
Descriptive Complexity for Distributed Computing
with Circuits
Veeti Ahvonen # Ñ

Tampere University, Finland

Damian Heiman #

Tampere University, Finland

Lauri Hella #

Tampere University, Finland

Antti Kuusisto #Ñ

Tampere University, Finland
University of Helsinki, Finland

Abstract
We consider distributed algorithms in the realistic scenario where distributed message passing is
operated by circuits. We show that within this setting, modal substitution calculus MSC precisely
captures the expressive power of circuits. The result is established via constructing translations
that are highly efficient in relation to size. We also observe that the coloring algorithm based on
Cole-Vishkin can be specified by logarithmic size programs (and thus also logarithmic size circuits)
in the bounded-degree scenario.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Distributed algorithms; Networks → Network algorithms; Theory of computation
→ Modal and temporal logics

Keywords and phrases Descriptive complexity, distributed computing, logic, graph coloring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.9

Related Version Full Version: https://arxiv.org/abs/2303.04735

Funding Antti Kuusisto and Veeti Ahvonen were supported by the Academy of Finland project
Theory of computational logics, grant numbers 352419, 352420, 353027, 324435, 328987. Antti
Kuusisto was also supported by the Academy of Finland consortium project Explaining AI via Logic
(XAILOG), grant number 345612. Veeti Ahvonen was also supported by the Vilho, Yrjö and Kalle
Väisälä Foundation of the Finnish Academy of Science and Letters.

1 Introduction

Distributed computing concerns computation in networks and relates directly to various
fields of study including, inter alia, cellular automata and neural networks. In this paper we
study distributed systems based on circuits. A distributed system is a labeled directed graph
(with self-loops allowed) where nodes communicate by sending messages to each other. In
each communication round a node sends a message to its neighbours and updates its state
based on (1) its own previous state and (2) the messages received from the neighbours.

Descriptive complexity of distributed computing was initiated in [8], [11] and [9]. The
articles [8] and [9] characterized classes of constant-time distributed algorithms via modal
logics. The constant-time assumption was lifted in [11] which showed that the expressive
power of finite message passing automata (FMPAs) is captured by modal substitution calculus
MSC, which is an extension of modal logic by Datalog-style rules. The papers [8], [11] and [9]
did not consider identifiers, i.e., ID-numbers roughly analogous to IP-addresses. It is worth
noting that identifiers are, for various reasons, a key concept in much of the literature on
distributed computing.

© Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veeti.ahvonen@tuni.fi
https://homepages.tuni.fi/veeti.ahvonen/
https://orcid.org/0009-0007-4819-0199
mailto:damian.heiman@tuni.fi
https://orcid.org/0009-0000-6038-7006
mailto:lauri.hella@tuni.fi
https://orcid.org/0000-0002-9117-8124
mailto:antti.kuusisto@tuni.fi
https://homepages.tuni.fi/antti.kuusisto/
https://orcid.org/0000-0003-1356-8749
https://doi.org/10.4230/LIPIcs.MFCS.2023.9
https://arxiv.org/abs/2303.04735
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Descriptive Complexity for Distributed Computing with Circuits

In this paper we study distributed computing based on circuits in a scenario with unique
identifiers. Each node runs a copy of the same circuit C. In each communication round,
the node sends its current bit string s to its neighbours and updates to a new string s′ by
feeding s and the strings s1, . . . , sm sent by the neighbours to C (letting s′ be the output of
C). This is a realistic model of distributed computing which also takes local computation –
the computation steps of the circuit – into account. Typically in distributed computing, only
communication steps count. Since we study distributed systems, we call our circuits message
passing circuits, or MPCs, although formally they are just plain circuits.

We establish an exact match between this circuit-based model and the logic MSC. Unlike
earlier works on descriptive complexity of distributed computing, we work in the circuit-style
paradigm where an algorithm is specified via an allocation function F that produces, in the
simplest case, for each input n ∈ Z+, a circuit F (n) that operates on all distributed systems
(i.e., labeled directed graphs, or Kripke models) of size n. As one of our main results, we prove
that programs of the MSC-logic and constant fan-in message passing circuits translate to
each other with only a linear blow-up in size. Thus, we can work interchangeably with circuit
allocation functions and MSC-program allocation functions. The related formal statements
are as follows, with Π denoting the set of proposition symbols considered (including ones for
ID-bits) while ∆ is a degree bound for graphs.
▶ Theorem 12. Given an MPC of size m for (Π,∆), we can construct an equivalent Π-
program of MSC. For a constant bound c for the fan-in of MPCs, the size of the program is
O(m).
▶ Theorem 13. Given Π, ∆ and a Π-program of MSC of size m, we can construct an
equivalent MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0.

We are especially interested in the feasible scenario where F (n) is a circuit of size O(logn).
From the above results we can prove that, for a constant ∆ and constant fan-in bound, if we
have an allocation function producing log-size circuits, we also have an allocation function for
log-size programs, and vice versa. We put this into use by demonstrating that for graphs of
degree bound ∆, we can produce programs of size O(logn) that compute a (∆ + 1)-coloring
via a Cole-Vishkin [6] style approach – implying also an analogous result for circuits.

Generally, the circuit-based approach suits well for studying the interplay of local com-
putation and message passing. While important, such effects have received relatively little
attention in studies on distributed computing. We provide a range of related results.

Related work. As already mentioned, descriptive complexity of distributed computing has
been largely initiated in [9], which characterizes a range of related complexity classes via
modal logics. It is shown, for example, that graded modal logic captures the class MB(1)
containing problems solvable in constant time by algorithms whose recognition capacity
is sufficient all the way up to distinguishing between multisets of incoming messages but
no further. In the paper, the link to logic helps also in separating some of the studied
classes. The constant-time limitation is lifted in [11], which shows that finite distributed
message passing automata (FMPAs) correspond to modal substitution calculus MSC, which
is the logic studied also in the current paper. The work on MSC is extended in [15], which
proves that while MSC corresponds to synchronized automata, the µ-fragment of the modal
µ-calculus similarly captures asynchronous distributed automata.

Distributed computing with identifiers has been studied from the point of view of logic
earlier in [4]. The paper [4] approaches identifiers via a uniform logical characterization of a
certain class of algorithms using IDs, while our work is based on the circuit-style paradigm
with formulas and circuits being given based on model size. Thus the two approaches are

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:3

not comparable in any uniquely obvious way. Nevertheless, one simple difference between
our work and [4] is that we treat IDs bit by bit as concrete bit strings. Thus we can express,
e.g., that the current ID has a bit 1 without implying that the current node cannot have the
smallest ID in the system. This is because there is no guarantee on what the set of IDs in
the current graph (or distributed system) is, and in a directed graph, we cannot even scan
through the graph to find out. On the other hand, the logic in [4] can express, e.g., that the
current node has the largest ID, which we cannot do. Of course, with a non-uniform formula
allocation function, the circuit-style paradigm can even specify non-computable properties.

