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Abstract
The graph traversal edit distance (GTED), introduced by Ebrahimpour Boroojeny et al. (2018), is an
elegant distance measure defined as the minimum edit distance between strings reconstructed from
Eulerian trails in two edge-labeled graphs. GTED can be used to infer evolutionary relationships
between species by comparing de Bruijn graphs directly without the computationally costly and error-
prone process of genome assembly. Ebrahimpour Boroojeny et al. (2018) propose two ILP formulations
for GTED and claim that GTED is polynomially solvable because the linear programming relaxation
of one of the ILPs will always yield optimal integer solutions. The claim that GTED is polynomially
solvable is contradictory to the complexity of existing string-to-graph matching problems.

We resolve this conflict in complexity results by proving that GTED is NP-complete and showing
that the ILPs proposed by Ebrahimpour Boroojeny et al. do not solve GTED but instead solve
for a lower bound of GTED and are not solvable in polynomial time. In addition, we provide the
first two, correct ILP formulations of GTED and evaluate their empirical efficiency. These results
provide solid algorithmic foundations for comparing genome graphs and point to the direction of
heuristics that estimate GTED efficiently.
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1 Introduction

Graph traversal edit distance (GTED) [6] is an elegant measure of the similarity between
the strings represented by edge-labeled Eulerian graphs. For example, given two de Bruijn
assembly graphs [19], computing GTED between them measures the similarity between
two genomes without the computationally intensive and possibly error-prone process of
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assembling the genomes. Using an estimation of GTED between assembly graphs of Hepatitis
B viruses, Ebrahimpour Boroojeny et al. [6] group the viruses into clusters consistent with
their taxonomy. This can be extended to inferring phylogeny relationships in metagenomic
communities or comparing heterogeneous disease samples such as cancer. There are several
other methods to compute a similarity measure between strings encoded by two assembly
graphs [20, 15, 13, 8]. GTED has the advantage that it does not require prior knowledge on
the type of the genome graph or the complete sequence of the input genomes. The input to
the GTED problem is two unidirectional, edge-labeled Eulerian graphs, which are defined as:

▶ Definition 1 (Unidirectional, edge-labeled Eulerian Graph). A unidirectional, edge-labeled
Eulerian graph is a connected directed graph G = (V, E, ℓ, Σ), with node set V , edge multi-set
E, constant-size alphabet Σ, and single-character edge labels ℓ : E → Σ, such that G contains
an Eulerian trail that traverses every edge e ∈ E exactly once. The unidirectional condition
means that all edges between the same pair of nodes are in the same direction.

Such graphs arise in genome assembly problems (e.g. the de Bruijn subgraphs). Computing
GTED is the problem of computing the minimum edit distance between the two most similar
strings represented by Eulerian trails in each input graph. A trail in a graph is a walk that
contains distinct edges and may contain repeated nodes.

▶ Problem 1 (Graph Traversal Edit Distance (GTED) [6]). Given two unidirectional, edge-
labeled Eulerian graphs G1 and G2, compute

GTED(G1, G2) ≜ min
t1∈trails(G1)
t2∈trails(G2)

edit(str(t1), str(t2)). (1)

Here, trails(G) is the collection of all Eulerian trails in graph G, str(t) is a string constructed
by concatenating labels on the Eulerian trail t = (e0, e1, . . . , en), and edit(s1, s2) is the edit
distance between strings s1 and s2.

Ebrahimpour Boroojeny et al. [6] claim that GTED is polynomially solvable by proposing
an integer linear programming (ILP) formulation of GTED and arguing that the constraints of
the ILP make it polynomially solvable. This result, however, conflicts with several complexity
results on string-to-graph matching problems. Kupferman and Vardi [10] show that it is
NP-complete to determine if a string exactly matches an Eulerian tour in an edge-labeled
Eulerian graph. Additionally, Jain et al. [9] show that it is NP-complete to compute an
edit distance between a string and strings represented by a labeled graph if edit operations
are allowed on the graph. On the other hand, polynomial-time algorithms exist to solve
string-to-string alignment [17] and string-to-graph alignment [9] when edit operations on
graphs are not allowed.

We resolve the conflict among the results on complexity of graph comparisons by revisiting
the complexity of and the proposed solutions to GTED. We prove that computing GTED is
NP-complete by reducing from the Hamiltonian Path problem, reaching an agreement
with other related results on complexity. Further, we point out with a counter-example that
the optimal solution of the ILP formulation proposed by Ebrahimpour Boroojeny et al. [6]
does not solve GTED.

We give two ILP formulations for GTED. The first ILP has an exponential number of
constraints and can be solved by subtour elimination iteratively [3, 5]. The second ILP has a
polynomial number of constraints and shares a similar high-level idea of the global ordering
approach [5] in solving the Traveling Salesman problem [14].
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In Qiu and Kingsford [21], Flow-GTED (FGTED), a variant of GTED is proposed to
compare two sets of strings (instead of two strings) encoded by graphs. FGTED is equal to
the edit distance between the most similar sets of strings spelled by the decomposition of
flows between a pair of predetermined source and sink nodes. The similarity between the
sets of strings reconstructed from the flow decomposition is measured by the Earth Mover’s
Edit Distance [23, 21]. FGTED is used to compare pan-genomes, where both the frequency
and content of strings are essential to represent the population of organisms. Qiu and
Kingsford [21] reduce FGTED to GTED, and via the claimed polynomial-time algorithm
of GTED, argued that FGTED is also polynomially solvable. We show that this claim is
false by proving that FGTED is also NP-complete.

While the optimal solution to ILP proposed in Ebrahimpour Boroojeny et al. [6] does
not solve GTED, it does compute a lower bound to GTED that we call Closed-trail Cover
Traversal Edit Distance (CCTED). We characterize the cases when GTED is equal to
CCTED. In addition, we point out that solving this ILP formulation finds a minimum-cost
matching between closed-trail decompositions in the input graphs, which may be used to
compute the similarity between repeats in the genomes. Ebrahimpour Boroojeny et al. [6]
claim their proposed ILP formulation is solvable in polynomial time by arguing that the
constraint matrix of the linear relaxation of the ILP is always totally unimodular. We show
that this claim is false by proving that the constraint matrix is not always totally unimodular
and showing that there exists optimal fractional solutions to its linear relaxation.

We evaluate the efficiency of solving ILP formulations for GTED and CCTED on
simulated genomic strings and show that it is impractical to compute GTED on larger
genomes.

In summary, we revisit two important problems in genome graph comparisons: Graph
Traversal Edit Distance (GTED) and its variant FGTED. We show that both GTED and
FGTED are NP-complete, and provide the first correct ILP formulations for GTED. We also
show that the ILP formulation proposed by Ebrahimpour Boroojeny et al. [6], i.e. CCTED,
is a lower bound to GTED. We evaluate the efficiency of the ILPs for GTED and CCTED
on genomic sequences. These results provide solid algorithmic foundations for continued
algorithmic innovation on the task of comparing genome graphs and point to the direction of
heuristics that estimate GTED efficiently.

2 GTED and FGTED are NP-complete

2.1 Conflicting results on computational complexity of GTED and
string-to-graph matching

The natural decision versions of all of the computational problems described above and below
are clearly in NP. Under the assumption that P ̸= NP, the results on the computational
complexity of GTED and string-to-graph matching claimed in Ebrahimpour Boroojeny et
al. [6] and Kupferman and Vardi [10], respectively, cannot be both true.

