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Abstract
Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory,
program verification, proof theory and many other areas of computer science and mathematics. In
this article we focus on a common data structure in programming, finite multisets of some well
partial order. There are two natural orders one can define on the set of finite multisets of a partial
order: the multiset embedding and the multiset ordering. Though the maximal order type of these
orders is already known, other ordinal invariants remain mostly unknown. Our main contributions
are expressions to compute compositionally the width of the multiset embedding and the height of
the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the
width of the multiset ordering.
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Introduction

Measuring partial orders is useful in many domains, from set theory to proof theory,
including infinitary combinatorics, program verification, rewriting theory, proof automation
and many more.

There are intuitive notions of measure for a partial order when it is finite: its cardinal
obviously, but also its height (the length of a maximal chain) or its width (the length of
a maximal antichain). Similar notions exist for infinite partial orders, as long as they are
well partial orders (wpo), i.e., well-founded partial orders with no infinite antichains [10, 12].
Two such notions are the ordinal height, which is the order type of a maximal chain, and
the maximal order type (mot), which is the order type of a maximal linearisation, a notion
introduced by De Jongh and Parikh in order to measure hierarchies of functions [6]. These
are transfinite measures, hence we call them ordinal invariants. Kříž and Thomas introduced
alternative characterizations for mot and ordinal height, which naturally led to the definition
of a third ordinal invariant, ordinal width [11]. Less studied than its counterparts, the width
of a wpo relates to its antichains, even though it cannot be defined as the order type of a
maximal antichain. While exploring techniques for program termination, Blass and Gurevich
rediscovered these characterizations with a game-theoretical point of view [4].

Ordinal invariants of wpos have also been used to prove complexity bounds. In the last
decade there has been a flurry of complexity results for the verification of well-structured
transition systems (wsts), i.e., transition systems whose set of configurations is a wpo and
whose transitions respect this ordering [5]. When a wsts is based on a wpo X of maximal
order type ωα, one can expect the complexity of coverability to be in Hωα in the Hardy
hierarchy, or in Fα in the fast-growing hierarchy [9]. This bound can be refined by looking
at controlled antichains instead of controlled bad sequences [14], thus bounding complexity
with width instead of maximal order type.
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Computing ordinal invariants compositionally. Many wpos underlying wsts are built from
classical operations on simpler wpos whose invariants are known. This has spurred new
interest in measuring the ordinal invariants of various well-ordered data structures: De Jongh
and Parikh computed the mot of the disjoint sum and the Cartesian product of wpos [6].
Schmidt then computed the mot of word embedding and homeomorphic tree embedding on
a wpo [13]. Abraham and Bonnet pursued this line of study by computing the height of
Cartesian product, but also the width of disjoint sum and lexicographic product [1]. For
a complete survey of these results see [8], where Džamonja et al. computed the ordinal
invariants of the lexicographic product, but also the height of the multiset word and tree
embeddings.

Finite multisets. In this article, we study the ordinal invariants of the set of finite multisets.
Multisets, also called “bags”, a common data structure in computer science. Informally, a
finite multiset over a set X is a finite subset of X where an element can appear finitely many
times. For instance, ⟨a, a, b⟩ denote the multiset where a appears twice and b once. One can
see the set of finite multisets on a wpo as the set of finite words quotiented by the equivalence
relation “equality up to some permutation”. It comes down to describing a multiset as a word
where the order of terms is irrelevant. A finite multiset can be represented by a function
from X to N with finite support, which associates its multiplicity with each element.

Two orderings are classically defined on the finite multisets of any ordered set. The first
one is the multiset ordering, which often appears in rewriting theory and automation of
termination proofs [7]. The other, less-known, ordering is the multiset embedding, or term
ordering as it is called in [15]. It was presented by Aschenbrenner and Pong as a natural
extension of the embedding order over finite words [3].

Some invariants of these two orderings have already been measured: Van der Meeren,
Rathjen, and Weiermann [15] built on [17] to compute the mot of the set of finite multisets
on a wpo X ordered with the multiset ordering, and provided a new proof for the expression
of the mot of the multiset embedding computed in [18]. Džamonja et al. [8] proved that
the height of the multiset embedding is equal to the height of the set of finite words ordered
with word embedding. It is noteworthy that these three results give expressions that are
functional in (i.e., can be expressed as a function of) the mot and height of X. However, the
height of the multiset ordering still needs to be determined, and the width remains unstudied
for both orderings.

Our contributions. In this article, we provide functional expressions for the width of the
multiset embedding (Theorem 2.1) and the height of the multiset ordering (Theorem 3.1).

We further show that the width of the multiset ordering cannot be expressed as a function
of the three ordinal invariants (Example 3.2). Nonetheless, we get around this issue by
introducing a fourth ordinal invariant, the friendly order type (Definition 3.3), in which the
width of the multiset ordering is functional (Theorem 3.4). We then proceed to investigate
and compute this new ordinal invariant.

1 Definitions and state of the art

1.1 Width, height and maximal order type
A sequence x1, . . . , xn, . . . on a partial order (X, ≤X) is good when there exist i < j such
that xi ≤X xj , otherwise it is a bad sequence. An antichain is a sequence whose elements
are pairwise incomparable.
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A well partial order (wpo) is a partial order that has no infinite bad sequences. Equival-
ently, a wpo is a partial order that is both well-founded (i.e. no infinite strictly decreasing
sequences) and has no infinite antichains.

