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Abstract
Pangenome reference graphs are useful in genomics because they compactly represent the genetic
diversity within a species, a capability that linear references lack. However, efficiently aligning
sequences to these graphs with complex topology and cycles can be challenging. The seed-chain-
extend based alignment algorithms use co-linear chaining as a standard technique to identify a
good cluster of exact seed matches that can be combined to form an alignment. Recent works
show how the co-linear chaining problem can be efficiently solved for acyclic pangenome graphs by
exploiting their small width [Makinen et al., TALG’19] and how incorporating gap cost in the scoring
function improves alignment accuracy [Chandra and Jain, RECOMB’23]. However, it remains
open on how to effectively generalize these techniques for general pangenome graphs which contain
cycles. Here we present the first practical formulation and an exact algorithm for co-linear chaining
on cyclic pangenome graphs. We rigorously prove the correctness and computational complexity
of the proposed algorithm. We evaluate the empirical performance of our algorithm by aligning
simulated long reads from the human genome to a cyclic pangenome graph constructed from 95
publicly available haplotype-resolved human genome assemblies. While the existing heuristic-based
algorithms are faster, the proposed algorithm provides a significant advantage in terms of accuracy.
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1 Introduction

Graph-based representation of genome sequences has emerged as a prominent data structure
in genomics, offering a powerful means to represent the genetic variation within a species
across multiple individuals [11, 17, 26, 49, 51, 53]. A pangenome graph can be represented
as a directed graph G(V, E) such that vertices are labeled by characters (or strings) from the
alphabet {A,C,G,T}. The topology of the graph is determined by the count and the type
of variants included in the graph. For example, inversions, duplications, or copy number
variation are best represented as cycles in a pangenome graph [8, 26, 27, 41, 49]. As a result,
the draft pangenome graphs published by the Human Pangenome Reference Consortium [26]
and the Chinese Pangenome Consortium [14] are also cyclic. Aligning reads or assembly
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Figure 1 An illustration of co-linear chaining for sequence-to-graph alignment. Assume that
the vertices of the graph are labeled with nucleotide sequences. Short exact matches, i.e., anchors,
are illustrated using red blocks joined by dotted lines. In (b), the anchors corresponding to the
best-scoring chain are retained, and the rest are removed. The retained anchors are combined to
produce an alignment of the query sequence to the graph.

contigs to a directed labeled graph is a fundamental problem in computational pangenomics
[2, 7]. Aligning reads to graphs is also useful for other bioinformatics tasks such as long-read
de novo assembly [6, 15, 43] and long-read error correction [28, 47].

Formally, the sequence-to-graph alignment problem seeks a walk in the graph that spells
a sequence with minimum edit distance from the input sequence. O(|Q||E|) time alignment
algorithms for this problem are already known, where Q is the query sequence [22, 36]. The
known conditional lower bound [3] implies that an exact algorithm significantly faster than
O(|Q||E|) is unlikely. This lower bound also holds for de Bruijn graphs [18]. Therefore, fast
heuristics are used to process high-throughput sequencing data.

Seed-chain-extend is a common heuristic used by modern alignment tools [21, 23, 46].
This is a three-step process. First, the seeding stage involves computing exact seed matches,
such as k-mer matches, between a query sequence and a reference. These matches are
referred to as anchors. The presence of repetitive sequences in genomes often leads to a
large number of false positive anchors. Subsequently, the chaining stage is employed to link
the subsets of anchors in a coherent manner while optimizing specific criteria (Figure 1).
This procedure also eliminates the false positive anchors. Finally, the extend stage returns
a base-to-base alignment along the selected anchors. Efficient generalization of the three
stages to pangenome graphs is an active research topic [7]. Many sequence-to-graph aligners
already exist that differ in terms of implementing these stages [5, 9, 24, 30, 42, 49]. This
paper addresses the generalization of the chaining stage to cyclic pangenome graphs.

1.1 Related Work
Co-linear chaining is a mathematically rigorous method to filter anchors after the seeding stage.
It has been well-studied for the sequence-to-sequence alignment case [1, 12, 13, 20, 32, 35, 40].
The input to the chaining problem is a set of N weighted anchors. An anchor can be denoted
as a pair of intervals in the two sequences corresponding to the exact seed match. A chain
is an ordered subset of anchors whose intervals must appear in increasing order in both
sequences. The co-linear chaining problem seeks the chain with the highest score, where
the score of a chain is calculated by summing the weights of the anchors in the chain and
subtracting the penalty for gaps between adjacent anchors. The problem is solvable in
O(N log N) time [1].