Kupferman and Vardi [10] show that the problem of determining whether a given string
can be spelled by concatenating edge labels in an Eulerian trail in an input graph is NP-
complete. We call this problem Eulerian Trail Equaling Word. We show in Theorem 2
that we can reduce ETEW to GTED, and therefore if GTED is polynomially solvable,
then ETEW is polynomially solvable. The complete proof is in Appendix A.1.

▶ Problem 2 (Eulerian Trail Equaling Word [10]). Given a string s ∈ Σ∗, an edge-labaled
Eulerian graph G, find an Eulerian trail t of G such that str(t) = s.

WABI 2023
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▶ Theorem 2. If GTED ∈ P then ETEW ∈ P.

Proof sketch. We first convert an input instance ⟨s, G⟩ of ETEW into an input instance
⟨G1, G2⟩ of GTED by (a) creating graph G1 that only contains edges that reconstruct string s

and (b) modifying G into G2 by extending the anti-parallel edges so that G2 is unidirectional.
We show that if GTED(G1, G2) = 0, there must be an Eulerian trail in G that spells s, and
if GTED(G1, G2) > 0, G must not contain an Eulerian trail that spells s. ◀

Hence, an (assumed) polynomial-time algorithm for GTED solves ETEW in polynomial
time. This contradicts Theorem 6 of Kupferman and Vardi [10] of the NP-completeness of
ETEW (under P ̸= NP).

2.2 Reduction from Hamiltonian Path to GTED and FGTED
We resolve the contradiction by showing that GTED is NP-complete. The details of the
proof are in Appendix A.2.

▶ Theorem 3. GTED is NP-complete.

Proof sketch. We reduce from the Hamiltonian Path problem, which asks whether a
directed, simple graph G contains a path that visits every vertex exactly once. Here, simple
means no self-loops or parallel edges.

Let ⟨G = (V, E)⟩ be an instance of Hamiltonian Path, with n = |V | vertices. We first
create the Eulerian closure of G, which is defined as G′ = (V ′, E′) where

V ′ = {vin, vout : v ∈ V } ∪ {w}. (2)

Here, each vertex in V is split into vin and vout, and w is a newly added vertex. E′ is the
union of the following sets of edges and their labels:

E1 = {(vin, vout) : v ∈ V }, labeled a,
E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,
E3 = {(vout, vin) : v ∈ V }, labeled c,
E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,
E5 = {(uin, w) : u ∈ V }, labeled c,
E6 = {(w, uin) : u ∈ V }, labeled b.

G′ is an Eulerian graph by construction but contains anti-parallel edges. We further create
G′′ from G′ by adding dummy nodes so that each pair of antiparallel edges is split into two
parallel, length-2 paths with labels x#, where x is the original label.

We also create a graph C that has the same number of edges as G′′ and spells out a
string

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (3)

We then argue that G has a Hamiltonian path if and only if G′′ spells out the string q,
which uses the same line of arguments and graph traversals as in Kupferman and Vardi [10].
We then show that GTED(G′′, C) = 0 if and only if G′′ spells q. ◀

Following a similar argument, we show that FGTED is also NP-complete, and its proof is in
Appendix A.3.

▶ Theorem 4. FGTED is NP-complete.
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Figure 1 (a) Examples of two edge-labeled Eulerian graphs G1 (top) and G2 (bottom). (b) The
alignment graph A(G1, G2). The cycle with red edges is the path corresponding to GTED(G1, G2).
Red solid edges are matches with cost 0 and red dashed-line edge is mismatch with cost 1.

3 Revisiting the correctness of the proposed ILP solutions to GTED

We revisit two proposed ILP solutions to GTED by Ebrahimpour Boroojeny et al. [6] and
show that the optimal solution to these ILP is not always equal to GTED.

3.1 Alignment graph
The previously proposed ILP formulations for GTED are based on the alignment graph
constructed from input graphs. The high-level concept of an alignment graph is similar to
the dynamic programming matrix for the string-to-string alignment problem [17].

▶ Definition 5 (Alignment graph). Let G1, G2 be two unidirectional, edge-labeled Eulerian
graphs. The alignment graph A(G1, G2) = (V, E, δ) is a directed graph that has vertex set
V = V1 × V2 and edge multi-set E that equals the union of the following:
Vertical edges [(u1, u2), (v1, u2)] for (u1, v1) ∈ E1 and u2 ∈ V2,
Horizontal edges [(u1, u2), (u1, v2)] for u1 ∈ V1 and (u2, v2) ∈ E2,
Diagonal edges [(u1, u2), (v1, v2)] for (u1, v1) ∈ E1 and (u2, v2) ∈ E2.
Each edge is associated with a cost by the cost function δ : E → R.

Each diagonal edge e = [(u1, u2), (v1, v2)] in an alignment graph can be projected to
(u1, v1) and (u2, v2) in G1 and G2, respectively. Similarly, each vertical edge can be projected
to one edge in G1, and each horizontal edge can be projected to one edge in G2.

We define the edge projection function πi that projects an edge from the alignment graph
to an edge in the input graph Gi. If the alignment edge is a vertical or horizontal edge, it is
projected to one edge in only one input graph. We also define the path projection function Πi

that projects a trail in the alignment graph to a trail in the input graph Gi. For example, let
a trail in the alignment graph be p = (e1, e2, . . . , em), and Πi(p) = (πi(e1), πi(e2), . . . , πi(em))
is a trail in Gi.

An example of an alignment graph is shown in Figure 1(b). The horizontal edges correspond
to gaps in strings represented by G1, vertical edges correspond to gaps in strings represented
by G2, and diagonal edges correspond to the matching between edge labels from the two
graphs. In the rest of this paper, we assume that the costs for horizontal and vertical
edges are 1, and the costs for the diagonal edges are 1 if the diagonal edge represents a
mismatch and 0 if it is a match. The cost function δ can be defined to capture the cost of
matching between edge labels or inserting gaps. This definition of alignment graph is also a
generalization of the alignment graph used in string-to-graph alignment [9].

WABI 2023
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3.2 The first previously proposed ILP for GTED
Lemma 1 in Ebrahimpour Boroojeny et al. [6] provides a model for computing GTED by
finding the minimum-cost trail in the alignment graph. We reiterate it here for completeness.

▶ Lemma 6 ([6]). For any two edge-labeled Eulerian graphs G1 and G2,

GTED(G1, G2) = minimizec δ(c)
subject to c is a trail in A(G1, G2),

Πi(c) is an Eulerian trail in Gi for i = 1, 2,

(4)

where δ(c) is the total edge cost of c, and Πi(c) is the projection from c to Gi.

An example of such a minimum-cost trail is shown in Figure 1(b). Ebrahimpour Boroojeny
et al. [6] provide the following ILP formulation and claim that it is a direct translation of
Lemma 6:

minimize
x∈N|E|

∑
e∈E

xeδ(e) (5)

subject to Ax = 0 (6)∑
e∈E

xeIi(e, f) = 1 for i = 1, 2 and for all f ∈ Ei, (7)

where

Aue =


−1 if e = (u, v) ∈ E for some vertex v ∈ V

1 if e = (v, u) ∈ E for some u ∈ V

0 otherwise.

