets in P is at most d, then they can be found by

invoking the independence oracle once for each subset of E that has size ≤ d. Hence, the
running time is

d∑
i=0

(
|E|
i

)
q(i) = O(|E|dq(d)) for |E| ≥ 2 or O(q(1)) for |E| ≤ 1.

2. Otherwise, there is a maximum independent set M that has size > d. Because |M | > d

and the hereditary property of P , M contains a subset Md of size d in F . By Lemma 5,
exactly one maximal independent set W contains Md, so W = M . By Corollary 6,
W = Md ∪ {e ∈ E : Md ∪ {e} ∈ F}, which can be found in O(|E|q(d + 1)) time. Hence,
the total running time is at most

|E|q(d + 1) ·
(
|E|
d

)
= O(|E|d+1q(d + 1)).

The implementations of the above two cases can be unified as in the following pseudocode.

Algorithm 1 Finding a maximum independent set for polynomoids.

input : a d-polynomoid P = (E,F)
output : a maximum independent set of P

A← ∅;
foreach S ∈ {E′ ⊆ E : |E′| ≤ d} do

if S ∈ F then
M ← a maximal independent set in F that contains S;
if |M | > |A| then

A←M ;
return A;

As a consequence, we have:

▶ Theorem 7. For any d-polynomoid P = (E,F), given an independence oracle Oind : 2E →
{0, 1} that tests whether a t-subset of E is contained in F in q(t) time where q is a monotone
function, then finding an independent set in F that has the largest cardinality can be done in
O(|E|d+1q(d + 1)) time.

2.2 3SUM-Hardness
We show in Theorem 8 that, unless the 3SUM conjecture fails, there exists some polynomoid
P = (E,F) so that any algorithm that finds a maximum independent set for P requires
Ω(|E|2−ε) time for any constant ε > 0.

MFCS 2023
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▶ Theorem 8. There exists some polynomoid P whose independence oracle can be decided in
time linear in the input size so that finding a maximum independent set of P is 3SUM-hard.

Proof. Let P = (E,F) be a polynomoid where E is a finite set of distinct points in R2

and F =
{

E/ ⊆ E | all points in E/ are colinear
}

. It is clear that P is a 2-polynomoid. A
maximum independent set of P corresponds to a line in R2 that passes through the most
number of points in E. Hence, it suffices to answer whether there exist three points in E

that are colinear, which is known to be 3SUM-hard [19]. ◀

3 Dependent k-Set Packing

In this section, we will present a reduction from the dependent k-set packing to the maximum
independent set.

For each polynomoid P = (E,F), we define a rank function r : 2E → {0, 1, . . . , |E|}
so that r(S) denotes the cardinality of a largest subset of S that is contained in F . In
particular, r(E) equals the size of a maximum independent set of P , which can be computed
in polynomial time by Theorem 7. More generally, for every S ⊆ E, r(S) equals the size of a
maximum independent set of the polynomoid Q = (S, 2S ∩ F). Hence, the rank function
r for any subset of E is computable in polynomial time, assuming that the independence
oracle of P can be decided in polynomial time. Let ρk(E) denote the maximum number of
disjoint dependent k-subsets that E contains. We claim that r(E) and ρk(E) can be related
as follows, so ρk(E) can be computed no slower than finding r(E).

▶ Theorem 9. Let k, d be two integers with k > d ≥ 0. For any d-polynomoid P = (E,F),

ρk(E) =
{
|E| − r(E) if r(E) > (1− 1/k)|E|
⌊|E|/k⌋ otherwise

It suffices to prove Theorem 9 for k = d+1 because of the observation that a d-polynomoid
is also a t-polynomoid for every t > d.

3.1 Case I: r(E) > (1 − 1/k)|E|
We prove the first case of Theorem 9 by the following lemma.

▶ Lemma 10. Let d ≥ 0 and k = d + 1 be two integers. For any d-polynomoid P = (E,F),
if r(E) > (1− 1/k)|E|, then ρk(E) = |E| − r(E).

Proof. The proof for d = 0 is clear because any 0-polynomoid has F = 2S for some S ⊆ E.
Hence we assume that d ≥ 1, so k ≥ 2. Let M be a maximum independent set of P . By
definition, |M | = r(E). For each element x in E \M , we remove k− 1 distinct elements from
M and let Ax be the set containing x and the k − 1 removed elements.