Let (X, ≤X) be a wpo. We often write just X when ≤X is understood. The trees Bad(X),
Dec(X) and Ant(X) are defined as the sets of bad sequences, strictly decreasing sequences,
and antichains of X, respectively, ordered by inverse prefix order (a sequence is smaller than
its prefixes) ([11, 8]). The finiteness of bad sequences, strictly decreasing sequences and
antichains in a wpo implies that these trees are well-founded. Therefore, one can define a
notion of rank on these trees: a sequence has rank 0 when it cannot be extended; otherwise
its rank is the smallest ordinal strictly larger than the ranks of its extensions. The rank of a
tree is the rank of the empty sequence (which is the root of the tree).

The maximal order type (or mot) of X, denoted by o(X), is defined as the rank of Bad(X).
Similarly, the height h(X) and the width w(X) of X are defined as the ranks of Dec(X)
and Ant(X), respectively. Together, o(X), h(X) and w(X) are called the ordinal invariants
of X.

For any wpo X, Dec(X) and Ant(X) are subtrees of Bad(X). Thus h(X) ≤ o(X) and
w(X) ≤ o(X).

Let x ⊥ y denote that x and y are incomparable. For a relation ∗ among { ̸≥, <, ⊥ }, we
define the residual X∗x as { y ∈ X : y ∗ x }. This definition can be extended to subsets
S ⊆ X: X∗S

def= { y ∈ X : ∀x ∈ S, y ∗ x }.

▶ Example 1.1. In Figure 1, you can see the residuals at x = (4, 6) of N × N ordered
component-wise.
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Figure 1 Residuals of N2 at (4, 6).

Since the rank of the empty sequence is the smallest ordinal strictly larger than the ranks
of the sequences of length 1, the definitions of mot, height and width can be reformulated
inductively through the following residual equations:

o(X) = sup
x∈X

(o(X̸≥x) + 1) (Res-o)

h(X) = sup
x∈X

(h(X<x) + 1) (Res-h)

w(X) = sup
x∈X

(w(X⊥x) + 1) (Res-w)

With these equations we can compute easily the ordinal invariants of N2. For instance,
observe that (N2

<x) is finite for any x ∈ N2, so its height is finite but can be arbitrarily big.
Hence h(N2) = ω.

MFCS 2023
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1.2 Ordinal arithmetic
We suppose well-known the notions of sum, product, subtraction, natural sum, natural
product on ordinals, denoted with +, ·, −, ⊕, ⊗ [2]. However, let us recall some definitions
and notations that might be less familiar to the reader.

An ordinal α is indecomposable iff for any δ, γ < α, we have δ ⊕ γ < α. Equivalently, α

is indecomposable when there is an ordinal β such that α = ωβ . α is an ϵ-number when
α = ωα.

The Hessenberg-based product α ⊙ β is defined inductively as follows [1]:

α ⊙ 0 = 0 , α ⊙ (β + 1) = (α ⊙ β) ⊕ α , α ⊙ β = sup{ α ⊙ γ : γ < β } for limit β.

This definition ensures that α · β ≤ α ⊙ β ≤ α ⊗ β.
For any ordinal α = ωα1 + · · · + ωαn , let α̂

def= ωα′
1 + · · · + ωα′

n , where α′
i is αi + 1 when

αi is the sum of an ϵ-number and a finite ordinal, otherwise α′
i = αi.

For any ordinals α, β, let α ⊕̂ β
def= sup{ α′ ⊕ β′ : α′ < α, β′ < β }.

1.3 Ordinal invariants of basic data structures
For any wpos P, Q, the disjoint sum P ⊔ Q is the disjoint union of P and Q ordered such
that elements of P and Q cannot be compared together, whereas the direct sum P + Q is
the disjoint union of P and Q ordered such that for all p ∈ P, q ∈ Q, p ≤ q. For a family of
wpos (Ai)i<α, let Σi<αAi denote the direct sum of the Ais along the ordinal α.

The Cartesian product P ×Q is the set of pairs (p, q) ∈ P ×Q where elements are compared
component-wise. The lexicographic product of P along Q, written P ·Q, has the same support
as P × Q, with a different ordering: (p, q) ≤P ·Q (p′, q′) iff q <Q q′ , or q = q′ and p ≤P p′.

Sums and products are the most basic operations on wpos one can find. Their ordinal
invariants are easy to compute compositionally (see Table 1), with the notable exception of
the width of the Cartesian product which cannot be expressed as a function of the ordinal
invariants its factors [16].

Table 1 How to compute ordinal invariants compositionally, [8]. See Section 1.2 for definitions of
⊕̂ and ⊙.

Space X M.O.T. o(X) Height h(X) Width w(X)

A ⊔ B o(A) ⊕ o(B) max(h(A), h(B)) w(A) ⊕ w(B)

A + B o(A) + o(B) h(A) + h(B) max(w(A), w(B))

A × B o(A) ⊗ o(B) h(A) ⊕̂ h(B) (Not functional)

A · B o(A) · o(B) h(A) · h(B) w(A) ⊙ w(B)

1.4 Comparing wpos
A widely-used and intuitive relation between wpos is the reflection relation. A mapping
between wpos f : (A, ≤A) → (B, ≤B) is a reflection if f(x) ≤B f(y) implies x ≤A y, i.e. it
is a morphism from (A, ̸≤A) to (B, ̸≤B) Let A↪→B denote that there is a reflection from A

to B.
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However, in this article, we prefer to use the stronger notions of augmentations and
substructures.