(8)

Here, E is the edge set of A(G1, G2). A is the negative incidence matrix of size |V |× |E|, and
Ii(e, f) is an indicator function that is 1 if edge e in E projects to edge f in the input graph
Gi (and 0 otherwise). We define the domain of each xe to include all non-negative integers.
However, due to constraints (7), the values of xe are limited to either 0 or 1. We describe
this ILP formulation with the assumption that both input graphs have closed Eulerian trails,
which means that each node has equal numbers of incoming and outgoing edges. We discuss
the cases when input graphs contain open Eulerian trails in Section 4.

The ILP in (5)–(8) allows the solutions to select disjoint cycles in the alignment graph,
and the projection of edges in these disjoint cycles need not correspond to a single string
represented by either of the input graphs. We show that the ILP in (5)–(8) does not solve
GTED by giving an example where the objective value of the optimal solution to the ILP
in (5)–(8) is not equal to GTED.

Construct two input graphs as shown in Figure 2(a). Specifically, G1 spells circular
permutations of TTTGAA and G2 spells circular permutations of TTTAGA. It is clear that
GTED(G1, G2) = 2 under Levenshtein edit distance. On the other hand, as shown in
Figure 2(a), an optimal solution in A(G1, G2) contains two disjoint cycles with nonzero xe

values that have a total edge cost equal to 0. This solution is a feasible solution to the ILP
in (5)–(8). It is also an optimal solution because the objective value is zero, which is the
lower bound on the ILP in (5)–(8). This optimal objective value, however, is smaller than
GTED(G1, G2). Therefore, the ILP in (5)–(8) does not solve GTED since it allows the
solution to be a set of disjoint components.
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Figure 2 (a) The subgraph in the alignment graph induced by an optimal solution to the ILP
in (5)–(8) and the ILP in (11)–(12) with input graphs on the left and top. The red and blue edges
in the alignment graph are edges matching labels in red and blue font, respectively, and are part of
the optimal solution to the ILP in (5)–(8). The cost of the red and blue edges are zero. (b) The
subgraph induced by xinit with s1 = u1 and s2 = v1 according to the ILP in (11)–(12). The rest of
the edges in the alignment graph are omitted for simplicity.

Figure 3 (a) A graph that contains an unoriented 2-simplex with three unoriented 1-simplices.
(b), (c) The same graph with two different ways of orienting the simplices and the corresponding
boundary matrices.

3.3 The second previously proposed ILP formulation of GTED

We describe the second proposed ILP formulation of GTED by Ebrahimpour Boroojeny
et al. [6]. Following Ebrahimpour Boroojeny et al. [6], we use simplices, a notion from
geometry, to generalize the notion of an edge to higher dimensions. A k-simplex is a k-
dimensional polytope which is the convex hull of its k + 1 vertices. For example, a 1-simplex
is an undirected edge, and a 2-simplex is a triangle. We use the orientation of a simplex,
which is given by the ordering of the vertex set of a simplex up to an even permutation, to
generalize the notion of the edge direction [16, p. 26]. We use square brackets [·] to denote
an oriented simplex. For example, [v0, v1] denotes a 1-simplex with orientation v0 → v1,
which is a directed edge from v0 to v1, and [v0, v1, v2] denotes a 2-simplex with orientation
corresponding to the vertex ordering v0 → v1 → v2 → v0. Each k-simplex has two possible
unique orientations, and we use the signed coefficient to connect their forms together, e.g.
[v0, v1] = −[v1, v0].

For each pair of graphs G1 and G2 and their alignment graph A(G1, G2), we define an
oriented 2-simplex set T (G1, G2) which is the union of:

[(u1, u2), (v1, u2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2, or

[(u1, u2), (u1, v2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2,

WABI 2023
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We use the boundary operator [16, p. 28], denoted by ∂, to map an oriented k-simplex to
a sum of oriented (k − 1)-simplices with signed coefficients.

∂[v0, v1, . . . , vk] =
p∑

i=0
(−1)i[v0, . . . , v̂i, . . . , vk], (9)

where v̂i denotes the vertex vi is to be deleted. Intuitively, the boundary operator maps the
oriented k-simplex to a sum of oriented (k − 1)-simplices such that their vertices are in the
k-simplex and their orientations are consistent with the orientation of the k-simplex. For
example, when k = 2, we have:

∂[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1] = [v1, v2] + [v2, v0] + [v0, v1]. (10)

We reiterate the second ILP formulation proposed in Ebrahimpour Boroojeny et al. [6]. Given
an alignment graph A(G1, G2) = (V, E, δ) and the oriented 2-simplex set T (G1, G2),

minimize
x∈N|E|,y∈Z|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to x = xinit + [∂]y
(11)

Entries in x and y correspond to 1-simplices and 2-simplices in E and T (G1, G2), respectively.
[∂] is a |E| × |T (G1, G2)| boundary matrix where each entry [∂]i,j is the signed coefficient of
the oriented 1-simplex (the directed edge) in E corresponding to xi in the boundary of the
oriented 2-simplex in T (G1, G2) corresponding to yj . The index i, j for each 1-simplex or
2-simplex is assigned based on an arbitrary ordering of the 1-simplices in E or the 2-simplices
in T (G1, G2). An example of the boundary matrix is shown in Figure 3. δ(e) is the cost of
each edge. xinit ∈ R|E| is a vector where each entry corresponds to a 1-simplex in E with
|E1|+ |E2| nonzero entries that represent one Eulerian trail in each input graph. xinit is a
feasible solution to the ILP. Let s1 be the source of the Eulerian trail in G1, and s2 be the
sink of the Eulerian trail in G2. Each entry in xinit is defined by

xinit
e =

{
1 if e = [(u1, s2), (v1, s2)] or e = [(s1, u2), (s1, v2)],
0 otherwise.

(12)

If the Eulerian trail is closed in Gi, si can be any vertex in Vi. An example of xinit is shown
in Figure 2(b).

We provide a complete proof in the extended version of this paper [22] that the ILP
in (5)–(8) is equivalent to the ILP in (11)–(12). Therefore, the example we provided in
Section 3.2 is also an optimal solution to the ILP in (11)–(12) but not a solution to GTED.
Thus, the ILP in (11)–(12) does not always solve GTED.

Ebrahimpour Boroojeny et al. [6] argue that the linear programming relaxation of the ILP
in (11)–(12) always yields integer optimal solutions by claiming that the constraint matrix of
the LP relaxation of the ILP in (11)–(12) is always totally unimodular, and therefore the ILP
in (11)–(12) can be solved in polynomial time. We provide a counterexample where the ILP
in (11)–(12) yields fractional optimal solutions with fractional variable values. Additionally,
we show that the constraint matrix of the LP relaxation of the ILP in (11)–(12) is not
totally unimodular given most non-trivial input graphs. The details of the proofs and the
counterexample are in the extended version of this paper [22] (Appendix F).
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Figure 4 Modified alignment graphs based on input types. (a) G1 has open Eulerian trails while
G2 has closed Eulerian trails. (b) Both G1 and G2 have closed Eulerian trails. (c) Both G1 and G2

have open Eulerian trails. Solid red and blue nodes are the source and sink nodes of the graphs with
open Eulerian trails. “s” and “t” are the added source and sink nodes. Colored edges are added
alignment edges directing from and to source and sink nodes, respectively.