The closest work to the current article is [11] which gives the already mentioned charac-
terization of finite message passing automata via MSC. The paper does not work within the
circuit-style paradigm. Furthermore, we cannot turn our circuit to an FMPA and then use
the translation of [11], as this leads to an exponential blow-up in size. Also, the converse
translation is non-polynomial in [11]. Furthermore, that paper does not discuss identifiers, or
the Cole-Vishkin algorithm, and the work in the paper is based on the paradigm of relating
properties directly with single formulae rather than our circuit-style approach. Concerning
further related and very timely work, [2] studies graph neural networks (or GNNs) and
establishes a match between aggregate-combine GNNs and graded modal logic. For further
related work on GNNs and logic, see, e.g., [7]. Concerning yet further work on logical
characterizations of distributed computing models, we mention the theses [12, 16]. For
unique identifiers in graph neural networks, see [14, 17, 10].

2 Preliminaries

We let Z+ denote the set of positive integers. For every n ∈ Z+, we let [n] denote the
set {1, . . . , n} and [n]0 the set {0, . . . , n}. For any set S, we let |S| denote the size (or
cardinality) of S. Let PROP be a countably infinite set of proposition symbols. We suppose
PROP partitions into two infinite sets PROP0 and PROP1, with the intuition that PROP0
contains ordinary proposition symbols while PROP1 consists of distinguished proposition
symbols reserved for encoding ID-numbers. We denote finite sets of proposition symbols
by Π ⊂ PROP. By Π0 (respectively, Π1), we mean the subset of Π containing ordinary
(respectively, distinguished) propositions. The set PROP is associated with a linear order
<PROP which also induces a linear order <S over any set S ⊆ PROP.

Let Π be a finite set of proposition symbols. A Kripke model over Π is a structure
(W,R, V) with a non-empty domain W , an accessibility relation R ⊆ W × W and a
valuation function V : Π → P(W) giving each p ∈ Π a set V (p) of nodes where p is
considered true. A pointed Kripke model is a pair (M,w) where M is a Kripke model
and w a node in the domain of M . We let succ(w) denote the set { v ∈ W | (w, v) ∈ R }.

As in [9, 11], we model distributed systems by Kripke models. An edge (w, u) ∈ R linking
the node w to u via the accessibility relation R means that w can see messages sent by u.
Thereby we adopt the convention of [9, 11] that messages travel in the direction opposite to
the edges of R. An alternative to this would be to consider modal logics with only inverse
modalities, i.e., modalities based on the inverse accessibility relation R−1.

We next define general notions concerning acceptance of infinite sequences of bit strings.
Let k ∈ N and consider an infinite sequence S = (bj)j∈N of k-bit strings bj . Let A ⊆ [k] and
P ⊆ [k] be subsets, called attention bits and print bits (or bit positions, strictly speaking).
Let (aj)j∈N and (pj)j∈N be the corresponding sequences of substrings of the strings in S,
that is, (aj)j∈N records the substrings with positions in A, and analogously for (pj)j∈N. Let
(rj)j∈N be the sequence of substrings with positions in A ∪ P . We say that S accepts in

MFCS 2023

9:4 Descriptive Complexity for Distributed Computing with Circuits

round n if at least one bit in an is 1 and all bits in each am for m < n are zero. Then also S
outputs pn. More precisely, S accepts in round n with respect to (k, A, P), and pn
is the output of S with respect to (k, A, P). The sequence (rj)j∈N is the appointed
sequence w.r.t. (k,A, P), and the vector rj the appointed string of round j.

We then define some logics relevant to this article. For a finite set Π of proposition
symbols, the set of ML(Π)-formulas is given by the grammar φ ::= ⊤ | p | ¬φ | (φ∧φ) | ♢φ
where p ∈ Π and ⊤ is a logical constant symbol. The truth of a formula φ in a pointed Kripke
model (M,w) is defined as follows: (M,w) |= p ⇔ w ∈ V (p) and (M,w) |= ♢φ ⇔ (M, v) |= φ

for some v ∈ W such that (w, v) ∈ R. The semantics for ⊤,¬,∧ is the usual one.
Now, let us fix a set VAR := {Vi | i ∈ N } of schema variables. We will mostly use

meta variables X,Y, Z, and so on to denote symbols in VAR. The set VAR is associated with
a linear order <VAR inducing a corresponding linear order <T over any T ⊆ VAR. Given a
set T ⊆ VAR and a set Π ⊆ PROP, the set of (Π, T)-schemata of modal substitution
calculus (or MSC) is the set generated by the grammar φ ::= ⊤ | p | Vi | ¬φ | (φ ∧ φ) | ♢φ,
where p ∈ Π and Vi ∈ T . A terminal clause of MSC (over Π) is a string of the form
Vi(0) :− φ, where Vi ∈ VAR and φ ∈ ML(Π). An iteration clause of MSC (over Π) is a
string of the form Vi :− ψ where Vi ∈ VAR and ψ is a (Π, T)-schema for some set T ⊆ VAR.
In a terminal clause Vi(0) :− φ, the symbol Vi is the head predicate and φ the body of the
clause. Similarly, Vi is the head predicate of the iteration clause Vi :− ψ while ψ is the body.

Let T = {Y1, . . . , Yk} ⊆ VAR be a finite, nonempty set of k distinct schema variables. A
(Π, T)-program Λ of MSC consists of two lists

Y1(0) :− φ1 Y1 :− ψ1

...
...

Yk(0) :− φk Yk :− ψk

of clauses (or rules) and two sets of predicates P ⊆ T and A ⊆ T , namely print predicates
and respectively attention predicates of Λ. The first list contains k terminal clauses over Π
and the second contains k iteration clauses whose bodies are (Π, T)-schemata. The set P ∪ A
is the set of appointed predicates of Λ. We call Λ a Π-program if it is a (Π, T)-program
for some T ⊆ VAR. The set of head predicates of Λ is denoted by HEAD(Λ). For each
variable Yi ∈ HEAD(Λ), we define that Y 0

i := φi. Recursively, assume we have defined an
ML(Π)-formula Y ni for each Yi ∈ HEAD(Λ). The formula Y n+1

j is obtained by replacing
each Yi in ψj by Y ni . Then Y ni is the nth iteration formula of Yi. More generally, if φ
is a (Π, T)-schema, then we let φn+1 denote the ML(Π)-formula obtained from the schema
φ by simultaneously replacing each Yi ∈ HEAD(Λ) with Y ni . Now, let (M,w) be a pointed
Π-model. We define that (M,w) |= Λ if for some n and some attention predicate Y of Λ, we
have (M,w) |= Y n. In Section 3, we will also define output conditions for MSC using print
predicates.