The first effort to generalize the co-linear chaining problem to graphs was made by
Makinen et al. [33]. They addressed the co-linear chaining problem on directed acyclic
graphs (DAGs). The authors introduced a sparse dynamic programming algorithm whose
runtime complexity is parameterized in terms of the width of the DAG. The width of a DAG
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is defined as the minimum number of paths in the DAG such that each vertex is included in
at least one path. Parameterizing the complexity in terms of the width is helpful because
pangenome graphs typically have small width in practice [5, 30, 33]. An optimized version
of their algorithm requires O(KN log KN) time for chaining, where K is the width of the
DAG [30]. This formulation has been further extended to incorporate gap cost in the scoring
function [5], and for solving the longest common subsequence problem between a DAG and
a sequence [44]. However, there is limited work on formulating and solving the co-linear
chaining problem for general pangenome graphs which might contain cycles. One way to
address this was discussed in [30, Appendix section], but the proposed formulation is oblivious
to the coordinates of anchors that lie in a strongly connected component of the graph. Their
algorithm works by shrinking every strongly connected component into a single vertex and
applying the same algorithm developed for DAGs. With this approach, the high-scoring
anchor chains in cyclic regions of the graph may result in low-quality alignments.

1.2 Contributions
In this paper, we build on top of the algorithmic techniques developed for DAGs [5, 30, 33]
and propose novel formulations for cyclic pangenome graphs. Our proposed algorithm exploits
the small width of pangenome graphs similar to [33]. Our approach for defining the gap cost
between a pair of anchors is inspired by the corresponding function defined on DAGs [5].

We address the following three challenges that arise on cyclic pangenome graphs. First, the
dynamic programming-based chaining algorithms developed for DAGs exploit the topological
ordering of vertices [5, 30, 33], but such an ordering is not available in cyclic graphs.
Second, computing the width and a minimum path cover can be solved in polynomial
time for DAGs but is NP-hard for general instances [4]. Third, the walk corresponding to
the optimal sequence-to-graph alignment can traverse a vertex multiple times if there are
cycles. Accordingly, a chain of anchors should be allowed to loop through vertices. Our
proposed problem formulation and the proposed algorithm address the above challenges. Our
approach involves computing a path cover P of the input graph followed by using iterative
algorithms. Let Γc, Γl, Γd be the parameters that specify the count of iterations used in
our algorithms (formally defined later). Our chaining algorithm solves the stated objective
in O(Γc|P|N log N + |P|N log |P|N) time after a one-time preprocessing of the graph in
O((Γl + Γd + log |V |)|P||E|) time. We will show that parameters |P|, Γc, Γl, Γd are small in
practice to justify the practicality of this approach.

We implemented the proposed chaining algorithm as an open-source software PanAligner.
We designed PanAligner as an end-to-end sequence-to-graph aligner using seeding and
alignment code from Minigraph [24]. We evaluated the scalability and alignment accuracy
of PanAligner by using a cyclic human pangenome graph constructed from 94 high-quality
haplotype-resolved assemblies [26] and CHM13 human genome assembly [38]. We achieve
the highest long-read mapping accuracy 98.7% using PanAligner when compared to existing
methods Minigraph [24] (98.1%) and GraphAligner [42] (97.0%).

2 Notations and Problem Formulations

Pangenome graph G(V, E, σ) is a string labeled graph such that function σ : V → Σ+ labels
each vertex v with string σ(v) over alphabet Σ = {A, C, G, T}. Let Q be a query sequence
over Σ. Let M [1..N ] be an array of anchor tuples (v, [x..y], [c..d]) with the interpretation
that substring σ(v)[x..y] from the graph matches substring Q[c..d] in the query sequence.
Throughout this paper, all indices start at 1. We will assume that |E| ≥ |V | − 1. Function
weight assigns a user-specified weight to each anchor. For example, the weight of an anchor
could be proportional to the length of the matching substring.
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A path cover is a set P = {P1, P2, . . . , P|P|} of paths in graph G such that every vertex
in V is included in at least one of the |P| paths. We define paths(v) as {i : Pi includes v}.
If i ∈ paths(v), then let index(v, i) specify the position of vertex v on path Pi. Suppose
R−(v) is the set of vertices in V that can reach vertex v through any walk in graph G. We
will assume that the set R−(v) always includes the vertex v. The value last2reach(v, i) for
v ∈ V, i ∈ [1, |P|] represents the last vertex on path Pi that belongs to set R−(v). Note
that last2reach(v, i) does not exist if there is no vertex on path Pi that belongs to R−(v).
Let N+(v) and N−(v) be the set of outgoing and incoming neighbor vertices of vertex v,
respectively.

We need to calculate character distances between pairs of anchors in the graph while
solving the co-linear chaining problem. Assume that edge (v, u) ∈ E has length |σ(v)| > 0.
Let D(v1, v2) denote the length of the shortest path from vertex v1 to v2 in G. We set
D(v1, v2) =∞ if there is no path from v1 to v2, whereas D(v1, v2) = 0 if v1 = v2. We use
D◦(v) to specify the length of the shortest proper cycle containing v. D◦(v) = ∞ if v is
not part of any proper cycle. If Pi includes v, let dist2begin(v, i) denote the length of the
sub-path of path Pi from the start of Pi to v.