4 New ILP solutions to GTED

To ensure that our new ILP formulations are applicable to input graphs regardless of whether
they contain an open or closed Eulerian trail, we add a source node s and a sink node t to
the alignment graph. Figure 4 illustrates three possible cases of input graphs.

1. If only one of the input graphs has closed Eulerian trails, wlog, let G1 be the input
graph with open Eulerian trails. Let a1 and b1 be the start and end of the Eulerian trail
that have odd degrees. Add edges [s, (a1, v2)] and [(b1, v2), t] to E for all nodes v2 ∈ V2
(Figure 4(a)).

2. If both input graphs have closed Eulerian trails, let a1 and a2 be two arbitrary nodes in
G1 and G2, respectively. Add edges [s, (a1, v2)], [s, (v1, a2)], [(a1, v2), t] and [(v1, a2), t]
for all nodes v1 ∈ V1 and v2 ∈ V2 to E (Figure 4(b)).

3. If both input graphs have open Eulerian trails, add edges [s, (a1, a2)] and [t, (b1, b2)], where
ai and bi are start and end nodes of the Eulerian trails in Gi, respectively (Figure 4(c)).

According to Lemma 6, we can solve GTED(G1, G2) by finding a trail in A(G1, G2) that
satisfies the projection requirements. This is equivalent to finding a s-t trail in A(G1, G2)
that satisfies constraints:

∑
(u,v)∈E

xuvIi((u, v), f) = 1 for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (13)

where Ii(e, f) = 1 if the alignment edge e projects to f in Gi, and xuv is the ILP variable for
edge (u, v) ∈ E. An optimal solution to GTED in the alignment graph must start and end
with the source and sink node because they are connected to all possible starts and ends of
Eulerian trails in the input graphs.

Since a trail in A(G1, G2) is a flow network, we use the following flow constraints to
enforce the equality between the number of in- and out-edges for each node in the alignment
graph except the source and sink nodes.

WABI 2023



11:10 Revisiting the Complexity and Algorithms of GTED and Its Variants

∑
(s,u)∈E

xsu = 1 (14)

∑
(v,t)∈E

xvt = 1 (15)

∑
(u,v)∈E

xuv =
∑

(v,w)∈E

xvw for all v ∈ V (16)

Constraints (13) and (16) are equivalent to constraints (7) and (6), respectively. Therefore,
we rewrite the ILP in (5)–(8) in terms of the modified alignment graph.

minimize
x∈N|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16).
(lower bound ILP)

As we show in Section 3.2, constraints (13)-(16) do not guarantee that the ILP solution
is one trail in A(G1, G2), thus allowing several disjoint covering trails to be selected in the
solution and fail to model GTED correctly. We show in Section 5 that the solution to this
ILP is a lower bound to GTED.

According to Lemma 1 in Dias et al. [5], a subgraph of a directed graph G with source
node s and sink node t is a s-t trail if and only if it is a flow network and every strongly
connected component (SCC) of the subgraph has at least one edge outgoing from it. Thus,
in order to formulate an ILP for the GTED problem, it is necessary to devise constraints
that prevent disjoint SCCs from being selected in the alignment graph. In the following, we
describe two approaches for achieving this.

4.1 Enforcing one trail in the alignment graph via constraint generation
Section 3.2 of Dias et al. [5] proposes a method to design linear constraints for eliminating
disjoint SCCs, which can be directly adapted to our problem. Let C be the collection of
all strongly connected subgraphs of the alignment graph A(G1, G2). We use the following
constraint to enforce that the selected edges form one s-t trail in the alignment graph:

If
∑

(u,v)∈E(C)

xuv = |E(C)|, then
∑

(u,v)∈ε+(C)

xuv ≥ 1 for all C ∈ C, (17)

where E(C) is the set of edges in the strongly connected subgraph C and ε+(C) is the set of
edges (u, v) such that u belongs to C and v does not belong to C.

∑
(u,v)∈E(C) xuv = |E(C)|

indicates that C is in the subgraph of A(G1, G2) constructed by all edges (u, v) with positive
xuv, and

∑
(u,v)∈ε+(C) xuv ≥ 1 guarantees that there exists an out-going edge of C that is in

the subgraph.
We use the same technique as Dias et al. [5] to linearize the “if-then” condition in (17)

by introducing a new variable β for each strongly connected component:∑
(u,v)∈E(C)

xuv ≥ |E(C)|βC for all C ∈ C (18)

∑
(u,v)∈E(C)

xuv − |E(C)|+ 1− |E(C)|βC ≤ 0 for all C ∈ C (19)

∑
(u,v)∈ε+(C)

xuv ≥ βC for all C ∈ C (20)

βC ∈ {0, 1} for all C ∈ C (21)
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To summarize, given any pair of unidirectional, edge-labeled Eulerian graphs G1 and G2
and their alignment graph A(G1, G2) = (V, E, δ), GTED(G1, G2) is equal to the optimal
solution of the following ILP formulation:

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16) and
constraints (18)–(21).

(exponential ILP)

This ILP has an exponential number of constraints as there is a set of constraints for every
strongly connected subgraph in the alignment graph. To solve this ILP more efficiently,
we can use the procedure similar to the iterative constraint generation procedure in Dias
et al. [5]. Initially, solve the ILP with only constraints (13)-(16). Create a subgraph, G′,
induced by edges with positive xuv. For each disjoint SCC in G′ that does not contain the
sink node, add constraints (18)-(21) for edges in the SCC and solve the new ILP. Iterate
until no disjoint SCCs are found in the solution. Algorithm 1 is the pseudo-code of this
procedure, which is similar to Algorithm 1 of Dias et al. [5].

Algorithm 1 Iterative constraint generation algorithm to solve (exponential ILP).

1: Input Two unidirectional, edge-labeled Eulerian graphs and their alignment graph
2: C ← ∅
3: while true do
4: Solve the ILP (exponential ILP) with C
5: if the ILP variables xuv induce a strongly connected component C not satisfying (17)

then
6: C = C ∪ {C}
7: else
8: return the optimal ILP value and the corresponding optimal solution x

9: end if
10: end while

4.2 A compact ILP for GTED with polynomial number of constraints

In the worst cases, the number of iterations to solve (exponential ILP) via constraint genera-
tion is exponential. As an alternative, we introduce a compact ILP with only a polynomial
number of constraints. The intuition behind this ILP is that we can impose a partially
increasing ordering on all the edges so that the selected edges forms a s-t trail in the alignment
graph. This idea is similar to the Miller-Tucker-Zemlin ILP formulation of the Travelling
Salesman problem (TSP) [14].