For every (Π, T)-schema ψ, we let md(ψ) denote the modal depth of ψ (i.e., the
maximum nesting depth of diamonds ♢ in ψ). We let mdt(Λ) (respectively, mdi(Λ)) denote
the maximum modal depth of the bodies of the terminal clauses (resp., of the iteration
clauses) of Λ. By SUBS(Λ) we denote the set of all subschemata of Λ, including head
predicates and bodies of iteration and terminal clauses. If S is a set of schemata, SUBS(S)
is the set of all subschemata of all schemata in S.

▶ Example 1. Given a proposition symbol p and a pointed Kripke model (M,w), we say
that p is reachable from w if there exists a directed path from w to a node v in M such that
(M,v) |= p. Now, consider the program X(0) :− p, X :− ♢X where X is the appointed
predicate. It is easy to show that (M,w) |= Xj for some j < n if and only if p is reachable
from w, where n is the domain size of M .

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:5

Next we define a class of Kripke models which includes identifiers that are encoded by
proposition symbols. Assume that p1, . . . , pℓ enumerate all the distinguished propositions in
Π in the order <PROP. For each node w of a Kripke model M over Π, we let ID(w) denote
the identifier of w, that is, the |Π1|-bit string such that the ith bit of ID(w) is 1 if and
only if (M,w) |= pi. The model M is a Kripke model with identifiers if ID(w) ̸= ID(w′)
for each pair of distinct nodes w and w′ of M . We let K(Π,∆) denote the class of finite
Kripke models (W,R, V) over Π with identifiers such that the out-degree of each node is
at most ∆ ∈ N. For a node w, let s1, . . . , sd be the identifiers of the members of succ(w)
in the lexicographic order. A node v ∈ succ(w) is the ith neighbour of w iff ID(v) = si.
Analogously to ID(w), if p1, . . . , pm enumerate all the propositions in Π in the order <PROP,
then the local input of a node w of a Kripke model M over Π is the m-bit string t such
that the ith bit of t is 1 if and only if (M,w) |= pi.

2.1 Circuits and distributed computation
Here we first recall some basics related to circuits and then define a related distributed
computation model. A Boolean circuit is a directed acyclic graph where each node of
non-zero in-degree is labeled by one of the symbols ∧,∨,¬. The nodes of a circuit are called
gates. The in-degree of a gate u is called the fan-in of u, and the out-degree of u is fan-out.
The input gates of a circuit are precisely the gates that have zero fan-in; these gates are
not labeled by ∧,∨,¬. The output-gates are the ones with fan-out zero; we allow multiple
output gates in a circuit. Note that gates with ∧,∨ can have any positive fan-in (also 1).
The fan-in of every gate labeled with ¬ is 1. The size |C| of a circuit C is the number of
gates in C. The depth d(C) of C is the longest path length (number of edges) from an input
gate to an output gate. The height h(G) of a gate G in C is the longest path length from
an input gate to the gate G. Thus the height of an input gate is zero. Both the input gates
and output gates of a circuit are linearly ordered. A circuit with n input gates and k output
gates then computes a function of type {0, 1}n → {0, 1}k. This is done in the natural way,
analogously to the Boolean operators corresponding to ∧,∨,¬, see for example [13] for the
formal definition. The output of the circuit is the binary string determined by the output
bits of the output gates.

From a Boolean formula it is easy to define a corresponding circuit by considering its
inverse tree representation, meaning the tree representation with edges pointing in the inverse
direction (toward the root). A node v in the inverse tree representation is the parent of w if
there is an edge from w to v. Then w is a child of v. Note that input gates do not have
any children and output gates have no parents. The descendants of w are defined such
that every child of w is a descendant of w and also every child of a descendant of w is a
descendant of w.

▶ Definition 2. Let Π be a set of propositions and ∆ ∈ N. A circuit for (Π, ∆) is a circuit
C that specifies a function f : {0, 1}|Π|+k(∆+1) → {0, 1}k for some k ∈ N. The number k is
called the state length of C. The circuit C is also associated with sets A ⊆ [k] and P ⊆ [k]
of attention bits and print bits, respectively. For convenience, we may also call a circuit
C for (Π,∆) a message passing circuit (or MPC) for (Π,∆). The set A∪ P is called the
set of appointed bits of the circuit.

A circuit C is suitable for a Kripke model M ∈ K(Π,∆′) with identifiers if C is a message
passing circuit for (Π,∆) for some ∆ ≥ ∆′. A circuit C for (Π,∆) with |Π1| = m is referred
to as a circuit for m ID-bits. We let CIRC(Π0,∆) denote the set of all circuits C such

MFCS 2023

9:6 Descriptive Complexity for Distributed Computing with Circuits

that, for some Π with Π ∩ PROP0 = Π0, the circuit C is a circuit for (Π,∆). We stress that
strictly speaking, when specifying an MPC, we should always specify (together with a circuit)
the sets Π, ∆, the attention and print bits, and an ordering of the input and output gates.

Before giving a formal definition of distributed computation in a Kripke model M ∈
K(Π,∆) with a circuit C for (Π,∆), we describe the process informally. Each node u of M
runs a copy of the circuit C. The node u is associated with a local input, which is the binary
string that corresponds to the set of propositions true at u. In the beginning of computation,
the circuit at u reads the string s · 0ℓ at u, where s is the local input at u and ℓ = k(∆ + 1),
so 0ℓ is simply the part of the input to C that does not correspond to proposition symbols.
Then the circuit enters a state which is the k-bit output string of C. Let s(0, u) denote this
string and call it the state in communication round 0 at the node u. Now, recursively,
suppose we know the state s(n, u) in communication round n ∈ N for each node u. The state
s(n+ 1, u) for round n+ 1 at u is then computed as follows.
1. At each node u, the circuit sends s(n, u) to the nodes w such that R(w, u). Note here

that messages flow opposite to the direction of R-edges.
2. The circuit at u updates its state to s(n+ 1, u) which is the k-bit string obtained as the

output of the circuit with the input s · s0 · · · s∆ which is the concatenation of the k-bit
strings si (for i ∈ {0, . . . ,∆}) specified as follows. The string s is the local input at u.
The string s0 is the state s(n, u). Let i ∈ {1, . . . ,m}, where m ≤ ∆ is the out-degree of
u. Then si is the state s(n, vi) of the ith neighbour vi of u. For i > m, we have si = 0k.
We then define computation of MPCs formally. An MPC C for (Π,∆) of state length k

and a Kripke model M = (W,R, V) ∈ K(Π,∆) define a synchronized distributed system which
executes an ω-sequence of rounds defined as follows. Each round n ∈ N defines a global
configuration fn : W → {0, 1}k. Let tw denote the binary string corresponding to the set
of propositions true at w (i.e., local input). The configuration of round 0 is the function
f0 such that f0(w) is the k-bit binary string produced by C with the input tw · 0k(∆+1).
Recursively, assume we have defined fn. Let v1, . . . , vm ∈ succ(w) be the neighbours of
w (m ≤ ∆) given in the order of their IDs. Let sw be the concatenation tw · s0 · · · s∆ of
k-bit binary strings such that (1) s0 = fn(w), (2) si = fn(vi) for each i ∈ {1, . . . ,m}, (3)
sj = 0k for j ∈ {m + 1, . . . ,∆}. Then fn+1(w) is the output string of C with input sw.
Now, consider the sequence (fn(w))n∈N of k-bit strings that C produces at w. Suppose the
sequence (fn(w))n∈N accepts (resp. outputs p) in round n w.r.t. (k,A, P). Then w accepts
(resp., outputs p) in round n. Note that the circuit at w keeps executing after round n.