Our algorithm will use a balanced binary search tree data structure for executing range
queries efficiently. It has the following properties.

▶ Lemma 1 (ref. [31]). Let n be the number of leaves in a tree, each storing a (key, value)
pair. The following operations can be supported in O(log n) time:

update(k, val): For the leaf w with key = k, value(w)←− max(value(w), val).
RMQ(l, r): Return max{value(w) | l < key(w) < r} such that w is a leaf. This is the
range maximum query.

Given n (key, value) pairs, the tree can be constructed in O(n log n) time and O(n) space.

Next, we define a precedence relation between a pair of anchors, which is a partial order
among the input anchors [30].

▶ Definition 2 (Precedence). Given two anchors M [i] and M [j], we define M [i] precedes (≺)
M [j] as follows. If M [i].v ̸= M [j].v, then M [i] ≺ M [j] if and only if M [i].d < M [j].c and
M [i].v reaches M [j].v. If M [i].v = M [j].v, then M [i] ≺M [j] if and only if M [i].d < M [j].c,
and M [i].y < M [j].x or the graph has a proper cycle containing M [i].v.

▶ Definition 3 (Chain). Given the set of anchors {M [1], M [2], . . . , M [N ]}, a chain is an
ordered subset of anchors S = s1s2 · · · sq of M , such that sj precedes sj+1 for all 1 ≤ j < q.

Our co-linear chaining problem formulation seeks a chain S = s1s2 · · · sq that maximizes
the chain score defined as

∑q
j=1 weight(sj)−

( ∑q−1
j=1 gapQ(sj , sj+1) +

∑q−1
j=1 gapG(sj , sj+1)

)
.

Functions gapQ and gapG specify the gap cost incurred in the query sequence and the graph,
respectively. Although we specifically focus on problem formulations where the gap cost
is calculated as the sum of gapG and gapQ, our approach can be extended to other gap
definitions such as |gapG − gapQ|, min(gapG, gapQ), or max(gapG, gapQ), similar to [5]. We
define gapQ(sj , sj+1) as sj+1.c− sj .d− 1, which can be interpreted as the count of characters
in the query sequence between the endpoints of the two anchors. Next, we will define two
versions of the co-linear chaining problem that differ in their definition of gapG. In both
versions, gapG(sj , sj+1) is calculated by looking at the count of characters spelled along a
walk in the graph from sj to sj+1. In the first version of the problem formulation, we use
the shortest path from vertex sj .v to sj+1.v to calculate gapG(sj , sj+1).
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Figure 2 An example illustrating a graph, a query sequence, and multiple anchors as input for
co-linear chaining. The sequence of anchors (M [1], M [2], M [4], M [5], M [7], M [8]) forms a valid chain
that visits vertex v4 twice due to a cycle in the graph. The coordinates associated with anchor M [8]
are also highlighted as an example.

▶ Problem 4. Given a query sequence Q, graph G(V, E, σ) and anchors M [1..N ], determine
the optimal chaining score by using the following definition of gapG:

gapG(sj , sj+1) =


sj+1.x− sj .y − 1 + D(sj .v, sj+1.v) sj+1.v ̸= sj .v

sj+1.x− sj .y − 1 sj .v = sj+1.v and sj .y < sj+1.x

sj+1.x− sj .y − 1 + D◦(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,

where (sj , sj+1) is a pair of anchors from M such that sj precedes sj+1.

▶ Lemma 5. Problem 4 can be solved in Θ(|V ||E|+ |V |2 log |V |+ N2) time.

Proof. Compute the shortest distance D(vi, vj) between all pairs of vertices vi, vj ∈ V in
O(|V ||E|+ |V |2 log |V |) time by using Dijkstra’s algorithm from every vertex. Next, compute
D◦(v) as minu∈N+(v) |σ(v)|+ D(u, v) in Θ(|E|) time for all v ∈ V . These computations need
to be done only once for a graph. To solve the chaining problem for a given query sequence,
sort the input anchor array M [1..N ] in non-decreasing order by the component M [·].c. Let
C[1..N ] be a one-dimensional table in which C[j] will be the optimal score of a chain ending
at anchor M [j]. Initialize C[j] as weight(M [j]) for all j ∈ [1, N ]. Subsequently, compute C

in the left-to-right order by using the recursion C[j] = maxM [i]≺M [j]{C[j], weight(M [j])−
gapQ(M [i], M [j])−gapG(M [i], M [j])}. Computing C[j] takes Θ(N) time because precedence
condition can be checked in constant time. Report maxj C[j] as the optimal chaining
score. ◀

The above algorithm is unlikely to scale to large whole-genome sequencing datasets
because it requires Θ(N2) time for the dynamic programming recursion. Motivated by [5],
we will define an alternative definition of gapG. We will approximate the distance between
a pair of vertices by using a path cover of the graph. We will later propose an efficient
algorithm for the revised problem formulation.