▷ Claim 11. Ax is dependent.

Proof. Suppose for contradiction that Ax ∈ F , the intersection of Ax and M is k− 1 = d, so
Ax ∪M ∈ F by the join property of P . This violates the maximality of M . Hence, Ax is
dependent. ◁

Since r(E) > (1− 1/k)|E|, we have r(E) > (k − 1)(|E| − r(E)). So the above grouping
procedure can iterate until E \M is exhausted. Hence, we obtain a collection of |E| − r(E)
dependent k-sets (not necessarily the largest one), so ρk(E) ≥ |E| − r(E). Note that, if
ρk(E) > |E| − r(E), by the pigeonhole principle, at least one of the ρk(E) k-sets contains
elements only from M . By the hereditary property of P , such a k-set must be independent
because it is a subset of M , a contradiction. As a result, ρk(E) = |E| − r(E). ◀
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3.2 Case II: r(E) ≤ (1 − 1/k)|E|
We prove the second case of Theorem 9 by the following lemmas. We will show that, if
r(E) ≤ (1− 1/k)|E|, let Z1, Z2, . . . , Zℓ be k-sets of E and W = E \

⋃
i∈[ℓ] Zi with |W | < k,

then either Zis are all dependent, or there exist two sets in {Zi : i ∈ [ℓ]} ∪W whose elements
can be exchanged so as to increase the number of dependent sets in {Zi : i ∈ [ℓ]}.

We begin with a helper lemma.

▶ Lemma 12. Let d ≥ 0 and k = d + 1 be two integers. Let P = (E,F) be a d-polynomoid.
For any two disjoint k-subsets X, Y ⊆ E, if r(X ∪ Y ) ≤ 2d, then X ∪ Y can be partitioned
into two disjoint dependent k-subsets of E. This partition can be done in O(d2q(d + 1)) time.

Proof. We begin with the proofs of the following claims.

▷ Claim 13. If X has a subset Z ∈ F with |Z| ≥ d, then Z ∪ {y} /∈ F for some y ∈ Y .

Proof. If such a y does not exist, then Z ∪ {y} ∈ F for every y ∈ Y . By Lemma 5, there
is exactly one maximal independent set that contains Z. The above two facts imply that
Z ∪ Y ∈ F . This yields r(Z ∪ Y ) ≥ 2d + 1 > r(X ∪ Y ), a contradiction. ◁

▷ Claim 14. If X ∈ F , there exists y ∈ Y , for every d-subset Z of X, Z ∪ {y} /∈ F .

Proof. By Claim 13, X ∪ {y} /∈ F for some y ∈ Y . If X has a d-subset Z with Z ∪ {y} ∈ F ,
since X ∩ (Z ∪ {y}) = Z, by the join property of P we have X ∪ (Z ∪ {y}) = X ∪ {y} ∈ F , a
contradiction. ◁

We are ready to give a proof. If both X and Y are dependent, then we are done.
Otherwise, we assume w.l.o.g. that X ∈ F . By Claim 14, there exists an y∗ ∈ Y , for
every x ∈ X, X \ {x} ∪ {y∗} /∈ F . If Y \ {y∗} ∈ F , then by Claim 13 there exists some
x∗ ∈ X so that Y \ {y∗} ∪ {x∗} /∈ F . Otherwise Y \ {y∗} /∈ F , then for any x ∈ X we have
Y \ {y∗} ∪ {x} /∈ F . As a result, X \ {x∗} ∪ {y∗} and Y \ {y∗} ∪ {x∗} both are not in F and
together partition X ∪ Y . By enumerating all possible x∗, y∗, it yields the time bound. ◀

We are ready to prove that the swapping procedure can iterate until no sets in {Zi : i ∈ [ℓ]}
are independent.

▶ Lemma 15. Let d ≥ 0, k = d+1, and ℓ ≥ 1 be integers. Let P = (E,F) be a d-polynomoid.
For any subset S of E, if |S| = ℓk + t and r(S) ≤ ℓd + t for some t ≥ 0, then S contains ℓ

disjoint dependent k-subsets of E.