We add variables duv that are constrained to provide a partial ordering of the edges in
the s-t trail and set the variables duv to zero for edges that are not selected in the s-t trail.
Intuitively, there must exist an ordering of edges in a s-t trail such that for each pair of
consecutive edges (u, v) and (v, w), the difference in their order variable duv and dvw is 1.
Therefore, for each node v that is not the source or the sink, if we sum up the order variables
for the incoming edges and outgoing edges respectively, the difference between the two sums
is equal to the number of selected incoming/outgoing edges. Lastly, the order variable for
the edge starting at source is 1, and the order variable for the edge ending at sink is the
number of selected edges. This gives the ordering constraints as follows:
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If xuv = 0, then duv = 0 for all (u, v) ∈ E (22)∑
(v,w)∈E

dvw −
∑

(u,v)∈E

duv =
∑

(v,w)∈E

xvw for all v ∈ V \ {s, t} (23)

∑
(s,u)∈E

dsu = 1 (24)

∑
(v,t)∈E

dvt =
∑

(u,v)∈E

xuv (25)

We enforce that all variables xe ∈ {0, 1} and de ∈ N for all e ∈ E.
The “if-then” statement in Equation (22) can be linearized by introducing an additional

binary variable yuv for each edge [2, 5]:

−xuv − |E|yuv ≤ −1 (26)
duv − |E|(1− yuv) ≤ 0 (27)

yuv ∈ {0, 1}. (28)

Here, yuv is an indicator of whether xuv ≥ 0. The coefficient |E| is the number of edges in
the alignment graph and also an upper bound on the ordering variables. When yuv = 1,
duv ≤ 0, and yuv does not impose constraints on xuv. When yuv = 0, xuv ≥ 1, and yuv does
not impose constraints on duv. As we show in Lemma 7 , these constraints prevent finding
disjoint components, thus guaranteeing the correctness of the ILP.

▶ Lemma 7. Let xe and de be ILP variables. Let G′ be a subgraph of A(G1, G2) that is
induced by edges with xe = 1. If xe and de satisfy constraints (13)-(25) for all e ∈ E, G′ is
connected with one trail from s to t that traverses each edge in G′ exactly once.

Proof. We prove the lemma in 2 parts: (1) all nodes except s and t in G′ have an equal
number of in- and out-edges, (2) G′ contains only one connected component.

The first statement holds because the edges of G′ form a flow from s to t, and is enforced
by constraints (16).

We then show that G′ does not contain isolated subgraphs that are not reachable from
s or t. Due to constraint (16), the only possible scenario is that the isolated subgraph is
strongly connected. Suppose for contradiction that there is a strongly connected component,
C, in G′ that is not reachable from s or t.

The sum of the left hand side of constraint (23) over all vertices in C is

∑
v∈C

( ∑
(u,v)∈C

duv −
∑

(v,w)∈C

dvw

)
=

∑
v∈C

∑
(u,v)∈C

duv −
∑
v∈C

∑
(v,w)∈C

dvw (29)

=
∑

(u,v)∈E(C)

duv −
∑

(v,w)∈E(C)

dvw = 0 (30)

However, the right-hand side of the same constraints is always positive. Hence, we have a
contradiction. Therefore, G′ has only one connected component. ◀
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Due to Lemma 6 and Lemma 7, given input graphs G1 and G2 and the alignment graph
A(G1, G2), GTED(G1, G2) is equal to the optimal objective of

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16),
constraints (23)–(25)
and constraints (26)–(28).

(compact ILP)

5 Closed-trail Cover Traversal Edit Distance

While the (lower bound ILP) and the ILP in (11)–(12) do not solve GTED, the optimal
solution to these ILPs is a lower bound of GTED. These ILP formulations also solve an
interesting variant of GTED, which is a local similarity measure between two genome
graphs. We call this variant as Closed-trail Cover Traversal Edit Distance (CCTED). In
the following, we provide the formal definition of CCTED problem, and then show that
the (lower bound ILP) is the correct ILP formulation for solving CCTED.

We first introduce the min-cost item matching problem between two multi-sets. Let two
multi-sets of items be S1 and S2, and, wlog, let |S1| ≤ |S2|. Let c : (S1 ∪ {ϵ})× S2 → N be
the cost of matching either an empty item ϵ or an item in S1 with an item in S2. Given S1,
S2 and the cost function c, min-cost matching problem finds a matching, Mc(S1, S2), such
that each item in S1 ∪ {ϵ}|S2|−|S1| is matched with exactly one distinct item in S2 and the
total cost of the matching,

∑
(s1,s2)∈Mc(S1,S2) c(s1, s2), is minimized.

The min-cost item matching problem is similar to the Earth Mover’s Distance defined
in [18], except that only integral units of items can be matched and the cost of matching an
empty item with another item is not constant. Similar to the Earth Mover’s Distance, the
min-cost item matching problem can be computed using the ILP formulation of the min-cost
max-flow problem [23, 21]. When the cost is the edit distance, the cost to match ϵ with a
string is equal to the length of the string.

Define traversal edit distance, editt(t1, t2) as the edit distance between the strings
constructed from a pair of trails t1 and t2. In other words, editt(t1, t2) = edit(str(t1), str(t2)).
CCTED is defined as:

▶ Problem 3 (Closed-Trail Cover Traversal Edit Distance (CCTED)). Given two unidirectional,
edge-labeled Eulerian graphs G1 and G2 with closed Eulerian trails, compute

CCTED(G1, G2) ≜ min
C1∈CC(G1),
C2∈CC(G2)

∑
(t1,t2)∈Meditt (C1,C2)

edit(str(t1), str(t2)), (31)

Here, CC(G) denotes the collection of all possible sets of edge-disjoint, closed trails in G,
such that every edge in G belongs to exactly one of these trails. Each element of CC(G)
can be interpreted as a cover of G using such trails. Meditt

(C1, C2) is a min-cost matching
between two covers using the traversal edit distance as the cost.

CCTED is likely a more suitable metric comparisons between genomes that undergo
large-scale rearrangements. This analogy is to the relationship between the synteny block
comparison [20] and the string edit distance computation, where the former is more often
used in interspecies comparisons and in detecting segmental duplications [1, 24] and the
latter is more often seen in intraspecies comparisons.
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Following similar ideas as Lemma 6, we can compute CCTED by finding a set of closed
trails in the alignment graph such that the total cost of alignment edges are minimized, and
the projection of all edges in the collection of selected trails is equal to the multi-set of input
graph edges.

▶ Lemma 8. For any two edge-labeled Eulerian graphs G1 and G2,

CCTED(G1, G2) = minimize
C

∑
c∈C

δ(c) (32)

subject to C is a set of closed trails in A(G1, G2),⋃
e∈C

Πi(e) = Ei for i = 1, 2, (33)

where C is a collection of trails and δ(c) is the total cost of edges in trail c.

Proof. Given any pair of covers C1 ∈ CC(G1) and C2 ∈ CC(G2) and their min-cost matching
based on the edit distance Meditt(C1, C2), we can project each pair of matched closed trails
to a closed trail in the alignment graph. For a matching between a trail and the empty item
ϵ, we can project it to a closed trail in the alignment graph with all vertical edges if the trail
is from G1 or horizontal edges if the trail is from G2. The total cost of the projected edges
must be greater than or equal to the objective (32). On the other hand, every collection of
trails C that satisfy constraint (33) can be projected to a cover in each of the input graphs,
and

∑
c∈C δ(c) ≥ CCTED(G1, G2). Hence equality holds. ◀

We show that (lower bound ILP) solves CCTED (the proof is in Appendix B).

▶ Theorem 9. Given two input graphs G1 and G2, the optimal objective value of
(lower bound ILP) based on A(G1, G2) is equal to CCTED(G1, G2).