Suppose P = {P1, P2, . . . , P|P|} is a path cover of graph G. Consider a pair of vertices
v1, v2 ∈ V such that v1 reaches v2. For each path i ∈ paths(v1), consider the walk starting
from v1 along the edges of path Pi till vertex αi, where vertex αi = v2 if v2 also lies on path
Pi anywhere after v1, i.e., index(v2, i) ≥ index(v1, i), and αi = last2reach(v2, i) otherwise.
If αi ̸= v2, the rest of the walk till v2 is completed by using the shortest path from vertex αi

to v2. Denote DP(v1, v2) as the length of the shortest walk among such |paths(v1)| possible
walks from v1 to v2. Formally, we can write DP(v1, v2) as

WABI 2023



12:6 Co-Linear Chaining on Pangenome Graphs

min
i∈paths(v1)

dist2begin(αi, i)− dist2begin(v1, i) + D(αi, v2). (1)

DP(v1, v2) is well defined if v2 is reachable from v1. We set DP(v1, v2) = ∞ if v2 is not
reachable from v1. Finally, if vertex v is part of a proper cycle in G, we define D◦

P(v) as the
length of a specific walk that starts and ends at v, i.e., D◦

P(v) as minu∈N+(v) |σ(v)|+DP(u, v)
for all v ∈ V . D◦

P(v) =∞ if v is not part of any proper cycle.

▶ Problem 6. Given a query sequence Q, graph G(V, E, σ) and anchors M [1..N ], determine
a path cover P of the graph, and the optimal chaining score by using the following definition
of gapG:

gapG(sj , sj+1) =


sj+1.x− sj .y − 1 + DP(sj .v, sj+1.v) sj+1.v ̸= sj .v

sj+1.x− sj .y − 1 sj .v = sj+1.v and sj .y < sj+1.x

sj+1.x− sj .y − 1 + D◦
P(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,

where (sj , sj+1) is a pair of anchors from M such that sj precedes sj+1.

3 Proposed Algorithms

A single experiment typically requires aligning millions of reads to a graph. Therefore, we will
do a one-time preprocessing of the graph that will help reduce the runtime of our chaining
algorithm for solving Problem 6.

3.1 Algorithms for Preprocessing the Graph
We compute the following quantities during the preprocessing stage:

A path cover P of G(V, E, σ). We require the path cover to be small (in the number
of paths). However, determining the minimum path cover in a graph with cycles is an
NP -hard problem. We will discuss an efficient heuristic for determining a small path
cover.
A bijective function rank : V → [1, |V |] that specifies a linear ordering of vertices. The
ordering should satisfy the following property: If vertex v2 occurs anywhere after v1 in a
path in P, then rank(v2) > rank(v1) for all v1, v2 ∈ V . Such an ordering may not exist
for an arbitrary path cover but it will exist for the path cover chosen by us.
last2reach(v, i), D(last2reach(v, i), v), dist2begin(v, i) and D◦

P(v) for all v ∈ V and
i ∈ [1, |P|]. These values will be frequently used by our chaining algorithm to compute
gap costs.

We propose the following heuristic for computing a small path cover of graph G(V, E, σ). We
derive a DAG G′(V, E′, σ) from G by removing a small number of edges. Next, we determine
the minimum path cover P of G′ in O(|P||E| log |V |) time by using a known algorithm [33].
Our intuition is that removing as few edges as possible will provide a close to optimal path
cover of G. One way to compute G′ is to use standard heuristic-based solvers for minimum
feedback arc set (FAS) problem, e.g., [10], but we empirically observed that this approach
could sometimes disconnect a weak component of a graph, leading to a large path cover.
Therefore, instead of using FAS heuristics, we use a simple idea where we identify all strongly
connected components [50] and perform a depth-first search within each strong component
to remove back edges. This approach provides a DAG that has the same number of weak
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components as G while removing a small number of edges in practice, thus resulting in a
small path cover. Next, we compute a function rank for all vertices ∈ V by topological
sorting of vertices in DAG G′.

SCC1 SCC2

Figure 3 An illustration of the proposed heuristic used to convert a cyclic graph into a DAG.
Red-dotted edges represent the removed back edges in each strongly connected component (SCC).