▶ Definition 1.2 (Substructure, augmentation). A wpo (A, ≤A) is a substructure of a wpo
(B, ≤B) whenever A ⊆ B and ≤A is the restriction of ≤B to A. This relation is written
A ≤st B. Similarly (A, ≤A) is an augmentation of (B, ≤B) whenever A = B and ≤B ⊆ ≤A.
We write this relation A ≥aug B.

Obviously, A ≤st B or A ≥aug B imply A↪→B.
We often abuse these notations and write A ≤st B (resp. B ≤aug A) to mean that A is

isomorphic to a substructure (resp. an augmentation) of B.
We denote by A ≡ B that (A, ≤A) is isomorphic to (B, ≤B).
In this article, when we consider a subset Y of a wpo X, it is understood that Y ≤st X,

i.e. Y is ordered with ≤X restricted to the subset.
These notions of augmentations and substructures allow us to compare the ordinal

invariants of wpos.

▶ Lemma 1.3. Let A and B be wpos.
If A ≤st B then i(A) ≤ i(B) for i ∈ { o, h, w }.
If A ≥aug B then o(A) ≤ o(B) and w(A) ≤ w(B). However h(A) ≥ h(B).

The substructure and augmentation relations are monotonous through most operations
on wpos. For instance, if A ≤st A′, then A × B ≤st A′ × B.

An ordinal, as defined by Von Neumann, is the linear wpo that contains all smaller
ordinals. Thus augmentations and substructures relations can also be used to compare
directly ordinals to wpos. The following result is well-known:

▶ Proposition 1.4. For any wpo X, h(X) and o(X) are the largest ordinals such that
h(X) ≤st X and o(X) ≥aug X.

1.5 Orderings on the set of finite multisets
We assume familiarity with finite multisets and the associated operations as used in [17]:
union, intersection and subtraction, denoted by ∪, ∩ and \, respectively. Let ⟨x1, . . . , xn⟩
denote the finite multiset that contains the elements x1, . . . , xn (they do not have to be
distinct). For any k ∈ N, m×k means the union of k copies of m. Let |m| denote the number
of elements of a multiset m.

There are two main orderings classically defined on the set of finite multisets M(X) of a
partial order X:

▶ Definition 1.5 (Multiset embedding [18]). The multiset embedding on M(X), also known
as the term ordering, is defined as:

m ≤⋄ m′ iff there exists f : m → m′ injective such that for any x ∈ m, x ≤ f(x).

▶ Definition 1.6 (Multiset ordering [17]). The multiset ordering on M(X) is defined as:

m ≤r m′ ⇐⇒ m = m′ or ∀x ∈ m \ (m ∩ m′), ∃y ∈ m′ \ (m ∩ m′), x < y .

We write M⋄(X) for (M(X), ≤⋄) and Mr(X) for (M(X), ≤r).
The multiset ordering and the multiset embedding are both augmentations of the word

embedding on X∗ the set of finite words on X. Therefore, according to Higman’s lemma [10],
M⋄(X) and Mr(X) are wpos when X is. Moreover M⋄(X) ≤aug Mr(X), as was observed
by Aschenbrenner and Pong [3].

MFCS 2023
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Observe that if X is a linear ordering, then Mr(X) is linear, while M⋄(X) is not as long
as X has more than two elements.

▶ Proposition 1.7 (Transformation equations). For any wpos A and B,

M∗(A ⊔ B) ≡ M∗(A) × M∗(B) for ∗ ∈ {⋄, r} , (Trans-1)
Mr(A + B) ≡ Mr(A) · Mr(B) , (Trans-2)
M⋄(A + B) ≤aug M⋄(A) · M⋄(B) . (Trans-3)

▶ Lemma 1.8 (Width of M(X) on Γk). For any k < ω, we denote by Γk the wpo that
contains k incomparable elements. Then w(M⋄(Γk)) = w(Mr(Γk)) = ωk−1.

Proof. Since M⋄(Γ1) ≡ Mr(Γ1) ≡ ω, Equation (Trans-1) tells us that M⋄(Γk) and Mr(Γk)
are both isomorphic to the k-fold Cartesian product ω × · · · × ω. This special case of the
width of a Cartesian product is known [16]: w(ω × · · · × ω) = ωk−1 . ◀

The augmentation and substructure relations are monotone with respect to the multiset
ordering and multiset embedding:

▶ Proposition 1.9. Let A, B be two wpos. Then A ≤st B implies M⋄(A) ≤st M⋄(B) and
Mr(A) ≤st Mr(B). Moreover, A ≥aug B implies that M⋄(A) ≥aug M⋄(B) and Mr(A) ≥aug
Mr(B).

Ordinal invariants of the set of finite multisets

Van der Meeren, Rathjen and Weiermann computed the mot of M⋄(X) and Mr(X).

▶ Theorem 1.10 (Mot of multiset embedding [15, 18]). For any wpo X, o(M⋄(X)) = ωô(X).

▶ Theorem 1.11 (Mot of multiset ordering [15, 17]). For any wpo X, o(Mr(X)) = ωo(X).

Observe that ωo(X) ≤ ωô(X), as one would expect since Mr(X) ≥aug M⋄(X). Further-
more, we expect that w(Mr(X)) ≤ w(M⋄(X)), while h(Mr(X)) ≥ h(M⋄(X)).

▶ Theorem 1.12 (Height of the multiset embedding [8]). Let X be a wpo.
Then h(M⋄(X)) = h∗(X), where

h∗(X) def=
{

h(X) if h(X) is infinite and indecomposable,
h(X) · ω otherwise.

1.6 A tool to compute the width: Quasi-incomparable subsets
Of all three ordinal invariants, the width is the less studied, since it has been introduced
more recently, and also the hardest invariant to study for lack of tools.