Given a Kripke model M = (W,R, V), a solution labeling is a function W → {0, 1}∗

associating nodes with strings. The strings represent outputs of the nodes on distributed
computation. We could, e.g., label the nodes with strings corresponding to “yes” and
“no”. A partial solution labeling for M is a partial function from W to {0, 1}∗, that
is, a function of type U → {0, 1}∗ for some U ⊆ W . Partial solution labelings allow for
“divergent computations” on some nodes in W . The global output of a circuit C over a
model M = (W,R, V) is a function g : U → {0, 1}∗ such that (1) U ⊆ W , (2) for all w ∈ U ,
the circuit C outputs g(w) in some round n, and (3) C does not produce an output for any
v ∈ W \ U . Now, fix a finite set Π0 ⊆ PROP0 of proposition symbols. Intuitively, these are
the “actual” propositions in models, while the set of ID-propositions will grow with model
size. Let M(Π0) denote the class of all finite Kripke models M with IDs and having a set Π
of proposition symbols such that Π ∩ PROP0 = Π0. Thus Π0 is the same for all models in
M(Π0) but the symbols for IDs vary. Consider a subclass M ⊆ M(Π0). Now, a distributed
computing problem over M is a mapping p with domain M that associates to each input
M a (possibly infinite) set p(M) of partial solution labelings for M . The set p(M) represents
the set of acceptable answers to the problem p over M . Many graph problems (e.g., colorings)
naturally involve a set of such answer labelings.

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:7

For ∆ ∈ N, we let M(Π0,∆) denote the restriction of M(Π0) to models with maximum
out-degree ∆. A circuit sequence for M(Π0,∆) is a function F : Z+ → CIRC(Π0,∆) such
that F (n) is a circuit for ⌈logn⌉ ID-bits. Now, F solves a problem p over M(Π0,∆) if
the global output of F (n) belongs to p(M) for each M ∈ M(Π0,∆) of domain size n. Let
c ∈ N. We define DCCc∆[logn] to be the class of distributed computing problems solvable
by a circuit sequence F for some M ∈ M(Π0,∆) of maximum fan-in c circuits such that
the size of F (n) is O(logn). The related LogSpace uniform class requires that each F can
be computed in LogSpace. DCC stands for distributed computing by circuits. Note that
circuit sequences for DCCc∆[logn] are trivially sequences for NC1.

3 Extensions of MSC

The rest of this article is basically a proof of the expressive equivalence of MSC and MPCs
over distributed systems, with a small blow-up in the respective sizes of programs and
circuits. The argument is long, but we have divided it into suitably short lemmas to improve
readability. The argument splits into the following two main parts:
1. equivalence of MPCs and message passing MSC, or MPMSC, an auxiliary logic to be

defined below,
2. equivalence of MPMSC and MSC.
MPMSC is mainly used as a tool, and indeed, MPMSC and the related notions greatly help
shorten and organize our arguments.

We define MPMSC via two further auxiliary logics. Let Π be a set of propositions and
T a set of schema variables. Let ∆ ∈ N. In Multimodal MSC (or MMSC), instead of ♢,
we have the operators ♢1, . . . ,♢∆, and otherwise the syntax is as in MSC. The schema ♢iφ
simply asks if φ is true at the ith neighbour. More formally, if (M,w) is a pointed Kripke
model with identifiers, then (M,w) |= ♢iφ ⇔ (M, vi) |= φ such that (w, vi) ∈ R and vi is the
ith neighbour of w, noting that if the out-degree of w is less than i, then ♢iφ is false at w.
A (Π,∆)-program of MMSC is exactly like a Π-program of MSC but we are only allowed
to use operators ♢1, . . . ,♢∆ instead of ♢. A Π-program Λ of MMSC is a (Π,∆)-program
for any ∆ ≥ d, where d is the maximum subindex in any diamond in Λ. We also fix print
and attention predicates for programs of MMSC. Note that MMSC is not a logic in the
usual sense as the operators ♢i require information about the predicates defining IDs. This
could be remedied via signature changes and limiting attention to multimodal models with
relations having out-degree at most one. This approach would be a bit messy, and the current
approach suffices for this article.

We next define MSC with conditional rules (or CMSC). Here we allow “if-else” rules
as iteration clauses. Let φ1, . . . , φn and ψ1, . . . , ψn and also χ be (Π, T)-schemata of basic
MSC. A conditional iteration clause is a rule of the form X :−φ1,...,φn

ψ1; . . . ;ψn;χ. The
schemata φi are conditions for the head predicate X and the schemata ψi are the related
consequences. The last schema χ is called the backup. Note that when n = 0, we have a
standard MSC clause. Π-programs of CMSC are exactly as for MSC, but we are allowed to
use conditional iteration clauses. Thus a program Λ of CMSC consists of k terminal clauses,
k′ ≤ k conditional iteration clauses and k − k′ standard iteration clauses for some k ∈ Z+.
Again we also fix some sets of schema variables as print and attention predicates.

To fix the semantics, we will specify – as in MSC – the nth iteration formula of each
head predicate. Informally, we always use the first (from the left) condition φi that holds
and thus evaluate the corresponding consequence ψi as the body of our rule. If none of the
conditions hold, then we use the backup. Let Λ be a Π-program of CMSC. First, we let

MFCS 2023

9:8 Descriptive Complexity for Distributed Computing with Circuits

the zeroth iteration clause Y 0
i of a head predicate Yi ∈ HEAD(Λ) be the terminal clause

of Yi. Recursively, assume we have defined an ML(Π)-formula Y ni for each Yi ∈ HEAD(Λ).
Now, consider the rule Yi :−φ1,...,φm

ψ1; . . . ;ψm;χ. Let φn+1
j be the formula obtained by

replacing each schema variable Yk in the condition φj by Y nk . The formulae χn+1 and ψn+1
k

are obtained analogously. Then, the formula Y n+1
i is∨

k≤m

((∧
j<k

¬φn+1
j

)
∧ φn+1

k ∧ ψn+1
k

)
∨

((∧
j≤m

¬φn+1
j

)
∧ χn+1

)
.