If there is no cycle in G, then last2reach(v, i) and D(last2reach(v, i), v) can be com-
puted in O(|P||E|) time by using dynamic programming algorithms that process vertices
in topological order [5, 33]. We extend these ideas to cyclic graphs by designing iterative
algorithms. We will formally prove that as the iterations proceed, the output gets closer to
the desired solution. Our approach to computing last2reach(v, i) is outlined in Algorithm 1.
If last2reach(v, i) exists, the algorithm determines it in terms of its rank. We maintain an
array L2R to save intermediate results. L2R(v, i) is initialised to rank(v) if v lies on path
Pi. In each iteration, we revise L2R(v, i) by probing L2R(u, i) for all u ∈ N−(v). In Lemma
7, we prove the correctness of this algorithm by arguing that all |P||V | values in array L2R

converge to their optimal values through label propagation in ≤ |V | iterations. Let Γl denote
the count of iterations used by the algorithm. L2R(v, i) remains 0 if last2reach(v, i) does
not exist.

Algorithm 1 O(Γl|P||E|) time algorithm to compute last2reach(v, i) for all v ∈ V and
i ∈ [1, |P|].

1 Initialize L2R(v, i) to rank(v) if i ∈ paths(v) and 0 otherwise for all v ∈ V and i ∈ [1, |P|]
2 Initialize L2Rprev(v, i) to 0 for all v ∈ V and i ∈ [1, |P|]
3 /*L2R and L2Rprev will hold the values of current and previous iteration respectively*/
4 while ∃v ∈ V, ∃i ∈ [1, |P|], L2R(v, i) ̸= L2Rprev(v, i) do
5 for i ∈ [1, |P|] do
6 for v ∈ V in the increasing order of rank(v) do
7 L2Rprev(v, i)← L2R(v, i)
8 L2R(v, i)← maxu∈N−(v)∪v L2R(u, i)
9 end

10 end
11 end

▶ Lemma 7. In Algorithm 1, L2R(v, i) converges to the rank of last2reach(v, i) in at most
|V | iterations for all v ∈ V and i ∈ [1, |P|].

Proof. A vertex v2 ∈ V is said to be reachable within k hops from vertex v1 ∈ V if there exists
a path with ≤ k edges from v1 to v2. We will prove by induction that Algorithm 1 satisfies
the following invariant: After j iterations, L2R(v, i) has converged to rank(last2reach(v, i))
if last2reach(v, i) exists and vertex v is reachable within j hops from last2reach(v, i) in G.
This argument will prove the lemma because vertex v2 ∈ V must be reachable within |V | − 1
hops from v1 ∈ V if v2 is reachable from v1. Base case (j = 0) holds due to initialisation
of L2R(v, i) in Line 1. If v lies 0-hop from last2reach(v, i), i.e., v = last2reach(v, i),
then v must lie on path Pi and rank(last2reach(v, i)) = rank(v). Next, assume that the
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12:8 Co-Linear Chaining on Pangenome Graphs

invariant is true for j = n. Now consider the situation after n + 1 iterations. Suppose
v ∈ V is reachable within n + 1 hops from last2reach(v, i). Then, at least one neighbor
u ∈ N−(v) of vertex v exists which is reachable within n hops from last2reach(v, i) and
last2reach(u, i) = last2reach(v, i). Based on our assumption, L2R(u, i) must have already
converged to rank(last2reach(u, i)) before (n+1)th iteration. Therefore, Line 8 in Algorithm
1 ensures that L2R(v, i)← rank(last2reach(v, i)) after (n + 1)th iteration. ◀

It is possible to design an adversarial example where the algorithm uses Ω(|V |) iterations.
However, in practice, we expect the algorithm to converge quickly. Each iteration of Algorithm
1 requires O(|P||E|) time. Therefore, the total worst-case time of Algorithm 1 is bounded
by O(Γl|P||E|). A similar approach is applicable to compute D(last2reach(v, i), v) for all
v ∈ V and i ∈ [1, |P|] (Algorithm 2). We use Γd to denote the count of iterations needed in
Algorithm 2. Similar to parameter Γl in Algorithm 1, Γd is also upper bounded by |V |. We
will later show empirically that Γl ≪ |V | and Γd ≪ |V | in practice.

Algorithm 2 O(Γd|P||E|) time algorithm to compute D(last2reach(v, i), v) for all v ∈ V

and i ∈ [1, |P|].