A powerful tool to analyse the width of a wpo is the notion of quasi-incomparable subsets
of a wpo, which was first introduced in [16] for the Cartesian product of several ordinals.

For any subsets Y, Z of X, let Y ⊥ Z denote that for every y ∈ Y, z ∈ Z, y ⊥ z.

▶ Definition 1.13. Let A be a wpo, and A1, . . . , An be n subsets of A. Then (Ai)1≤i≤n is a
quasi-incomparable family of subsets of A iff for any i < n, for any finite Y ⊆ A1 ∪ · · · ∪ Ai,
there exists A′

i+1 ⊆ Ai+1 such that A′
i+1 ⊥ Y and A′

i+1 ≡ Ai+1.
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This definition is slightly more restrictive than the one in [16], which only required that
w(A′

i+1) = w(Ai+1).
The idea behind these quasi-incomparable subsets is that sometimes one can slice a wpo

A into simpler subsets A1, . . . , An whose width is known, such that Ant(An) + · · · + Ant(A1)
is embedded in Ant(A). Intuitively, it means that one can combine antichains of A1, . . . , An

into one antichain of A.
This entails a practical relation between the widths of A and its subsets:

▶ Lemma 1.14 ([16]). Let (Ai)i≤n be a quasi-incomparable family of subsets of A. Then
w(A) ≥ w(An) + · · · + w(A1).

2 Ordinal width of the multiset embedding

In this section we compute the width of M⋄(X) for any wpo X, which happens to be
functional in the width of X:

▶ Theorem 2.1 (Width of the multiset embedding). For any wpo X, w(M⋄(X)) = ωô(X)−1.
(See Section 1.2 for the definition of α̂.)

It is already known that, in some cases, the width of the multiset embedding reaches its
mot.

▶ Lemma 2.2 ([8]). If o(X) is infinite and indecomposable, w(M⋄(X)) = o(M⋄(X)).

We focus for now on the set of finite multisets on a linear wpo, i.e., an ordinal. Let us
treat first the case of successor ordinals.

▶ Lemma 2.3. For any successor ordinal α = β + 1, w(M⋄(α)) ≥ w(M⋄(β)) · ω.

Proof. We denote with M⋄
>k(X) the subset { m ∈ M⋄(X) : |m| > k } for any k ∈ N of

M⋄(X) for any wpo X, for any k < ω.
Let mn

def= ⟨β⟩ × n for any n ∈ N. According to Equation (Res-w),

w(M⋄(α)) = sup{ w(M⋄(α)⊥m) + 1 : m ∈ M⋄(α) }
≥ sup{ w(M⋄(α)⊥mn

) + 1 : n ∈ N } .

Let Mk
def= { ⟨β⟩ × (n − k) ∪ m : m ∈ M⋄

>k(β) } for k ∈ [1, n]. These subsets of M⋄(α) are
actually subsets of M⋄(α)⊥mn : for all m ∈ Mk, m ⊥ mn since |m| > |mn|. Observe also that
for any k ∈ [1, n], Mk ≡ M⋄(β).

Moreover, (Mk)k∈[1,n] is a quasi-incomparable family of subsets of M⋄(α)⊥mn
: for any

i < n, for any finite Y ⊂ M1 ∪ · · · ∪ Mi, let s(Y ) = max{|m|, m ∈ Y }. Observe that Mi+1
contains Mi+1 ∩ M⋄

>s(Y )(β) which is incomparable to Y , and isomorphic to Mi+1.
Therefore, w(M⋄(α)⊥mn) ≥ w(Mn) + · · · + w(M1) = w(M⋄(β)) · n according to

Lemma 1.14. Thus w(M⋄(α)) ≥ sup{ w(M⋄(β) · n + 1 : n ∈ N } = w(M⋄(β)) · ω. ◀

▶ Lemma 2.4. For any infinite ordinal α, w(M⋄(α)) = o(M⋄(α)).

Proof. We already know that w(M⋄(α)) ≤ o(M⋄(α)). We prove the lower bound by
induction on α:

If α is indecomposable, see Lemma 2.2.
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If α = β + 1 , then according to Lemma 2.3,

w(M⋄(α)) ≥ w(M⋄(β)) · ω

= o(M⋄(β)) · ω by induction hypothesis,

= ωβ̂+1 = ωβ̂+1 = o(M⋄(α)) according to Theorem 1.10.

If α = β + ωρ with β, ωρ < α and ρ > 0, then according to the transformation equation
Trans-3, M⋄(α) ≤aug M⋄(β) · M⋄(ωρ). Hence according to Lemma 1.3 and Table 1,

w(M⋄(α)) ≥ w(M⋄(β)) ⊙ w(M⋄(ωρ))
= o(M⋄(β)) ⊙ o(M⋄(ωρ)) by induction hypothesis,

= ωβ̂ ⊙ ωω̂ρ = ωα̂

= o(M⋄(α)) according to Theorem 1.10. ◀

We can now prove that Lemma 2.4 generalizes to non-linear wpos.

▶ Lemma 2.5. If o(X) is infinite then w(M⋄(X)) = o(M⋄(X)).

Proof. Let α = o(X). Then X ≤aug α from Proposition 1.4, hence M⋄(X) ≤aug M⋄(α)
according to Lemma 1.3 and Proposition 1.9. Thus

w(M⋄(α)) ≤ w(M⋄(X)) ≤ o(M⋄(X)) .