Proof. Initially, we partition S arbitrarily into ℓ k-sets Z1, Z2, . . . , Zℓ and one t-set W . If none
of Zi for i ∈ [ℓ] is independent, then we are done. Otherwise, Zi ∈ F for some i ∈ [ℓ]. Since
Zi ∈ F and |Zi| = k ≥ d, by Lemma 5 there is exactly one maximal independent set M(Zi)
that contains Zi. Hence, there are at least |S|− |M(Zi)| elements x ∈ S so that Zi∪{x} /∈ F .
We color these elements blue. By the maximality of r(S), |M(Zi)| ≤ r(S) ≤ ℓd + t. Hence,
|S| − |M(Zi)| ≥ ℓk + t− ℓd− t = ℓ. There are two cases to discuss.
1. W contains a blue element b. By the definition of blue elements, Zi ∪ {b} /∈ F . Let y be

an arbitrary element in Zi. Then, (Zi \ {y}) ∪ {b} /∈ F ; otherwise, by the join property
of P

{y} ∪ (Zi \ {y}) ∈ F and (Zi \ {y}) ∪ {b} ∈ F together imply Zi ∪ {b} ∈ F ,

a contradiction. If we set (Zi, W )→ (Zi \ {y} ∪ {b}, W \ {b} ∪ {y}) , then the number of
independent sets in {Z1, Z2, . . . , Zℓ} is reduced by one.
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2. W contains no blue elements. Because Zi also contains no blue elements, the ≥ ℓ blue
elements are distributed among {Z1, Z2, . . . , Zℓ} \ {Zi}. By the pigeonhole principle,
some Zj contains at least 2 blue elements. We claim that r(Zi ∪ Zj) ≤ 2d. Thus, by
Lemma 12 we can partition Zi ∪ Zj into two dependent k-sets. Hence, the number of
independent sets in {Z1, Z2, . . . , Zℓ} is reduced by at least one.
We prove the claim as follows. Suppose for contradiction that r(Zi∪Zj) ≥ 2d+1. Because
|Zi|+ |Zj | = 2(d + 1), there exists one element x so that Zi ∪Zj \ {x} ∈ F . Because there
are two blue elements b1, b2 ∈ Zj and any independent superset of Zi contains no blue
elements, x /∈ Zj and thus x ∈ Zi. By the hereditary property of P , Zi \ {x} ∪ {b1} ∈ F .
By the join property of P , {x} ∪ (Zi \ {x}) ∈ F and (Zi \ {x}) ∪ {b1} ∈ F imply that
Zi ∪ {b1} ∈ F , a contradiction.

For each case, we can reduce the number of independent sets in {Z1, Z2, . . . , Zℓ} by at least
one. Since ℓ is finite, one can always obtain a feasible packing. ◀

Let |E| = ℓk + t for some t ∈ [0, k). Thus ⌊|E|/k⌋ = ℓ. Since r(E) ≤ (1− 1/k)(ℓk + t) ≤
ℓd + t, by Lemma 15 we complete the proof of the second case.

4 Finding a Largest Dependent k-Set Packing in Deterministic Linear
Time

In Theorem 8, we have shown that computing r(E) in general requires Ω(|E|2−ε) time for
any constant ε > 0 unless the 3SUM conjecture fails. Hence, to compute the k-set packing
in O(E) time, one cannot directly compute r(E) to distinguish which case in Theorem 9
applies.

4.1 The Deterministic Linear-Time Algorithm
In this section, we devise a deterministic linear-time algorithm for finding a largest dependent
set packing for any d-polynomoid P = (E,F). Let d, k be two integers with k = d + 1. Recall
that we have to consider only the case of k = d + 1. Let |E| = ℓk + t for some t ∈ [0, k).
Initially, we partition E arbitrarily into Z1, Z2, . . . , Zℓ and W so that |Zi| = k for i ∈ [ℓ] and
|W | = t. Then we apply the following five steps to find a largest dependent k-set packing D.

1. Set A = {Z1, Z2, . . . , Zℓ}. Set D = ∅.
2. If some Zi ∈ A is dependent, remove Zi from A and set D = D ∪ {Zi}. Otherwise,

proceed to the next step.
▶ Remark. This step takes O(q(k)|E|/k) time.