1 Initialize D(last2reach(v, i), v) to 0 if last2reach(v, i) = v and ∞ otherwise
2 Initialize Dprev(last2reach(v, i), v) to ∞
3 /*Arrays D and Dprev will hold the values of current and previous iteration respectively*/
4 while ∃v ∈ V, ∃i ∈ [1, |P|], D(last2reach(v, i), v) ̸= Dprev(last2reach(v, i), v) do
5 for i ∈ [1, |P|] do
6 for v ∈ V in the increasing order of rank(v) do
7 Dprev(last2reach(v, i), v)← D(last2reach(v, i), v)
8 if last2reach(v, i) exists and last2reach(v, i) ̸= v then
9 D(last2reach(v, i), v)←

minu:u∈N−(v),last2reach(u,i)=last2reach(v,i) D(last2reach(u, i), u) + |σ(u)|
10 end
11 end
12 end
13 end

Array dist2begin is trivially precomputed in O(|P||V |) time. D◦
P(v) is computed as

minu∈N+(v) |σ(v)|+ DP(u, v) based on its definition. DP(u, v) can be calculated by using
Equation 1 for any u, v ∈ V in O(|P|) time. Accordingly, computation of D◦

P(v) for all v ∈ V

is done in O(|P||E|) time. The following lemma summarises the worst-case time complexity
of all the preprocessing steps.

▶ Lemma 8. Preprocessing of graph G(V, E, σ) requires O((Γl + Γd + log |V |)|P||E|) time.

3.2 Co-linear Chaining Algorithm
We propose an iterative chaining algorithm to address Problem 6. The proposed algorithm
builds on top of the known algorithms for DAGs [5, 33]. Similar to [33], we maintain one
search tree Ti for each path Pi ∈ P . Given anchors M [1..N ], our algorithm will return array
C[1..N ] such that C[j] corresponds to the optimal score of a chain that ends at anchor M [j].

If there are no cycles in G, then one iteration of Algorithm 3 suffices to compute the
optimal chaining scores. For a DAG, a single iteration of Algorithm 3 works equivalently to
the known algorithm for DAGs in [5]. In this case, Algorithm 3 would essentially visit the
vertices of graph G in topological order while ensuring that C[j] is optimally solved after
M [j].v is visited. To solve the chaining problem on cyclic graphs, we design an iterative
solution where chaining scores C[1..N ] get closer to optimal values in each iteration. We will
use Γc to specify the total count of iterations.
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Algorithm 3 O(ΓcN |P| log N + N |P| log N |P|) time chaining algorithm.
Input: Array of weighted anchors M [1..N ], preprocessed G(V, E, σ)
Output: Array C[1..N ] such that C[j] equals score of an optimal chain that ends at anchor M [j]

1 Initialize search tree Ti, for all i ∈ [1, |P|] using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]) and Cprev[j]← 0, for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (v, pos, task, anchor, path) where v ∈ V ,

pos ∈ N, task ∈ {1, 2, 3}, anchor ∈ [1, N ] and path ∈ [1, |P|]*/
4 for j ← 1 to N do
5 for i← 1 to |P| do
6 if i ∈ paths(M [j].v) then
7 Z.push(M [j].v, M [j].x, 1, j, i)
8 Z.push(M [j].v, M [j].y, 2, j, i)
9 end

10 if last2reach(M [j].v, i) exists and last2reach(M [j].v, i) ̸= M [j].v then
11 v ← last2reach(M [j].v, i)
12 Z.push(v, |σ(v)|+ 1, 1, j, i)
13 end
14 if M [j].v is contained in a proper cycle in G and i ∈ paths(M [j].v) then
15 Z.push(v, |σ(M [j].v)|+ 1, 3, j, i)
16 end
17 end
18 end
19 while ∃j ∈ [1, N ], Cprev[j] ̸= C[j] do
20 Cprev[j]← C[j], for all j ∈ [1, N ]
21 for z ∈ Z in lexicographically ascending order based on the key (rank(v), pos, task) do
22 j ←− z.anchor, i←− z.path, v ←− z.v, wt←− weight(M [j])
23 if z.task = 1 then
24 gap←− (M [j].x + Dist2begin(v, i) + D(v, M [j].v) + M [j].c− 2)
25 C[j]←− max(C[j], wt + Ti.RMQ(0, M [j].c)− gap)
26 end
27 else if z.task = 2 then
28 Ti.update(M [j].d, C[j] + M [j].y + Dist2begin(v, i) + M [j].d)
29 end
30 else if z.task = 3 then
31 gap◦ ←− (M [j].x + Dist2begin(v, i) + D◦

P(v) + M [j].c− 2)
32 C[j]←− max(C[j], wt + Ti.RMQ(0, M [j].c)− gap◦)
33 Ti.update(M [j].d, C[j] + M [j].y + Dist2begin(v, i) + M [j].d)
34 end
35 end
36 Reset all values in search tree Ti to −∞, for all i ∈ [1, |P|]
37 end

An overview of Algorithm 3 is as follows. At the beginning of each iteration, all search
trees Tis are filled with keys {M [j].d | 1 ≤ j ≤ N} and values −∞. The values will be used
to specify the priorities of anchors based on their scores C[ ] and coordinates. Each iteration
of our algorithm processes v ∈ V in the increasing order of rank(v). While processing v,
Algorithm 3 performs three types of tasks:
1. The first type of task is to revise chaining scores {C[j] : M [j].v = v} corresponding to

the anchors that lie on vertex v. We also revise scores corresponding to those anchors
that are located on vertex u ̸= v such that v is the last vertex on a path ∈ P to reach u.
This is achieved by querying search trees Ti for all i ∈ paths(v). In all these tasks, we
use DP(v1, v2) to calculate distance from vertex v1 ∈ V to vertex v2 ∈ V .