Often the backup schema χ is just the head predicate X of the rule. This means the
truth value of the head predicate does not change if none of the conditions hold. We say
that a condition φk is hot at w in round n ≥ 1 if the formula φnk is true at w and none of
the “earlier” formulas φnj for conditions of the same rule (so j < k) are true. Otherwise the
backup is hot. We call a conditional iteration clause (or the corresponding head predicate)
active in round n ≥ 1 at node w if one of the condition formulas of the rule is hot.

We finally specify message passing MSC (or MPMSC) essentially as multimodal MSC
with conditional rules. The (Π,∆)-programs are exactly like (Π,∆)-programs of MMSC
with conditional rules and the following restrictions. (1) The modal depth of terminal clauses
and conditions of rules is zero. (2) The consequences, backups and bodies of standard
iteration clauses all have modal depth at most one. As in MMSC, operators ♢ are not
allowed. A Π-program of MPMSC is defined analogously to a Π-program MMSC. Thus a
program of MPMSC contains k terminal clauses, k′ ≤ k conditional iteration clauses and
k − k′ standard iteration clauses for some k ∈ Z+. We also fix sets of attention and print
predicates. The semantics is defined as for CMSC, noting that now diamonds ♢i are used.
A non-terminal clause of a program of MPMSC is a communication clause if it contains
at least one diamond. A communication clause is listening in round n ∈ Z+ if one of the
following holds. (1) A condition φi is hot and the corresponding consequence has a diamond.
(2) A backup is hot and has a diamond. (3) The rule is not conditional but has a diamond.

3.1 Notions of equivalence and acceptance
Here we introduce useful acceptance and output conditions for programs of all variants
of MSC, including standard MSC. The acceptance conditions will be consistent with the
already given conditions for standard MSC.

Let Λ be a program and A and P the sets of attention and print predicates. Let Y1, . . . , Yk
enumerate the head predicates in Λ in the order <VAR. Let M = (W,R, V) be a Kripke
model. Each round n ∈ N defines a global configuration gn : W → {0, 1}k given as follows.
The configuration of the nth round is the function gn such that the ith bit of gn(w) is 1
if and only if (M,w) |= Y ni . If the sequence (gn(w))n∈N accepts (respectively outputs p)
in round n with respect to (k,A,P), then we say that the node w accepts (respectively
outputs p) in round n. Then n is the output round (also called the computation time)
of Λ at w. Note that the output round is a unique round since the accepting round is unique
by the definition of infinite bit sequences where print and attention bits are fixed. We write
(M,w) |= Λ if node w accepts in some round n. For a program Λ of message passing MSC
and model M , a global communication round is a computation round n where at least
one communication clause is listening in at least one node of M . A program Λ outputs p at
w in global communication time m if the output round of Λ at w is n and m ≤ n is the
number of global communication rounds in the set {0, . . . , n} of rounds in the computation.

Now, let L denote the set of all programs of all of our variants of MSC. Let C denote
the set of all MPCs. For each Λ ∈ L, we say that a Kripke model M is suitable for Λ if
M interprets (at least) all the proposition symbols that occur in Λ. For a message passing

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:9

circuit for (Π,∆), we say that M is suitable for the circuit if the set of proposition symbols
interpreted by M is precisely Π and the maximum out-degree of M is at most ∆. Now, let x
and y be any members of C ∪ L. We say that x and y are (acceptance) equivalent if for
each Kripke model M that is suitable for both x and y and for each node w in the model, x
and y produce the same output at w or neither produce any output at all at w. We say that
x and y are strongly equivalent, if for each M suitable for x and y and for each node w in
the model and in every round n, the objects x and y produce the same appointed string rn
at w. We also define a special weakened equivalence notion for MPMSC and MPC. We say
that a program Λ of MPMSC and a circuit C are strongly communication equivalent,
if for each M suitable for both Λ and C and for each node w in the model, the appointed
sequence S of the circuit is precisely the sequence (rj)j∈G of appointed strings of the program,
where G ⊆ Z+ is the set of global communication rounds n of the program. Moreover, the
MPMSC must not accept in any non-communication round. Finally, the length or size of
a program (respectively, a schema) of any variant of MSC is the number of occurrences of
proposition symbols, head predicates, and operators ⊤, ¬, ∧, ♢, ♢i. The modal depth md(Λ)
of a program Λ is the maximum modal depth of its rule bodies (iteration and terminal).

4 Linking MPMSC to message passing circuits

To obtain the desired descriptive characterizations, we begin by translating MPCs to MPMSC.

4.1 From MPC to MPMSC
To ultimately translate MPCs to MPMSC, we will first show how to simulate the evaluation
of a standard Boolean circuit with a diamond-free program of MSC. Let C be a circuit of
depth d with ℓ input and k output gates. Let L denote any of the variants of MSC. Fix
schema variables I1, . . . Iℓ and O1, . . . , Ok, with both sequences given here in the order <VAR.
Consider a program Λ of L with the following properties.
1. The set of schema variables of Λ contains (at least) the variables I1, . . . Iℓ, O1, . . . , Ok.
2. The program has no diamond operators (♢ or ♢i) and contains no proposition symbols.
3. The terminal clause for each schema variable X is X(0) :− ⊥.
Let P : {⊥,⊤}ℓ → {⊥,⊤}k be the function defined as follows. For each input (x1, . . . , xℓ) ∈
{⊥,⊤}ℓ to P , modify Λ to a new program Λ(x1, . . . , xℓ) by changing each terminal clause
Ii(0) :− ⊥ to Ii(0) :− xi. Let (y1, . . . yk) ∈ {⊥,⊤}k be the tuple of truth values of the dth
iteration formulas Od1 , . . . , Odk, where we recall that d is the depth of our circuit C. Then we
define P (x1, . . . , xℓ) := (y1, . . . , yk). Now, if P defined this way is identical to the function
computed by C, then Λ simulates the circuit C (w.r.t. I1, . . . , Iℓ and O1, . . . , Ok).

▶ Lemma 3. For each circuit C of size m and with n edges, there exists a program of L of
size O(m+ n) that simulates C, where L is any of the variants of MSC. Furthermore, with
constant fan-in, the size of the program is O(m).