Now o(M⋄(X)) = ωα̂ = o(M⋄(α)) according to Theorem 1.10. Now with Lemma 2.4
w(M⋄(α)) = o(M⋄(α)), hence w(M⋄(X)) = o(M⋄(X)). ◀

We can also compute the width of M⋄(X) when X is a finite wpo:

▶ Lemma 2.6. If o(X) is finite, then w(M⋄(X)) = ωo(X)−1.

Proof. Let k = o(X). Then Γk ≤aug X ≤aug k, hence w(M⋄(Γk)) ≥ w(M⋄(X)) ≥
w(M⋄(k)) thanks to Lemma 1.3. According to Lemma 1.8, w(M⋄(Γk)) = ωk−1, and
according to Lemma 2.3 applied (k − 1) times, w(M⋄(k)) ≥ w(M⋄(1)) · ωk−1 = ωk−1.
Therefore w(M⋄(X)) = ωk−1 = ωo(X)−1. ◀

This section’s main result follows directly from Lemmas 2.5 and 2.6.

Proof of Theorem 2.1. If o(X) is finite, then ô(X) − 1 = o(X) − 1. On the other hand, if
o(X) is infinite, then ô(X) − 1 = ô(X). ◀

3 Ordinal height and width of the multiset ordering

For the height of Mr(X), we obtain a result similar to Theorem 1.11.

▶ Theorem 3.1 (Height of the multiset ordering). Let X be a wpo.
Then h(Mr(X)) = ωh(X).

Proof. Observe that the multiset ordering of any linear ordering is also linear. Thus, for
any ordinal α, Mr(α) is isomorphic to ωα (the function ⟨x1, . . . , xn⟩ 7→ ωx1 ⊕ · · · ⊕ ωxn is
an isomorphism).

According to Proposition 1.4, X ≥st h(X), and thus Mr(X) ≥st Mr(h(X)) ≡ ωh(X)

(Proposition 1.9). Therefore h(Mr(X)) ≥ ωh(X) according to Lemma 1.3. See the proof of
the upper bound in Appendix A. ◀
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The width of the multiset ordering is harder to compute, as w(Mr(X)) is not functional
in the ordinal invariants of X. The following example exhibits two wpos X1 and X2, with
identical ordinal invariants, such that w(Mr(X1)) ̸= w(Mr(X2)).

▶ Example 3.2. Let H
def= Σn<ωΓn. An interesting property of H is that w(H) = h(H) =

o(H) = ω. Since Mr(H) ≥st Mr(Γn), then ωn−1 ≤ w(Mr(H)) ≤ o(Mr(H)) = ωω for all
n < ω according to Lemma 1.8 and Theorem 1.11. Hence w(Mr(H)) = ωω.

Consider X1 = H + H and X2 = H + ω, two wpos with the same ordinal invariants:
o(Xi) = h(Xi) = ω · 2 and w(Xi) = ω for i ∈ { 1, 2 }. According to Equation (Trans-2)
and Table 1, w(Mr(X1)) = w(Mr(H)) ⊙ w(Mr(H)) = ωω ⊙ ωω = ωω·2 and w(Mr(X2)) =
w(Mr(H)) ⊙ w(Mr(ω)) = ωω ⊙ 1 = ωω.

Fortunately, we uncovered a new ordinal invariant, defined similarly to the usual invariants,
in which the width of the multiset ordering is functional.

▶ Definition 3.3 (Friendly order type). A bad sequence is open-ended if it is empty or of the
form sx where s is an open-ended sequence and x has a “friend” 1 in the residual X̸≥s, i.e.,
an element incomparable to x. For any wpo X, let Bad⊥(X) be the subtree of Bad(X) which
contains all open-ended bad sequences. As Bad⊥(X) is a substructure of Bad(X), it has a
rank that we denote by o⊥(X) the friendly order type of X (or fot).

This definition can be expressed as the following residual equation:

o⊥(X) = sup
x∈X,X⊥x ̸=∅

(o⊥(X̸≥x) + 1) (Res-f)

▶ Theorem 3.4. For any wpo X, w(Mr(X)) = ωo⊥(X)

Proof. See Appendix B. The proof of Theorem 3.4 is quite technical, and relies on the notion
of quasi-incomparable subsets. ◀

4 Computing the friendly order type

Like the usual ordinal invariants, the fot can be computed compositionally for some basic
operations on wpos:

▶ Proposition 4.1. For any non empty wpo A, B,
1. o⊥(A + B) = o⊥(A) + o⊥(B),
2. o⊥(A ⊔ B) = 1 + (o(A) − 1) ⊕ (o(B) − 1),

Proof.
1. For any sequences sA, sB in Bad⊥(A), Bad⊥(B), the concatenation sBsA is a sequence of

Bad⊥(A + B). Furthermore, any sequence of Bad⊥(A + B) is of this form.
2. For any two sequences s1, s2, let s1 ⊔⊔ s2 denote the set of sequences obtained through

shuffling s1, s2 together (e.g. abcad ∈ aba⊔⊔cd). Let xA, xB be two minimal elements of A

and B. For any sequences sA, sB in Bad(A\{xA}), Bad(B\{xB}), for any s ∈ sA ⊔⊔sB , we
know that s and sxA and sxB are in Bad⊥(A⊔B). Reciprocally, from any s ∈ Bad⊥(A⊔B),
there is a partition sA ∈ Bad(A), sB ∈ Bad(B) such that s ∈ sA ⊔⊔ sB. Furthermore,
the natural sum of the ranks of sA in Bad(A) and sB in Bad(B) is strictly positive.