2. Suppose score C[j] is revised by using the first category tasks. The second type of task is
to update the value of key M [j].d in search trees Ti for all i ∈ paths(v). The value gets
updated if the new value is greater than the previously stored value (Lemma 1).

3. The third type of task is to again update scores {C[j] : M [j].v = v} and search trees if v

is part of a proper cycle in G. Here we use D◦
P(v) to calculate the distance of vertex v to

itself while determining gap costs.

WABI 2023
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Lines 4–18 in Algorithm 3 build array Z that contains up to 4N |P| tuples corresponding
to all the above type of tasks. Array Z is sorted in O(N |P| log N |P|) time to ensure that
all tasks are executed in the proper order (Line 21). Next, we start the iterative procedure.
Lines 19–33 form a single iteration of the algorithm. These tasks lead to updates on score
array C and the search trees. The arithmetic operations in Lines 24, 25, 31, 32 enable
calculation of gap cost based on our definitions of gapG and gapQ in Section 2. Each
iteration requires O(N |P| log N) time because each task corresponds to either update or
RMQ operation on a search tree of size ≤ N . In Lemma 9, we prove that array C[1..N ]
converges to optimality in at most N iterations. We will also prove that Ω(N) iterations are
required for convergence in the worst case.

▶ Lemma 9. In Algorithm 3, co-linear chaining scores C[1..N ] converge to optimality in
≤ N iterations.

Proof. C[j] always specifies the score of a chain of size ≥ 1 that ends at anchor M [j]
throughout the execution of the algorithm. Let fi(j) denote the optimal chaining score
ending at anchor M [j] over all chains of size ≤ i. We will prove by induction that before ith

iteration begins, C[j] ≥ fi(j) for all j ∈ [1, N ]. It suffices to prove this statement because
the size of a chain must be ≤ N . Base case (i = 1) holds due to the initialization step in
Line 2. Next, assume that before xth iteration begins, C[j] ≥ fx(j) holds for all j ∈ [1, N ].
We will prove that the invariant holds for iteration x + 1.

Let Cx[j] and Cx+1[j] denote the intermediate values of C[j] at the start of xth and (x+1)th

iteration, respectively. From Lines 25 and 32, we know Cx[j] ≤ Cx+1[j]. If fx+1(j) = fx(j),
then Cx+1[j] ≥ Cx[j] ≥ fx(j) = fx+1(j). Next consider the other case when fx+1(j) >

fx(j). Suppose the optimal chain corresponding to fx+1(j) is M [β1], M [β2], . . . , M [βx], M [j]
where βi ∈ [1, N ] for all i ∈ [1, x]. Accordingly, fx+1(j) = weight(M [j]) + fx(βx) −
gapQ(M [βx], M [j])−gapG(M [βx], M [j]). Based on our induction hypothesis, C[βx] ≥ fx(βx)
at the start of the xth iteration. Each iteration of Algorithm 3 processes v ∈ V by increasing
the order of rank(v). To prove that Cx+1[j] ≥ fx+1(j), we have the following four cases to
consider:

Case 1: rank(M [βx].v) < rank(M [j].v). The algorithm processes vertex M [βx].v before
vertex M [j].v. When M [βx].v is processed during the xth iteration, the value of key
M [βx].d gets updated in search trees (Line 28). C[j] gets updated later. At the end of the
xth iteration, C[j] ≥ weight(M [j]) + fx(βx)− gapQ(M [βx], M [j])− gapG(M [βx], M [j]).
Therefore, Cx+1[j] ≥ fx+1(j).
Case 2: rank(M [βx].v) > rank(M [j].v). In this case, C[j] may not meet the desired
threshold after M [j].v is processed because M [βx].v is processed later than M [j].v. How-
ever, M [j].v must be reachable from M [βx].v using walks through {last2reach(M [j].v, i) :
i ∈ paths(M [βx].v)}. Therefore, C[j] gets updated again due to tuples created in Line
12. This will ensure that Cx+1[j] ≥ fx+1(j).
Case 3: rank(M [βx].v) = rank(M [j].v) and M [βx].y < M [j].x. rank(M [βx].v) =
rank(M [j].v) implies M [βx].v = M [j].v. The ordering of tuples based on pos in Line 21
ensures that the value of key M [βx].d gets updated in search trees, and C[j] gets updated
afterward.
Case 4: rank(M [βx].v) = rank(M [j].v) and M [βx].y ≥ M [j].x. The tuples created in
Line 15 ensure that C[j] is updated again after finishing the processing of vertex M [j].v.
In this case, the gap between anchors M [βx] and M [j] is computed by considering the
distance of vertex M [j].v to itself, i.e., D◦