Proof. Assume first that the depth d of C is at least 1. Next we modify C so that we obtain
a circuit C ′ with the following properties: (1) The height of each output gate is the same, (2)
the depth of C ′ is O(d), (3) the size of C ′ is O(|C|) and (4) C ′ specifies the same function as
C. The formal construction of C ′ is given in [1]. Then we define a schema variable for each
gate of C ′. The variables for the input gates are I1, . . . , Iℓ while those for the output gates
are O1, . . . , Ok. Let X be a schema variable for a ∧-gate G of C ′. We define a corresponding
terminal clause X(0) :− ⊥ and iteration clause X :− Y1 ∧ · · · ∧ Yj , where Y1, . . . , Yj are the
variables for the gates that connect to G. With constant fan-in we have a constant amount of

MFCS 2023

9:10 Descriptive Complexity for Distributed Computing with Circuits

connecting gates and therefore the length of each rule is O(1). Similarly, for a variable X ′ for
a disjunction gate G′, we define the rules X ′(0) :− ⊥ and X ′ :− Y ′

1 ∨· · ·∨Y ′
j where Y ′

1 , . . . , Y
′
j

are the variables for the gates connecting to G′. For negation, we define X ′′(0) :− ⊥ and
X ′′ :− ¬Y , where Y is the variable for the connecting gate. We let the terminal clauses for
the head predicates Ii relating to input gates be Ii(0) :− ⊥. This choice of rules is irrelevant,
as when checking if a program simulates a circuit, we modify the terminal rules to match
input strings. The related iteration clause is Ii :− Ii.

Finally, in the extreme case where the depth of C is 0 (each input gate is also an output
gate), we define the program with the head predicate sequence (I1, . . . , Iℓ) = (O1, . . . , Ok) and
such that the (terminal and iteration) clause for each head predicate Ii = Oi is Ii :− ⊥. ◀

▶ Theorem 4. Given an MPC for (Π,∆) of size m, we can construct a strongly communic-
ation equivalent (Π,∆)-program of MPMSC. Supposing a constant bound c for the fan-in of
MPCs, the size of the program is linear in the size of the circuit. Moreover, the computation
time is O(d) times the computation time of the MPC, where d is the depth of the MPC.

Proof. Let C be an MPC for (Π,∆) of state length k. We will first explain informally
how our program ΛC for the circuit C will work. The program ΛC uses k head predicates
to simulate the state of the circuit. We will use Lemma 3 to build our program, and the
operators ♢i will be used to simulate receiving messages of neighbours. The program ΛC
computes in repeated periods of d+ 1 rounds, where d = d(C) is the depth of C. Simulating
the reception of neighbours’ messages takes one round, and the remaining d rounds go to
simulating the evaluation of the circuit.

Now we define our program formally. First we define a clock; the idea is for ΛC to
simulate the computation of C once per each cycle of the clock. We assume that the depth
of C is at least 1, because if it is 0 then the clock is omitted and the rules of the program
are trivial to construct. The clock consists of the head predicates T0, T1, . . . , Td(C) and the
following rules: T0(0) :− ⊥, T0 :− Td(C), T1(0) :− ⊤, T1 :− T0 and for i ∈ [d(C) − 1], we
have Ti+1(0) :− ⊥ and Ti+1 :− Ti. In every round, precisely one of the head predicates Ti
is true and the others are false. In round 0, the only true predicate is T1, and in round
i ∈ [d(C) − 1], the only true predicate is Ti+1. After d(C) rounds the predicate T0 is true,
and in the next round the clock starts over again.

Let ΓC be a program simulating the internal evaluation of the circuit C as given in the
proof of Lemma 3. We will obtain ΛC by using the clock and rewriting some of the iteration
clauses of ΓC as follows. If XG is a head predicate corresponding to a non-input gate G in
ΓC , then we rewrite the corresponding iteration clause XG :− φ to XG :−Th(G) φ;XG, where
h(G) is the height of the gate G.

For every ℓ ∈ [|Π|], we let IΠ
ℓ refer to the head predicate of ΓC that corresponds to the

input gate of C that reads the truth value of proposition pℓ. For every i ∈ [k] and j ∈ [∆]0
we let I(i,j) refer to a head predicate of ΓC that corresponds to the input gate of C that
reads the ith value of the state string of the jth neighbour. The “neighbour 0” refers to the
home node. Next, we will rewrite the clauses with head predicates corresponding to input
gates. For every i ∈ [k], we let Oi refer to the head predicate of ΓC that corresponds to the
ith output gate of C. The terminal (respectively, iteration) clause for IΠ

i is rewritten to be
IΠ
i (0) :− pi (resp., IΠ

i :−T0 pi; IΠ
i). If j ̸= 0, then the terminal (resp., iteration) clause for

every I(i,j) is rewritten to be I(i,j)(0) :− ⊥ (resp., I(i,j) :−T0 ♢jOi; I(i,j)). The terminal (resp.,
iteration) clause for every I(i,0) is rewritten to be I(i,0)(0) :− ⊥ (resp., I(i,0) :−T0 Oi; I(i,0)).
Now, we have obtained the iteration and terminal clauses of ΛC .

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:11

The attention and print predicates of ΛC are defined as follows. Let A ⊆ [k] (resp.
P ⊆ [k]) be the set of the attention (resp., print) bit positions in C. The print predicates
of ΛC are precisely the head predicates Oj , where j ∈ P . If the depth of C is 0, then the
attention predicates of ΛC are precisely the head predicates Oj , where j ∈ A. If the depth
of C is greater than 0, then we add a fresh attention predicate A′ whose terminal clause is
A′(0) :− ⊥ and whose iteration clause is the disjunction of the head predicates Oj where
j ∈ A. This is done to ensure that our program accepts during a communication round.

We analyze how ΛC works. The program executes in a periodic fashion in cycles with
d(C) + 1 rounds in each cycle. In round 0, the program ΛC reads the proposition symbols
and records the local input with the head predicates IΠ

i whose truth values will remain
constant for the rest of the computation. Also, T1 evaluates to true in round 0. In round 1,
the head predicates corresponding to gates at height one are active and thus updated. (Note
that the predicates I(i,j) for input gates are inactive because T0 is false, so they stay false in
round 1, because in round 0 they evaluate to false and the backup has no effect on the truth
value.) From height one, the execution then continues to predicates for gates at height two,
and so on. In round d(C), the head predicates for output gates Oi are active. The program
also outputs if an attention predicate is true. In round d(C) + 1, the predicate T0 is true
and thus the input gate predicates I(i,j) are active, and thereby the program starts again by
updating them using diamonds ♢i. They obtain truth values that correspond to an input
string to our circuit. The program then proceeds to simulate height one in round d(C) + 2,
continuing in further rounds all the way up to height d(C) gates and finishing the second
cycle of the execution of ΛC . The subsequent cycles are analogous. Thus our program ΛC
simulates C in a periodic fashion.