3. If there exist Zi, Zj ∈ A that Zi ∪ Zj is dependent, remove Zi and Zj from A and set
D = D ∪ {Z ′

i, Z ′
j} where Z ′

i and Z ′
j are dependent k-sets and they partition Zi ∪ Zj .

Otherwise, proceed to the next step.
▶ Remark. The existence of Z ′

i and Z ′
j is shown in Section 4.2. Because |Zi| ≥ d and

|Zj | ≥ d, Zi ∪ Zj is independent iff Zi and Zj belong to the same maximal set. So if
Zi ∪ Zj ∈ F but Zi ∪ Zk /∈ F , then Zj ∪ Zk /∈ F . Hence, we can keep a list of Zs so that
their pairwise unions are independent sets. For each unpaired Y outside the pool, pick any
Z in the pool, if Z ∪ Y ∈ F , then Z ′ ∪ Y ∈ F for any Z ′ in the pool, so expand the pool
by adding Y ; otherwise, pair Y, Z and throw out Y, Z. Indeed, this is a generalization of
the majority voting [8]. This step takes O((q(2k) + k2q(k))|E|/k) time.

4. If A = ∅, return D and stop. Otherwise, find a maximal independent set MA of P that
contains all elements in A as subsets.



M.-T. Tsai, S.-C. Tsai, and T.-T. Wu 84:11

▶ Remark. If A = ∅, then D is largest possible, so it is a largest dependent k-set packing.
The existence of MA is shown in Section 4.2. To find MA, let Z be some element in A
and find the maximal independent set that contains Z as a subset in O(|E|q(k)) time by
Corollary 6. Since |Z| = k ≥ d and Z ∈ F , we known that MA = MZ by Lemma 5.

5. This final step is reached only if |A| ≥ 1.
Case 1: r(E) > (1− 1/k)|E|. By Lemma 18, MA is a maximum independent set of P .
Since MA is given, one can simulate Lemma 10 in O(|E|) time.
Case 2: r(E) ≤ (1− 1/k)|E|. By Lemma 17, MA contains all elements in A. One can
simulate Lemma 15 efficiently as follows.
For each Z ∈ A, to implement Lemma 15, we need to find a set Z ′ ∈ {Zi : i ∈ [ℓ]}∪{W}
that contains a sufficient number of elements in E \MA (aka “blue elements” in the
proof of Lemma 15). Given MA, we compute E \MA in O(|E|) time and maintain
the locations of these “blue elements” so that for each Z ∈ A we can find the Z ′ in
O(1) time.
Hence, the number of swapping steps is O(|E|/k) and each takes O(k2q(k)) time
(Lemma 12). So this step needs O(k|E|q(k)) time.

As a consequence, the total running time of all steps is bounded by O(k|E|q(2k)). This
completes the proof of Theorem 2 for k > d.

4.2 The Existence Proofs
We will prove the existence proofs required by the algorithm in Section 4.1. In Step 3,
Zi, Zj ∈ F and Zi ∪Zj /∈ F , so r(Zi ∪Zj) ≤ 2d by Lemma 16. Hence, by Lemma 12, Zi ∪Zj

can be partitioned into two disjoint dependent sets of size k. The existence of MA required
by Step 4 is shown in Lemma 17. Finally, we prove in Lemma 18 that MA is a maximum
independent set of P if r(E) ≥ (1− 1/k)|E| and |A| ≥ 1.

▶ Lemma 16. For any k-subsets X, Y of E, if X, Y ∈ F but X∪Y /∈ F , then r(X∪Y ) ≤ 2d.

Proof. Let S be any subset of X ∪ Y with |S| = r(X ∪ Y ). If |S| > 2d, then there exists
z ∈ X ∪ Y so that (X ∪ Y ) \ {z} ∈ F . We assume w.l.o.g. that z ∈ X and Y ⊆ S. Let M be
a maximal independent set of P that contains S as a subset. Because |M ∩X| ≥ |S ∩X| ≥ d,
by the join property of P we have M ∪ X ∈ F . By the maximality of M , X ⊆ M , so
X ∪ Y ⊆M . By the hereditary property of P , M ∈ F implies X ∪ Y ∈ F . This violates the
setting. Therefore, r(X ∪ Y ) ≤ 2d. ◀

▶ Lemma 17. In Step 4, such a maximal independent set MA of P always exists.