5.1 CCTED is a lower bound of GTED
Since the constraints for (lower bound ILP) are a subset of (exponential ILP), a feasible
solution to (exponential ILP) is always a feasible solution to (lower bound ILP). Since two
ILPs have the same objective function, CCTED(G1, G2) ≤ GTED(G1, G2) for any pair
of graphs. Moreover, when the solution to (lower bound ILP) forms only one connected
component, the optimal value of (lower bound ILP) is equal to GTED.

▶ Theorem 10. Let A′(G1, G2) be the subgraph of A(G1, G2) induced by edges (u, v) ∈ E

with xopt
uv = 1 in the optimal solution to (lower bound ILP), where xuv is the value of the

variable corresponding to edge (u, v). There exists A′(G1, G2) that has exactly one connected
component if and only if CCTED(G1, G2) = GTED(G1, G2).

Proof. We first show that if CCTED(G1, G2) = GTED(G1, G2), then there exists
A′(G1, G2) that has exactly one connected component. Since CCTED(G1, G2) =
GTED(G1, G2), an optimal solution to (exponential ILP) is also an optimal solution
to (lower bound ILP), which can induce a subgraph in the alignment graph that only
contains one connected component.

Conversely, if xopt induces a subgraph in the alignment graph with only one connec-
ted component, it satisfies constraints (18)-(21) and therefore is feasible to the ILP for
GTED (exponential ILP). Since CCTED(G1, G2) ≤ GTED(G1, G2), this solution must
also be optimal for GTED(G1, G2). ◀
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In practice, we may estimate GTED by the solution to (lower bound ILP). As we show in
Section 6, the time needed to solve (lower bound ILP) is much less than the time needed to
solve GTED. When the subgraph induced by the solution to (lower bound ILP) has only one
connected component, CCTED is exactly equal to GTED. However, in adversarial cases,
CCTED could be zero but GTED could be arbitrarily large.

6 Empirical evaluation of the ILP formulations for GTED and its lower
bound

6.1 Implementation of the ILP formulations
We implement the algorithms and ILP formulations for (exponential ILP), (compact ILP)
and (lower bound ILP). In practice, the multi-set of edges of each input graph may contain
many duplicates of edges that have the same start and end vertices due to repeats in the
strings. We reduce the number of variables and constraints in the implemented ILPs by
merging the edges that share the same start and end nodes and recording the multiplicity of
each edge. Each x variable is no longer binary but a non-negative integer that satisfies the
modified projection constraint (13):∑

(u,v)∈E

xuvIi((u, v), f) = Mi(f) for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (34)

where Mi(f) is the multiplicity of edge f in Gi. Let C be the strongly connected component
in the subgraph induced by positive xuv, now

∑
(u,v)∈E(C) xuv is no longer upper bounded

by |E(C)|. Therefore, the constraint (19) is changed to∑
(u,v)∈E(C)

xuv − |E(C)|+ 1−W (C)βC ≤ 0 for all C ∈ C, (35)

W (C) =
∑

(u,v)∈E(C)

max

 ∑
f∈G1

M1(f)I1((u, v), f),
∑

f∈G2

M2(f)I2((u, v), f)

 ,

where W (C) is the maximum total multiplicities of edges in the strongly connected subgraph
in each input graph that is projected from C.

Likewise, constraints (27) that set the upper bounds on the ordering variables also need
to be modified as the upper bound of the ordering variable duv for each edge no longer
represents the order of one edge but the sum of orders of copies of (u, v) that are selected,
which is at most |E|2. Therefore, constraint (27) is changed to

duv − |E|2(1− yuv) ≤ 0. (36)

The rest of the constraints remain unchanged.
We ran all our experiments on a server with 48 cores (96 threads) of Intel(R) Xeon(R)

CPU E5-2690 v3 @ 2.60GHz and 378 GB of memory. The system was running Ubuntu 18.04
with Linux kernel 4.15.0. We solve all the ILP formulations and their linear relaxations using
the Gurobi solver [7] using 32 threads.

6.2 GTED on simulated TCR sequences
We construct 20 de Bruijn graphs with k = 4 using 150-character sequences extracted from
the V genes from the IMGT database [11]. We solve (exponential ILP), (lower bound ILP)
and its linear relaxation, and the linear relaxation of (compact ILP) on all 190 pairs of
graphs. We do not show results for solving (compact ILP) for GTED on this set of graphs
as the running time exceeds 30 minutes on most pairs of graphs.
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Figure 5 (a) The distribution of wall-clock running time for constructing alignment graphs,
solving the ILP formulations for GTED and its lower bound, and their linear relaxations on the
log scale. (b) The relationship between the time to solve (lower bound ILP), (exponential ILP)
iteratively and GTED. (c) The distribution of the number of iterations to solve exponential ILP.
The box plots in each plot show the median (middle line), the first and third quantiles (upper and
lower boundaries of the box), the range of data within 1.5 inter-quantile range between Q1 and Q3
(whiskers), and the outlier data points.

To compare the time to solve the ILP formulations when GTED is equal to the optimal
objective of (lower bound ILP), we only include 168 out of 190 graphs where GTED is equal
to CCTED. On average, it takes 26 seconds wall-clock time to solve (lower bound ILP), and
71 seconds to solve (exponential ILP) using the iterative algorithm. On average, it takes 9
seconds to solve the LP relaxation of (compact ILP) and 1 second to solve the LP relaxation
of (lower bound ILP). The time to construct the alignment graph for all pairs is less than
0.2 seconds. The distribution of wall-clock running time is shown in Figure 5(a). The time
to solve (exponential ILP) and (lower bound ILP) is generally positively correlated with the
GTED values (Figure 5(b)). On average, it takes 7 iterations for the iterative algorithm to
find the optimal solution that induces one strongly connected subgraph (Figure 5(c)).

In summary, it is fastest to compute the lower bound of GTED. Computing GTED
exactly by solving the proposed ILPs on genome graphs of size 150 is already time consuming.
When the sizes of the genome graphs are fixed, the time to solve for GTED and its lower
bound increases as the GTED between the two genome graphs increases. In the case
where GTED is equal to its lower bound, the subgraph induced by some optimal solutions
of (lower bound ILP) contains more than one strongly connected component. Therefore, in
order to reconstruct the strings from each input graph that have the smallest edit distance,
we generally need to obtain the optimal solution to the ILP for GTED. In all cases, the time
to solve the (exponential ILP) is less than the time to solve the (compact ILP).

6.3 GTED on difficult cases

Repeats, such as segmental duplications and translocations [12, 4] in the genomes increase
the complexity of genome comparisons. We simulate such structures with a class of graphs
that contain n simple cycles of which n− 1 peripheral cycles are attached to the n-th central
cycle at either a node or a set of edges (Figure 6(a)). The input graphs in Figure 2 belong
to this class of graphs that contain 2 cycles. This class of graphs simulates the complex
structural variants in disease genomes or the differences between genomes of different species.

We generate pairs of 3-cycle graphs with varying sizes and randomly assign letters
from {A,T,C,G} to edges. We compute the CCTED and GTED using (lower bound ILP)
and (compact ILP), respectively. We group the generated 3-cycle graph pairs based on the
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Figure 6 (a) An example of a 3-cycle graph. Cycle 1 and 2 are attached to cycle 3. (b) The
distribution of wall-clock time to solve the compact ILP and the iterative exponential ILP on 100
pairs of 3-cycle graphs.

value of (GTED − CCTED) and select 20 pairs of graphs randomly for each (GTED −
CCTED) value ranging from 1 to 5. The maximum number of edges in all selected graphs
is 32.