1 Can one be friend with one’s superior or inferior? No. Your true friends are those you cannot (and do
not have to) compare yourselves with.
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Suppose for contradiction sake that sA and sB have rank 0 in Bad(A) and Bad(B). Let
s = s′x. Then (A ⊔ B) ̸≥s = ∅ and in particular x has no friend in (A ⊔ B) ̸≥s′ . Thus
s ̸∈ Bad⊥(A ⊔ B), contradiction. ◀

Observe how friendly order type behaves similarly to mot. It is not unusual to have fot
coincides with mot, for instance o⊥(ω ⊔ ω) = o(ω ⊔ ω) (Proposition 4.1).

To bring this new ordinal invariant closer to familiar grounds, we bound the fot of a wpo
X with the mot of a special subset of X, the stripped subset.

▶ Definition 4.2 (Stripped subset). The stripped subset of a wpo X, denoted by str(X), is
X without its friendless elements:

str(X) def= { x ∈ X : X⊥x ̸= ∅ } .

Since Bad⊥(X) is a subtree of Bad(str(X)), we know that o⊥(X) ≤ o(str(X)). Here is
an example where this inequality is strict:

▶ Example 4.3. Let X = ω ⊔ {♣}. Here str(X) = X, so o(str(X)) = ω + 1. However,
in Bad⊥(X), the singleton ♣ has rank 0, and the singleton n for any n ∈ ω has rank n.
Therefore o⊥(X) = ω < o(str(X)).

Let us show that o(str(X)) also appears in a lower bound on o⊥(X), by introducing an
alternative characterisation of fot as the mot of a specific subset.

A maximal linearisation is a monotonic function from a wpo X onto o(X).

▶ Definition 4.4 (Friendly subset). A subset X ′ of X is friendly if there exist a maximal
linearisation ℓ : X ′ → o(X ′) such that for any bad sequence s = x1, . . . xn in X ′ verifying
ℓ(x1) > · · · > ℓ(xn), s is open-ended. We say that ℓ witnesses the friendly condition.

Observe that every friendly subset of X is a substructure of str(X).
For any ordinal α, let

δ(α) def=
{

α if α is limit,
γ + ⌊n/2⌋ if α = γ + n with γ limit and n < ω.

▶ Theorem 4.5 (Alternative characterisation of o⊥(X)). Let X be a wpo. There exists
a friendly subset X ′ of X which maximizes o(X ′), and o⊥(X) = o(X ′). Furthermore,
δ(o(str(X))) ≤ o⊥(X) ≤ o(str(X)).

Proof. See proof in Appendix C. ◀

▶ Example 4.6 (Following on Example 3.2). Remember that H
def= Σn<ωΓn. Thus str(H) =

Σ2≤n<ωΓn, and o(str(H)) = o(H) = ω. Consider X1 = H+H and X2 = H+ω. Observe that
str(X1) = str(H) + str(H) whereas str(X2) = str(H). Therefore, according to Theorem 4.5,
o⊥(X1) = ω · 2 and o⊥(X2) = ω.

▶ Corollary 4.7. For any wpo X, if o(X) is limit and o(str(X)) = o(X), then o⊥(X) = o(X).

The conditions in Corollary 4.7 are often satisfied:

▶ Proposition 4.8. For any wpo non-empty X, o⊥(M⋄(X)) = o(M⋄(X)).

Proof. Observe that M⋄(X) = M⋄(X) \ {∅}. Thus o(str(M⋄(X))) = o(M⋄(X)) − 1 =
o(M⋄(X)) (Theorem 1.10). We conclude with Corollary 4.7. ◀



I. Vialard 87:11

Conclusion

Table 2 sums up this article’s contributions (in the gray cases) amidst the former state of
the art.

Table 2 Ordinal invariants of the set of finite multisets.

Invariants Multiset embedding of X Multiset ordering of X

Mot o ωô(X) ωo(X)

Height h h∗(X) ωh(X)

Width w ωô(X)−1 ωo⊥(X)

These results are part of a more general research program (see [8, 16]) aimed at measuring
more precisely and more effectively the complexity of wpos used in well-structured systems,
termination proofs, and other algorithmic applications.

Investigating the friendly order type is a subject for further research: How does it relate
to other concepts? Can it be computed compositionally for more operations? Can we define
a class of wpos where friendly order type always coincides with mot?
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A Proof of Theorem 3.1

We write m
̸∩

≤r m′ (resp. m
̸∩
< m′, m

̸∩
⊥ m′) when m ∩ m′ ≠ ∅ and m ≤r m′ (resp m < m′,

m ⊥ m′). With these new notations, the multiset ordering can be reformulated as follows

▶ Definition A.1 (Multiset ordering (reformulated)). Mr(X) = (M(X), ≤r) is ordered with the
multiset ordering: m ≤r m′ iff there exists m1, m′

1, m2 such that m = m1∪m2, m′ = m′
1∪m2,

and m1
̸∩
< m′

1.

▶ Lemma A.2. Let A = ∪i≤nAi a set partitioned in n subsets, for some n ∈ N. Let ≤A a
well-partial ordering on A, and ≤Ai

the same ordering restricted to the subset Ai for i ≤ n.
Then

h(A, ≤A) ≤
⊕
i≤n

h(Ai, ≤Ai
) .