Proof. The construction of A yields that, for any X, Y ∈ A, X ∪ Y ∈ F . By Lemma 5,
there is a unique maximal independent set MX (resp. MX∪Y ) that contains X (resp. X ∪Y )
as a subset. The uniqueness of MX and MX∪Y implies that MX = MX∪Y . Similarly,
MY = MX∪Y . Hence, MX = MY . Because this fact applies to every pair of elements in A,
there is a maximal independent set MA that contains every element in A as a subset. ◀

▶ Lemma 18. In Step 4, if r(E) > (1 − 1/k)|E| and |A| ≥ 1, then MA is a maximum
independent set of P .

Proof. We begin with the proofs that, for any maximal independent set M of P , each
removed Zi in Steps 2 and 3 contains at least one element outside M on average.
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▷ Claim 19. Let M be any maximal independent set of P . In Step 2, for each removed Zi,
Zi contains at least one element in E \M .

Proof. Because Zi /∈ F and M ∈ F , by the hereditary property of P , Zi is not a subset of
M . Hence, Zi contains at least one element outside E \M . ◁

▷ Claim 20. Let M be any maximal independent set of P . In Step 3, for each pair of
removed Zi and Zj , Zi ∪ Zj contains at least two elements in E \M .

Proof. By Lemma 16, we know that r(Zi∪Zj) ≤ 2d. If M ∩(Zi∪Zj) > 2d, then r(Zi∪Zj) >

2d, a contradiction. Hence, M ∩ (Zi ∪ Zj) ≤ 2d, as desired. ◁

We are ready to give a proof. Let S be a subset of E with |S| = r(E), and let

UA = W ∪
⋃

Z∈A
Z and UB = E \ UA.

By Claims 19 and 20, we have

|S ∩ UB |
|UB |

≤ k − 1
k

. (1)

By restating r(E) > (1− 1/k)|E|, we get

|S ∩ E|
|E|

>
k − 1

k
. (2)

Combining (1), (2), and the average argument, it yields that

|S ∩ UA|
|UA|

>
k − 1

k
. (3)

To satisfy the inequality (3), if |A| ≥ 1, either S contains UA \W as a subset or S does not
contain UA \W as a subset. The former implies that S = MA due to the uniqueness of MA
(Lemma 5), as desired. Note that |S ∩ (UA \W ) ≤ k− 2|; otherwise, S ∪MA ∈ F due to the
join property of P and thus S = MA by the maximality of S and MA. The latter cannot
hold because |S ∩ (UA \W )| ≤ k − 2 and 0 ≤ |W | ≤ k − 1 implies that

k − 1
k

<
|S ∩ UA|
|UA|

= |S ∩W |+ |S ∩ (UA \W )|
|W |+ |UA \W |

≤ |W |+ k − 2
|W |+ k|A|

≤ 2k − 3
2k − 1 ,

which cannot hold for positive k. ◀

5 Conclusion

We obtain a complexity trichotomy result for the dependent k-set packing problem on
d-polynomoids. For each of the three categories, our algorithm is optimal. It may worth
noting that the running time of the algorithm for the case of k > d can be reduced by a factor
of k by group testing [30, 22], which will be introduced in the full version of this manuscript.
Though this yields a constant-factor improvement, it may affact the performance of real
applications.
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A Hardness Reduction

In this section, we prove that the dependent k-set packing for d-polynomoids with d ≥ k is
as hard as hypergraph matchings in general. We reduce the matching problem for k-uniform
hypergraphs to the dependent k-set packing problem on d-polynomoids with d ≥ k in
Theorem 21. The other direction is clear because the latter problem is a special case of the
former one. This completes the proof of Theorem 2 for k ≤ d.

▶ Theorem 21. For any integers d ≥ k ≥ 1, there exists a d-polynomoid P = (E,F) so that
dependent k-set packing on P is as hard as matchings on k-uniform hypergraphs.

Proof. We prove this lemma by showing a reduction from the perfect matching for k-uniform
graphs to the dependent k-set packing for P . Let G = (V, E) be a k-uniform hypergraph.
Let P = (V,F) be a d-polynomoid where F = {all subsets of V with size at most k} \ E .