We show the difficulty of computing GTED using the iterative algorithm on the 100
selected pairs of 3-cycle graphs. We terminate the ILP solver after 20 minutes. As shown
in Figure 6, as the difference between GTED and CCTED increases, the wall-clock time to
solve (exponential ILP) for GTED increases faster than the time to solve (compact ILP) for
GTED. For pairs of graphs with (GTED−CCTED) = 5, on average it takes more than
15 minutes to solve (exponential ILP) with more than 500 iterations. On the other hand, it
takes an average of 5 seconds to solve (compact ILP) for GTED and no more than 1 second
to solve for the lower bound. The average time to solve each ILP is shown in Table S1.

In summary, on the class of 3-cycle graphs introduced above, the difficulty to solve
GTED via the iterative algorithm increases rapidly as the gap between GTED and CCTED
increases. Although (exponential ILP) is solved more quickly than (compact ILP) for GTED
when the sequences are long and the GTED is equal to CCTED (Section 6.2), (compact ILP)
may be more efficient when the graphs contain overlapping cycles such that the gap between
GTED and CCTED is larger.

7 Conclusion

We point out the contradictions in the result on the complexity of labeled graph comparison
problems and resolve the contradictions by showing that GTED, as opposed to the results in
Ebrahimpour Boroojeny et al. [6], is NP-complete. On one hand, this makes GTED a less
attractive measure for comparing graphs since it is unlikely that there is an efficient algorithm
to compute the measure. On the other hand, this result better explains the difficulty of
finding a truly efficient algorithm for computing GTED exactly. In addition, we show that
the previously proposed ILP of GTED [6] does not solve GTED and give two new ILP
formulations of GTED.

We further show that the previously proposed ILP solves for a lower bound of GTED. We
characterize the LP relaxation of the ILP in (11)–(12) and show that, contrary to the results
in Ebrahimpour Boroojeny et al. [6], the LP in (11)–(12) does not always yield optimal
integer solutions.
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As shown previously [6, 21], it takes more than 4 hours to solve (lower bound ILP) for
graphs that represent viral genomes that contain≈ 3000 bases with a multi-threaded LP solver.
Likewise, we show that computing GTED using either (exponential ILP) or (compact ILP)
is already slow on small genomes, especially on pairs of genomes that are different due to
segmental duplications and translations. The empirical results show that it is currently
impossible to solve GTED or its lower bound directly using this approach for bacterial-
or eukaryotic-sized genomes on modern hardware. The results here should increase the
theoretical interest in GTED along the directions of heuristics or approximation algorithms
as justified by the NP-hardness of finding GTED.
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A Proofs for the NP-completeness of GTED

A.1 Reduction from ETEW to GTED
We provide below the complete proof for Theorem 2.

▶ Theorem 2. If GTED ∈ P then ETEW ∈ P.

Proof. Let ⟨s, G⟩ be an instance of ETEW. Construct a directed, acyclic graph (DAG), C,
that has only one path. Let the path in C be P = (e1, . . . , e|s|) and the edge label of ei be
s[i]. Clearly, C is a unidirectional, edge-labeled Eulerian graph, P is the only Eulerian trail
in C, and str(P ) = s.

For the graph G = (VG, EG, ℓG, Σ) from the ETEW instance, which may not be unidirec-
tional, create another graph G′ that contains all of the nodes and edges in G except the
anti-parallel edges. Let ΣG′ = Σ ∪ {ϵ}, where ϵ is a character that is not in Σ. For each pair
of anti-parallel edges (u, v) and (v, u) in G, add four edges (u, w1), (w1, v), (v, w2), (w2, u) by
introducing new vertices w1, w2 to G′. Let ℓG′(u, w1) = ℓG(u, v) and ℓG′(w2, u) = ℓG(v, u).
Let ℓG′(w1, v) = ℓG′(v, w2) = ϵ for every newly introduced vertex. G′ has at most twice the
number of edges as G and is Eulerian and unidirectional.

Define the cost of changing a character from a to b cost(a, b) for a, b ∈ Σ ∪ {−} to be 0 if
a = b and 1 otherwise. “−” is the gap character indicating an insertion or a deletion. Define
cost(a, ϵ) with a ∈ Σ to be 1. Define cost(−, ϵ) to be 0.

Use the (assumed) polynomial-time algorithm for GTED to ask whether GTED(C, G′) ≤
0 under edit distance Σ. If yes, then let (s1, s2) be the 0-cost alignment of the strings spelled
out by the trails in C and G′, respectively. The non-gap characters of s1 must spell out s

since there is only one Eulerian trail in C. Because the alignment cost is 0, any − (gap)
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characters in s1 must be aligned with ϵ characters in s2 and any non-gap characters in s1
must be aligned to the same character in s2. The trail in G′ that spells s2 can be transformed
to a trail that spells s3 by collapsing the edges with ϵ character labels, and s3 = s1.

If GTED(C, G′) > 0, G must not contain an Eulerian trail that spells s. Otherwise, such
a trail could be extended to a trail introducing some ϵ characters that could be aligned to s

with zero cost by aligning gaps with ϵ characters.
Hence, an (assumed) polynomial-time algorithm for GTED solves ETEW in polynomial

time. ◀

A.2 Reduction from Hamiltonian Path to GTED
We provide below the complete proof for Theorem 3.

▶ Theorem 3. GTED is NP-complete.

Proof. We reduce from the Hamiltonian Path problem, which asks whether a directed,
simple graph G contains a path that visits every vertex exactly once. Here simple means no
self-loops or parallel edges. Let ⟨G = (V, E)⟩ be an instance of Hamiltonian Path, with
n = |V | vertices. The reduction is almost identical to that presented in Kupferman and
Vardi [10], and from here until noted later in the proof the argument is identical except for the
technicalities introduced to force unidirectionality (and another minor change described later).
The first step is to construct the Eulerian closure of G, which is defined as G′ = (V ′, E′)
where

V ′ = {vin, vout : v ∈ V } ∪ {w}, (37)

and E′ is the union of the following sets of edges and their labels:
E1 = {(vin, vout) : v ∈ V }, labeled a,
E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,
E3 = {(vout, vin) : v ∈ V }, labeled c,
E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,
E5 = {(uin, w) : u ∈ V }, labeled c,
E6 = {(w, uin) : u ∈ V }, labeled b.

Since G′ is connected and every outgoing edge in G′ has a corresponding antiparallel incoming
edge, G′ is Eulerian. It is not unidirectional, so we further create G′′ from G′ by adding
dummy nodes to each pair of antiparallel edges and labelling the length-2 paths so created
with x#, where x is the original label of the split edge (a, b, or c) and # is some new symbol
(shared between all the new edges). We call these length-2 paths introduced to achieve
unidirectionality “split edges”.

We now argue that G has a Hamiltonian path iff G′′ has an Eulerian trail that spells out

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (38)

If such an Eulerian trail exists, then the trail starts with spelling the string a#(b#a#)n−1,
which corresponds to a Hamiltonian trail in G since it visits exactly n “vertex split edges”
(type E1, labeled a#) and each vertex split edge can be used only once (since it is an Eulerian
trail). Further, successively visited vertices must be connected by an edge in G since those
are the only b# split edges in G′′ (except those leaving w, but w must not be involved in
spelling out a#(b#a#)n−1, since entering w requires using a split edge labeled c#).