Proof. From any decreasing sequence s on A, one can extract a decreasing sequence si by
restricting s to Ai for any i ≤ n. By induction on the rank of s in Dec(A), one shows that
rk(s) ≤

⊕
i≤n rk(si). ◀

Proof of Theorem 3.1. We prove the upper bound by induction on h(X).
If h(X) = 0 then X = ∅ and h(Mr(∅)) = 1 = ω0.
Suppose that X is not empty. For any non-empty multiset m ∈ Mr(X), the residual

Mr(X)<m can be partitioned as follows:

Mr(X)<m =
⋃

m1+m2=m,m1 ̸=∅

{ m′ + m2 : m′ ̸∩
< m1 } .

Note that this union is a partition of the support of Mr(X)<m, it does not say anything on
the order between the elements of the subsets in the union.
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For any non-empty multiset m, we define Sm
def= (∩x∈mX̸≥x) ∩ (∪x∈mX<x) a subset of

X. Thus for any multiset m′ in Mr(X), m′ ̸∩
< m iff m′ ∈ Mr(Sm). Therefore:

Mr(X)<m =
⋃

m1+m2=m,m1 ̸=∅

{ m′ + m2 : m′ ∈ Mr(Sm1) } .

Observe that h(Sm1) < h(X) by definition of Sm1 . Hence by induction hypothesis
h(Mr(Sm1)) ≤ ωh(Sm1 ) < ωh(X). Moreover, ωh(X) is indecomposable. Hence according to
Lemma A.2:

h(Mr(X)<m) ≤
⊕

m1+m2=m,m1 ̸=∅

h(Mr(∪x∈m1X<x)) < ωh(X) .

Therefore h(Mr(X)) ≤ ωh(X) according to Equation (Res-h). ◀

B Proof of Theorem 3.4

First we prove intermediary lower and upper bounds on the width of the multiset ordering.

▶ Lemma B.1. Let X be a wpo. Then

w(Mr(X)) ≥ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) · n + 1

Proof. This proof follows the same structure as the proof of Lemma 2.3: We study the
residual of Mr(X) which contains every element incomparable to some multiset of the form
⟨x⟩ × n, and slice this residual into a family of quasi-incomparable subsets.

According to Equation (Res-w),

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1

≥ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩×n) + 1 .

For all k ∈ [1, n], let Mk = { ⟨x⟩ × (n − k) ∪ m : m ∈ Mr(X)⊥⟨x⟩ }. Observe that
Mk ≡ Mr(X)⊥⟨x⟩ for any k ∈ [1, n], and for all m ∈ Mk, m ⊥ ⟨x⟩ × n. We claim that
(Mk)k∈[1,n] is a quasi-incomparable family of subsets of Mr(X)⊥(⟨x⟩×n): Let i < n and Y a
finite subset of M1 ∪ · · · ∪ Mi. We define mY and M ′

i+1 as

mY
def=

⋃
j≤i

⋃
m∈(Mj∩Y )

(m \ (⟨x⟩ × (n − j))) ,

M ′
i+1

def= { ⟨x⟩ × (n − i − 1) ∪ mY ∪ m : m ∈ Mr(X)⊥⟨x⟩ } .

Observe that M ′
i+1 is an isomorphic subset of Mi+1, and Y ⊥ M ′

i+1.
Therefore according to Lemma 1.14, w(Mr(X)⊥(⟨x⟩×n)) ≥ w(Mr(X)⊥⟨x⟩) · n. ◀

▶ Lemma B.2. Let X be a wpo. Then

w(Mr(X)) ≤ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) ⊗ n + 1

MFCS 2023
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Proof. By definition, for any multisets m, m′ ∈ Mr(X), m ⊥ m′ means that m ̸= m′ and

there exists m1, m′
1, m2 such that m = m1 ∪ m2, m′ = m′

1 ∪ m2 and m1
̸∩
⊥ m′

1.
Therefore, the residual Mr(X)⊥m can be partitioned as an augmentation of a disjoint

union:

Mr(X)⊥m ≥aug
⊔

m1+m2=m,m1 ̸=∅

{ m′
1 + m2 : m′ ∈ Mr(X), m′

1
̸∩
⊥ m1 } ,

which can be reformulated into

Mr(X)⊥m ≥aug
⊔

m1⊆m,m1 ̸=∅

Mr(X) ̸∩
⊥m1

where Mr(X) ̸∩
⊥m1

is the residual { m′ ∈ Mr(X) : m′
̸∩
⊥ m1 }.

Let us observe this residual: m′
̸∩
⊥ m1 means that m′ and m1 are disjoint and there exists

x ∈ m1 such that for all y′ ∈ m′, x ̸≤ y′, and there exists x′ ∈ m′ such that for all y ∈ m1,

x′ ̸≤ y. In particular x′ ̸≤ x. Hence m′
̸∩
⊥ m1 implies there exists x ∈ m1 such that ⟨x⟩

̸∩
⊥ m′,

which is equivalent to ⟨x⟩ ⊥ m′. Therefore the support of Mr(X) ̸∩
⊥m1

is included in a union

on x ∈ m1 of residuals Mr(X)⊥⟨x⟩. With an augmentation we get a disjoint union:

Mr(X) ̸∩
⊥m1

≤st≥aug
⊔

x∈m1

Mr(X)⊥⟨x⟩ .

Hence according to Table 1, Mr(X)⊥m ≤
⊕

m1⊆m,m1 ̸=∅

⊕
x∈m1

w(Mr(X)⊥⟨x⟩) .