It is easy to check that the program ΛC is strongly communication equivalent to C. The
communication clauses in ΛC are synchronous, i.e., all nodes are listening in the same rounds.
This is because simulating the circuit takes the same amount of time at every node. The
translation is clearly linear in the size of C (for constant fan-in C) due to Lemma 3. ◀

4.2 From MPMSC to MPC
Converting an MPMSC-program to a circuit is, perhaps, easier. The state string of the
constructed MPC essentially stores the values of the head predicates and proposition symbols
used by the program and computes a new state string by simulating the program clauses.
We begin with the following lemma that shows how to get rid of conditional rules.

▶ Lemma 5. Given a Π-program of CMSC, we can construct a strongly equivalent Π-program
of MSC of size linear in the size of the CMSC-program and with the same maximum modal
depth in relation to both terminal and iteration clauses.

Proof. The full proof – given in [1] – is based on expressing the conditions of conditional
clauses within a standard clause. The non-trivial part is to keep the translation linear. This
can be achieved by using the conditions as “flags”. For example, consider a conditional
iteration clause X :−φ1,φ2 ψ1;ψ2;χ. The corresponding standard iteration clause is

X :− (φ1 ∧ ψ1) ∨ (¬φ1 ∧ ((φ2 ∧ ψ2) ∨ (¬φ2 ∧ χ))),

which is clearly equivalent and linear in size to the original conditional iteration clause. This
translation can be easily generalized for arbitrary conditional iteration clauses. ◀

It is easy to get the following corresponding result for MPMSC from the proof of the
previous lemma, recalling that terminal clauses in MPMSC are always of modal depth zero.

MFCS 2023

9:12 Descriptive Complexity for Distributed Computing with Circuits

▶ Corollary 6. Given a Π-program of MPMSC of size m, we can construct a strongly
equivalent Π-program of MMSC of size O(m) and with the same maximum modal depth of
iteration clauses and with terminal clauses of modal depth zero. All diamond operators in
the constructed program also appear in the original one.

We are now ready to prove the following.

▶ Theorem 7. Given Π, ∆ and a Π-program of MPMSC of size m, we can build a strongly
equivalent MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0.

Proof. We give the proof idea; the full proof is in [1]. We first transform the MPMSC-program
to a strongly equivalent MMSC-program (Corollary 6). From that program, we construct an
MPC whose state string stores the truth values of head predicates and proposition symbols.
The circuit is essentially constructed directly from the inverse tree representations of clauses.
Head predicates and proposition symbols in the scope of a diamond will correspond to input
gates for bits sent by neighbouring nodes. Moreover, head predicates and propositions not in
the scope of a diamond relate to input gates for the home node. In communication round
zero, the circuit uses a subcircuit constructed from terminal clauses, and in later rounds, it
uses a subcircuit constructed from iteration clauses. ◀

5 Linking standard MSC to MPC and MPMSC

To simulate MPMSC (and MMSC) in MSC, we will need to simulate each ♢i with ♢ only.
The following lemma is the key step in the process. In the lemma, note that while the
computation time may seem large at first, |Π1| is typically logarithmic.

▶ Lemma 8. Given Π and a Π-program of MPMSC of size m where the maximum subindex
of a diamond is I, we can construct an equivalent Π-program of CMSC of size O(I+|Π1|+m).
The computation time is O(2|Π1|) times the computation time of the MPMSC-program.

Proof. Let us first discuss the key ideas of the proof. The key idea of simulating diamonds
♢i with ♢ is to scan through the neighbours one by one, in the order given by the IDs. To
keep the outputs of our translation small in size, different diamonds ♢i will be “read” in
different rounds. For this, we will use, together with IDs, the notion of a clock.

Clocks are an essential part in the proof, so let us discuss how they operate. A clock
is basically a subprogram controlling head predicates M1, . . . ,Mℓ, where ℓ = |Π1|. At each
node and in each iteration round of a CMSC-program, the truth values of the head predicates
M1, . . . ,Mℓ always define a binary string s with ℓ bits. While s changes during computation,
different nodes have the same s at any given time instant. More formally, letting su(i) denote
s at node u at iteration step i, we have su(i) = sv(i) for all u and v. In the first iteration
step, we have s = 0ℓ, and then, the string s goes through all the ℓ-bit strings in lexicographic
order. After that, the process starts again from 0ℓ.

The clock string s is constant for more than a single iteration round of the CMSC-program.
There are two reasons for this. Firstly, updating the clock string s to the lexicographically
next string takes some time (and uses some auxiliary head predicates). Secondly, the clock
has been designed to help the main program simulate multimodal diamonds ♢i with the
single diamond ♢ of CMSC, and this requires some time. Let us next discuss how the clock
string is indeed used.

For each string s, the main CMSC-program scans through all neighbours at each node.
The goal is to find a neighbour whose ID is a precise match with s. Let XID be a head
predicate that becomes true at each node u precisely at those rounds where the ID of u
matches with s. Then, at node v, checking whether some neighbour has an ID matching the
current string s is reduced to checking if ♢XID holds.

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:13

Using the value of XID at neighbouring nodes, it is easy to simulate each ♢i with ♢, as
long as we reserve enough time for scanning through all neighbours of each node. For the
full formal details, see [1]. ◀

The next theorem follows immediately from the above Lemma and Lemma 5.

▶ Theorem 9. Given Π and a Π-program of MPMSC of size m where the maximum subindex
in a diamond is I, we can construct an equivalent Π-program of MSC of size O(I+ |Π1| +m).
The computation time is 2O(|Π1|) times the computation time of the MPMSC-program.

5.1 A normal form for MSC
A program of MSC[1] is a program of MSC where the modal depth of terminal (respectively,
iteration) clauses is zero (resp., at most one). This normal form of MSC is essentially used
as the tool when translating a program of MSC to MPMSC and ultimately to MPC. We
begin with the following lemma that shows we can force the modal depth of each terminal
clause to zero.

▶ Lemma 10. For every Π-program Λ of MSC, there exists an equivalent Π-program of MSC
where the modal depth of terminal clauses is zero. The size of the program is linear in the
size of Λ and the computation time is linear in the computation time of Λ.

Proof. We sketch the proof; for the full proof, see [1]. The proof is based on (1) using CMSC
suitably in order to modify terminal clauses so that their diamonds become part of iteration
clauses and (2) then translating CMSC to MSC. ◀

We then show that the modal depth of iteration clauses can be reduced to one.

▶ Theorem 11. For every Π-program Λ of MSC, there exists an equivalent Π-program of
MSC[1]. The size of the MSC[1]-program is linear in the size of Λ and the computation time
of the program is O(max(1,md(Λ))) times the computation time of Λ.