For the other direction, if a G has a Hamiltonian path v1, . . . , vn, then walking that
sequence of vertices in G′′ will spell out a#(b#a#)n−1. This path will cover all E1 edges and
the E2 edges that are on the Hamiltonian path. Retracing the path so far in reverse will
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use 2n− 1 split edges labeled c#, consuming the (c#)2n−1 term in q and covering all nodes’
reverse vertex edges E3 (since the path is Hamiltonian). The reverse path also covers the
E4 edges corresponding to reverse Hamiltonian path edges. Our Eulerian trail is now “at”
node vin

1 .
What remains is to complete the Eulerian walk covering (a) edges and their antiparallel

counterparts corresponding to edges in G that were not used in the Hamiltonian path, and
(b) the edges adjacent to node w. To do this, define pred(v) be the vertices u in G for which
edge (u, v) exists and u is not the predecessor of v along the Hamiltonian path. For each
u ∈ pred(v1), traverse the split edge labeled c# to uout then traverse the forward split edge
labeled b# back to vin

1 . This results in a string (c#b#)|pred(v1)|. Once the predecessors of v1
are exhausted, traverse the split edge labeled c# from vin

1 into node w and then traverse
the split edge labeled b# to vin

2 . This again generates a c#b# string. Repeat the process,
covering the edges of v2’s predecessors and returning to w to move to the next node along
the Hamiltonian path for each node v3, . . . , vn. After covering the predecessors of vin

n , go to
vin

1 through the remaining edges in E5 and E6, (vin
n , w) and (w, vin

1 ), which completes the
Eulerian tour. This covers all the edges of G′′. The word spelled out in this last section of
the Eulerian trail is a sequence of repetitions of c#b#, with one repetition for each edge that
is not in the Hamiltonian path (|E| − n + 1) and all of the edges in E5 and E6 for entering
and leaving each node (2n), with a total of |E|+ 1 repetitions, which is the final (c#b#)|E|+1

term in q.
This ends the slight modification of the proof in Kupferman and Vardi [10], where the

differences are (a) the introduction of the # characters and (b) using the exponent |E|+ 1
of the final part of q instead of |E|+ n + 1 as in Kupferman and Vardi [10] since we create
w-edges only to vin vertices. (This second change has no material effect on the proof, but
reduces the length of the string that must be matched.)

Now, given an instance ⟨G = (V, E)⟩ of Hamiltonian Path, with n = |V | vertices, we
construct G′′ as above (obtaining a unidirectional Eulerian graph) and create graph C that
only represents string q. Note that |Σ| = 4 and G′′ and C can be constructed in polynomial
time. GTED(G′′, C) = 0 if and only if an Eulerian path in G′′ spells out q, since there can
be no indels or mismatches. By the above argument, an An eulerian tour that spells out q

exists if and only if G has a Hamiltonian path. ◀

A.3 FGTED is NP-complete
▶ Problem 4 (Flow Graph Traversal Edit Distance (FGTED) [21]). Given unidirectional,
edge-labeled Eulerian graphs G1 and G2, each of which has distinguished s1, s2 source and
t1, t2 sink vertices, compute

FGTED(G1, G2) ≜ min
D1∈flow(G1,s1,t1)
D1∈flow(G2,s2,t2)

emedit(strset(D1), strset(D2)), (39)

where flow(Gi, si, ti) is the collection of all possible sets of s1-t1 trail decomposition of
saturating flow from si to ti, strset(D) is the multi-set of strings constructed from trails in D.

▶ Theorem 4. FGTED is NP-complete.

Proof. Let G = (v, E) be an instance of the Hamiltonian Cycle problem. Let n = |V | be
the number of vertices in G. Construct the Eulerian closure of G and split the anti-parallel
edges. Let the new graph be G′ = (V ′, E′). Attach a source s and a sink node t to an
arbitrary node vin

1 by adding edge (s, vin
1 ) and (vin

1 , t) with labels s and t, respectively.

WABI 2023
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Construct a string q, such that

q = sa#(b#a#)n−1(c#)2n−1(c#b#)|E|+1t. (40)

Create a graph Q that only contains one path with labels on the edges of the path that spell
the string q. The union of the set of trails in any flow decomposition of G′ is equal to a set
of Eulerian trails, E , that starts at s and ends at t. All Eulerian trails in E are also closed
Eulerian trails of G′ \ {s, t} that starts and ends at vin

1 .
Using the same line of argument in the proof of Theorem 3, an Eulerian trail in G′ that

spells q is equivalent to a Hamiltonian cycle in G. In addition, FGTED(Q, G′) = 0 if and
only if all Eulerian trails in E spell out q. Therefore, if FGTED(Q, G′) = 0, then there is a
Hamiltonian cycle in G. Otherwise, then there must not exist a Hamiltonian cycle in G. ◀

B Correctness of the ILP formulation for CCTED

We show that the ILP in (5)–(8) proposed by Ebrahimpour Boroojeny et al. [6] solves
CCTED.

▶ Theorem 9. Given two input graphs G1 and G2, the optimal objective value of the ILP
in (5)–(8) based on A(G1, G2) is equal to CCTED(G1, G2).

Proof. As shown in the proof of Lemma 8, any pair of edge-disjoint, closed-trail covers
in the input graph can be projected to a set of closed trails in A(G1, G2), which satisfied
constraints (6)-(8). The objective of this feasible solution, which is the total cost of the
projected closed trails, equals CCTED. Therefore, CCTED(G1, G2) is greater than or equal
to the objective of the ILP in (5)–(8).

Conversely, we can transform any feasible solution of the ILP in (5)–(8) to a pair of
covers of G1 and G2. We can do this by transforming one closed trail at a time from the
subgraph of the alignment graph, A′ induced by edges with ILP variable xuv = 1. Let c

be a closed trail in A′. Let c1 = Π1(c) and c2 = Π2(c) be two closed trails in G1 and G2
that are projected from c. We can construct an alignment between str(c1) and str(c2) from c

by adding match or insertion/deletion columns for each match or insertion/deletion edges
in c accordingly. The cost of the alignment is equal to the total cost of edges in c by the
construction of the alignment graph. We can then remove edges in c from the alignment
graph and edges in c1 and c2 from the input graphs, respectively. The remaining edges in A′

and G1 and G2 still satisfy the constraints (6)-(8). Repeat this process and we get a total
cost of

∑
e∈E xeδ(e) that aligns pairs of closed trails that form covers of G1 and G2. This

total cost is greater than or equal to CCTED(G1, G2). ◀

C The average wall-clock time to solve ILPs on 3-cycle graphs

Table S1 The average wall-clock time to solve lower bound ILP, exponential ILP, compact ILP
and the number of iterations for pairs of 3-cycle graphs for each GTED − CCTED.

GTED - CCTED lower bound ILP
runtime (s)

GTED iterative
runtime (s) Iterations GTED compact

runtime (s)

1.0 0.06 0.17 3.55 0.39
2.0 0.05 0.87 13.00 0.43
3.0 0.08 25.41 67.60 1.24
4.0 0.07 205.59 179.10 1.70
5.0 0.08 943.68 502.85 5.37
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