Let x ∈ m such that w(Mr(X)⊥⟨x⟩) is maximal. Then w(Mr(X)⊥m) ≤ w(Mr(X)⊥⟨x⟩)⊗
n for some n < ω. Hence according to Equation (Res-w),

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1 ≤ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) ⊗ n + 1 . ◀

The bounds provided in Lemmas B.1 and B.2 actually match. Furthermore, they can be
reformulated in such a way that the residual on Mr(X) boils down to a residual on X:

▶ Lemma B.3. For any non-linear wpo X,

w(Mr(X)) = sup{ w(Mr(X̸≥x)) · ω : x ∈ X, X⊥x ̸= ∅ } . (W)

Proof. For any ordinal α, supn<ω(α · n + 1) = supn<ω(α ⊗ n + 1) = α · ω. Hence according
to Lemmas B.1 and B.2, w(Mr(X)) = supx∈X(w(Mr(X)⊥⟨x⟩) · ω).

Let x ∈ X. If X⊥x = ∅, then Mr(X)⊥⟨x⟩ = ∅. Otherwise let y ∈ X⊥x. Observe that, for
any m ∈ Mr(X̸≥x), m ∪ ⟨y⟩ ⊥ ⟨x⟩. Hence

{ ⟨y⟩ ∪ m : m ∈ Mr(X̸≥x) } ≤st Mr(X)⊥⟨x⟩ ≤st Mr(X̸≥x) .

Therefore w(Mr(X)⊥⟨x⟩) = w(Mr(X̸≥x)) if X⊥x ̸= ∅, otherwise w(Mr(X)⊥⟨x⟩) = 0. ◀

Proof of Theorem 3.4. If X is linear, Bad⊥(X) only contains the empty sequence, hence
o⊥(X) = 0 and w(Mulr(X) = 1. Otherwise, observe that Equation (W) is quite similar
to Equation (Res-f) in its structure. Thus w(Mr(X)) = ωo⊥(X) follows directly from
Equation (W). ◀
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C Proof of Theorem 4.5

▶ Lemma C.1. For any wpo X, for any maximal linearisation ℓ : str(X) → o(str(X)), there
exists a friendly subset X ′ such that ℓ restricted to X ′ verifies the friendly condition, and
o(X ′) ≥ δ(o(str(X))).

Proof. We claim that for any β ≤ o(str(X)), there exists Xβ ⊆ ℓ−1({ γ : γ < β }) a friendly
subset of X where ℓ restricted to Xβ verifies the friendly condition, such that o(Xβ) ≥ δ(β).
In this proof, when we say that a subset is friendly, it is always implied that ℓ restricted to
this subset witnesses the friendly condition.

We build the subsets (Xβ)β≤o(str(X)) as follows:
X0 = ∅,
For γ limit, Xγ =

⋃
β<γ Xβ ,

For any β, Xβ+1 = Xβ ∪ ℓ−1(β) if friendly, otherwise Xβ+1 = Xβ .

First observe that Xβ is friendly for any β ≤ o(str(X)). Indeed, X0 is friendly, and since
for any β < β′, Xβ ⊆ Xβ′ , then the union

⋃
β<γ Xβ for γ limit is friendly by induction.

Let us prove the claim o(Xβ) ≥ δ(β), by showing that for any β + 2 ≤ o(str(X)), we
have o(Xβ+2) > o(Xβ). Let x = ℓ−1(β′) and x′ = ℓ−1(β′ + 1). Assume for the sake of
contradiction that Xβ+2 = Xβ . This means that neither Xβ ∪ {x} nor Xβ ∪ {x′} are friendly.
Hence there exists y, y′ ∈ Xβ such that for any z ∈ X, we have z ⊥ y =⇒ z ≥ x and
z ⊥ y′ =⇒ z ≥ x. Now because of ℓ we know that x ̸≥ x′ and y, y′ ̸≥ x, x′. Since
y, y′ ∈ str(X), then X⊥y and X⊥y′ are both non-empty, so actually x ⊥ y and x′ ⊥ y′. And
since x ̸≥ x′, we know y′ < x. Therefore x ⊥ x′, hence y < x′. Which leads to a contradiction
on the relationship between y and y′. ◀

For any friendly subset X ′, o(X ′) ≤ o(str(X)), and there exist X ′ such that o(X ′) ≥
δ(o(str(X))). Therefore there exists a friendly subset X ′ which maximizes o(X ′).

Proof of Theorem 4.5. We say that a bad sequence x1, . . . xn respects a maximal linear-
isation ℓ when ℓ(x1) > · · · > ℓ(xn). Let X ′ be a friendly subset of X and ℓ a maximal
linearisation of X ′ that verifies the friendly condition. Observe that Bad(X ′) restricted
to sequences that respect ℓ has for rank o(X ′), and is embedded in Bad⊥(X). Hence
o⊥(X) ≥ o(X ′).

We prove the upper bound by induction on o⊥(X). If o⊥(X) = 0 then the only friendly
subset of X is the empty set. Now suppose that o⊥(X) > 0. For any x ∈ str(X), by
induction hypothesis on X̸≥x, there exists a friendly subset X ′ of X̸≥x, with a maximal
linearisation ℓ which verifies the friendly condition, such that o(X ′) ≥ o⊥(X̸≥x). We extend
ℓ to the subset X ′ ∪ {x} of X, such that ℓ(x) = o(X ′). Now ℓ is a maximal linearisation
of X ′ ∪ {x} which verifies the friendly condition, therefore o(X ′ ∪ {x}) is a friendly subset
of X and o(X ′ ∪ {x}) > o⊥(X̸≥x). Let X ′ be a friendly subset of X which maximizes
o(X ′). Then for any x ∈ str(X), o⊥(X̸≥x) < o(X ′). Therefore o⊥(X) ≤ o(X ′) according to
Equation (Res-f). ◀
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