Proof. We sketch the proof; for the full proof, see [1]. We first transform the original
MSC-program to one where the modal depth of the terminal clauses is zero by Lemma 10.
Then we use CMSC to replace each subschema of type ♢ψ with a fresh head predicate X♢ψ

such that in the thereby obtained program, the modal depth of each iteration clause is at
most 1. Finally, we translate CMSC to MSC by Lemma 5. ◀

5.2 Linking MSC and MPCs
We are now ready to link MSC to MPCs. In Section 4.1 we proved Theorem 4 that shows we
can translate MPCs to strongly communication equivalent MPMSC-programs of size linear
in the size of the MPC. On the other hand, Theorem 9 shows that we can translate any
MPMSC-program to an equivalent program of MSC. We get the following theorem.

▶ Theorem 12. Given an MPC for (Π,∆), we can construct an equivalent Π-program of
MSC. For a constant bound c for the fan-in of MPCs, the size of the program is linear in
the size of the circuit. The computation time is O(d+ 2|Π1|) times the computation time of
the MPC, where d is the depth of the MPC.

Theorem 7 showed that we can translate an MPMSC-program to a strongly equivalent
MPC. Theorem 11 showed how to translate an MSC-program to a strongly equivalent
MSC[1]-program, implying that translating an MSC-program to an MPMSC-program can be
done without blowing up program size too much. These results directly imply the following.

MFCS 2023

9:14 Descriptive Complexity for Distributed Computing with Circuits

▶ Theorem 13. Given Π, ∆ and a Π-program of MSC of size m, there exists an equivalent
MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0. The
computation time is O(max(1, d)) times the computation time of the MSC-program, where d
is the modal depth of the MSC-program.

By the above results, we observe that problems in DCCc∆[logn] can be alternatively
described with sequences of MSC-programs.

Finally, we note that Theorem 4 is one of our main results. It reminds us that communic-
ation time is indeed a different concept than computation time.

6 Brief notes on graph coloring

As proof-of-concept for this article, we briefly and informally discuss the Cole-Vishkin
algorithm [5], a fundamental method used in distributed graph coloring. The CV-algorithm
takes advantage of a phenomenon whereby it is possible to logarithmically reduce the size of
a binary string by replacing it with a binary encoding of one of its positions. By iterating
this technique, it is possible to reduce the size of an n-size string down to three in O(log∗(n))
iterations. Applied as a distributed algorithm to an n-coloring in an oriented tree or forest,
it is possible to reduce the number of colors to single digits in O(log∗(n)) communication
rounds [6]. By extension, Barenboim and Elkin [3] show a number of ways this can be
combined with other simpler iterative algorithms to produce fast (∆ + 1)-color reduction
algorithms, i.e. algorithms that reduce the number of colors from the size of a graph down
to its maximum degree plus one, which is optimal in the worst-case scenario.

While the communication time of these algorithms has been studied before, little is
generally understood about the duration of their local (node-internal) computation and the
necessary program length required to formally express them.

In the full preprint version of this paper [1] (available online), we prove that given a
bound for the degree ∆ of a graph, the CV-algorithm and a broader simple (∆ + 1)-color
reduction algorithm can be expressed with a program of MPMSC with size logarithmic in
the number of nodes. Additionally, the expression is uniform for all degree bounds. In other
words, for any ∆, the Cole-Vishkin algorithm (and the associated (∆ + 1)-color reduction
algorithm) can be expressed in a compact way in MSC and thus also in the related distributed
computing class where MPCs are from NC1. The following theorem is obtained as a result.

▶ Theorem 14. Given a bounded-degree graph with at most n nodes, there exists an MPMSC-
program of size O(log(n)) that defines a (∆+1)-coloring for the graph. The computation time
is O(log(n) log(log(n)) log∗(n)) of which log∗(n) + O(1) are global communication rounds.

By Theorems 14 and 9, we get a program of MSC of size O(|Π1|+log(n)) with an increase
in computation time by a factor of 2O(|Π1|). While the computation time may seem large, note
that |Π1| is typically logarithmic. We emphasize that the computation and communication
times of a program are very different concepts and the former will usually dwarf the latter.

7 Conclusion

We have characterized distributed computation via circuits in terms of the logic MSC. The
translations lead to only polynomial increase in size, and in the constant-degree scenario, the
increase is only linear. In the future, we aim to expand these studies to concern models with
weights, pushing the approach closer to work on neural networks.

V. Ahvonen, D. Heiman, L. Hella, and A. Kuusisto 9:15

References
1 Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto. Descriptive complexity for

distributed computing with circuits. CoRR, abs/2303.04735v1, 2023. doi:10.48550/arXiv.
2303.04735.

2 Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations, ICLR 2020. OpenReview.net, 2020.

3 Leonid Barenboim and Michael Elkin. Distributed graph coloring. Synthesis Lectures on
Distributed Computing Theory, 11, 2013.

4 Benedikt Bollig, Patricia Bouyer, and Fabian Reiter. Identifiers in registers – Describing
network algorithms with logic. CoRR, abs/1811.08197, 2018.

5 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986.

6 Andrew Goldberg, Serge Plotkin, and Gregory Shannon. Parallel symmetry-breaking in sparse
graphs. Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
315–324, 1987.

7 Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, pages 1–17. IEEE, 2021.

8 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko
Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. In Darek Kowalski and Alessandro Panconesi, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’12, pages 185–194. ACM, 2012.

9 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko
Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. Distributed Comput., 28(1):31–53, 2015.

10 Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv
preprint, 2022. arXiv:2204.07697.

11 Antti Kuusisto. Modal Logic and Distributed Message Passing Automata. In Computer
Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 452–468, 2013.

12 Tuomo Lempiäinen. Logic and Complexity in Distributed Computing. PhD thesis, Aalto
University, 2019.

13 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

14 Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint,
2019. arXiv:1907.03199.

15 Fabian Reiter. Asynchronous distributed automata: A characterization of the modal mu-
fragment. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs,
pages 100:1–100:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

16 Fabian Reiter. Distributed Automata and Logic. (Automates Distribués et Logique). PhD
thesis, Sorbonne Paris Cité, France, 2017.

17 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
neural networks. In Proceedings of the 2021 SIAM International Conference on Data Mining
(SDM), pages 333–341. SIAM, 2021.

MFCS 2023

https://doi.org/10.48550/arXiv.2303.04735
https://doi.org/10.48550/arXiv.2303.04735
https://arxiv.org/abs/2204.07697
https://arxiv.org/abs/1907.03199

	1 Introduction
	2 Preliminaries
	2.1 Circuits and distributed computation

	3 Extensions of MSC
	3.1 Notions of equivalence and acceptance

	4 Linking MPMSC to message passing circuits
	4.1 From MPC to MPMSC
	4.2 From MPMSC to MPC

	5 Linking standard MSC to MPC and MPMSC
	5.1 A normal form for MSC
	5.2 Linking MSC and MPCs

	6 Brief notes on graph coloring
	7 Conclusion