We now show that P is a d-polynomoid. Note that each set in F has size at most k. By the
definition of F , all subsets of V with size at most k− 1 are in F so P satisfies the hereditary
property. When k = d, two sets A, B in F have |A ∩ B| ≥ d if and only if A = B. When
k < d, two sets A, B in F have |A ∩ B| ≥ d cannot happen. Hence, P satisfies the join
property. Observe that a hyperedge is in G if and only if it is a dependent set of P . Hence,
finding a dependent k-set packing for P is equivalent to finding a matching for G. ◀
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B More Applications

In this section, we present more applications of our results that are not covered in Section 1.1.

1. Let G = (V, E) be an m-edge undirected simple graph. Let P = (E,F) so that F =
{A ⊆ E : there exists a triangle in G that contains all edges in A} . One may verify that
P is a 2-polynomoid. By Theorem 2, we obtain a deterministic linear-time algorithm for
the dependent k-set packing for P , which is equivalent to partitioning the edge set of
G into subsets, each of which edge-induces a 3-edge forest. In addition, we obtain the
following sufficient and necessary condition:
▶ Corollary 22. An m-edge undirected simple graph G can be edge-partitioned into 3-edge
forests if and only if m is a multiple of 3 and G is not a triangle.
In [5], they give a sufficient and necessary condition to partition the edge set of the given
graph into a designated four-edge tree for highly-edge-connected graphs.

2. Let G = (V, E) be a complete multipartite graph. Let P = (V,F) so that F =
{A ⊆ V : all vertices in A are from the same partite set} . One may verify that P is a
1-polynomoid. By Theorem 2, we obtain the following sufficient and necessary condition:
▶ Corollary 23. An n-vertex undirected simple complete multipartite graph G has a perfect
matching if and only if n is a multiple of 2 and the number of vertices in a largest partite
set is at most n/2.
By an argument in [7], Corollary 23 suffices to prove:
▶ Corollary 24. Given a set of points in R2 in general position where each point has a
color in [c], one can group the points into pairs so that the line segment joining the points
in a pair does not cross that of another pair and the points in each pair have different
colors if and only if n is a multiple of 2 and for each color i ∈ [c] the number of points of
color i is at most n/2.

C Omitted Proofs

▶ Lemma 25. Let G = (V, E) be an undirected simple graph consisting of six edges. If E can
be partitioned into E1, E2 so that E1 edge-induces a triangle and E2 edge-induces a non-star
graph, then E can also be partitioned into two subsets so that each subset edge-induces a
3-edge linear forest.

Proof. By definition, E2 edge-induces either a triangle or a 3-edge linear forest. Suppose
that E2 edge-induces a triangle. For any E′ ⊆ E, let V (E′) denote the set of the end-vertices
of edges in E′. Since G is simple, V (E1) and V (E2) have at most one vertex in common.
Hence, there exist e1 ∈ E1, e2 ∈ E2 so that V ({e1}) ∩ V (E2) = ∅ and V ({e2}) ∩ V (E1) = ∅.
This yields that E1 ∪ {e2} \ {e1} and E2 ∪ {e1} \ {e2} both edge-induce P3 ∪ P2, i.e., two
vertex-disjoint paths of 3 verices and 2 vertices.

Suppose that E2 edge-induces a 3-edge linear forest. Let e2 be an edge in E2 so that
E2 \ {e2} = 2P2, i.e., two edges with no end-vertices in common. Since G is simple and E1
edge-induces a complete graph, |V ({e2}) ∩ V (E1)| ≤ 1. Hence, E1 ∪ {e2} has at most one
vertex of degree ≥ 3 and e2 is not an edge in any cycle of E1 ∪ {e2}. Let e1 be any edge in
E1 incident with the maximum degree vertex in E1 ∪ {e2}. Thus, E1 ∪ {e2} \ {e1} has max
degree ≤ 2 and contains no cycle, i.e., a linear forest. On the other hand, because the union
of 2P2 and any other edge also has max degree ≤ 2 and contains no cycle, E2 ∪ {e1} \ {e2}
also is a linear forest. ◀
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