P(M [j].v). ◀
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Accordingly, the time complexity of Algorithm 3 is O(ΓcN |P| log N + N |P| log N |P|). In
our experiments, we will highlight that parameters Γc and |P| are small in practice. The
space complexity of the algorithm is O(N |P|+ |V ||P|) due to construction of array Z, the
sorting operation on array Z, |P| search trees and the precomputed data structures. Next,
we show that O(N) upper bound on the number of iterations is tight.

▶ Lemma 10. The count of iterations required by Algorithm 3 is Ω(N) in the worst-case.

Proof. An example where Algorithm 3 requires Ω(N) iterations is shown in Figure 4.
The graph has two vertices forming a cycle. Assume that weight of all N input an-
chors is equal and sufficiently high to outweigh the gap cost between any pair of anchors.
As M [1] ≺ M [2] ≺ M [3] . . . ≺ M [N ], the sequence of anchors in the optimal chain is
(M [1], M [2], M [3], . . . , M [N − 1], M [N ]). After the first iteration of the algorithm, the size
of the highest scoring chain computed until then will be N

2 + 1. The size will grow slowly
by one in each subsequent iteration. A step-by-step dry run of the algorithm is left for the
journal version of this paper. ◀

A T C C T T A C G........................C C A T A C A T T  

M[1]

T A G T C C A T G........................G A C T A A C A T  

A T C T A G C T T T C C A C G A T G.....................................................................C C A G A C T A C T A A A T T C A T  

M[N]M[3]
M[N-1]

M[2] M[4]
M[N-3]

M[N-2]
M[N-4]

M[N-5]
M[6]

M[5]

Figure 4 A worst-case example for Algorithm 3 where it requires Ω(N) iterations to converge.

4 Implementation

We have implemented the proposed algorithm in C++ (https://github.com/at-cg/PanAligner).
We call our software as PanAligner. PanAligner is developed as an end-to-end long-read
aligner for cyclic pangenome graphs. We borrow open-source code from Minichain [5],
Minigraph [24], and GraphChainer [30] for other necessary components besides co-linear
chaining. While using PanAligner, a user needs to provide a graph (GFA format) and a set of
reads or contigs (fasta or fastq format) as input. We use the standard data structure to
store the pangenome graph while accounting for double stranded nature of DNA sequences.
For each vertex v ∈ V , we also add another vertex v̄ whose string label is the reverse
complement of string σ(v). For each edge u→ v ∈ E, we add the complementary edge v̄ → ū.
This enables read alignment irrespective of which strand the read was sequenced from.

For the benchmark, we built pangenome graphs by using Minigraph v0.20 [24]. Minigraph
augments large insertion, deletion, and inversion variants into the graph while incrementally
aligning each input assembly. Inversion variants can introduce cycles in the graph because
Minigraph augments them by linking the vertices from opposite strands. The graph contains
multiple weakly connected components because the components corresponding to different
chromosomes are never linked during graph construction. Similar to [5, 30], we consider each
weak component independently during both the preprocessing and co-linear chaining stages
to enable efficient multithreading and memory optimization.

WABI 2023
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We defined our problem formulation to produce an optimal chain, but we actually compute
multiple best chains, similar to [5, 23, 24]. This is because there can be multiple high-scoring
alignments of a read on the graph. PanAligner also outputs a mapping quality score between 0
to 60 to indicate the confidence score for each alignment [25]. We used seeding and extension
code from Minigraph [24]. Seeding is done by identifying minimizer matches [45] between
vertex labels of the graph and the read. The extension code produces the final base-to-base
alignment by joining the chained anchors [52]. We used code from GraphChainer [30] to
compute the minimum path cover of a DAG and range queries.

5 Experiments

Benchmark Datasets

We constructed four cyclic pangenome graphs by using subsets of publicly available 95
haplotype-resolved human genome assemblies [26, 37]. These graphs were generated using
Minigraph v0.20 [24]. We used CHM13 human genome assembly [37] as the starting sequence
during graph construction in all four graphs. We refer to these graphs as 10H, 40H, 80H,
and 95H, where the prefix integer represents the count of haplotypes in each graph. The
properties of these graphs are provided in Table 1.

Table 1 Properties of four cyclic pangenome graphs that were used for evaluation.

Graph |V| |E| No. of weak
components

No. of structural
variants

N50 length of
vertex labels (kb)

10H 283,296 406,292 30 61,523 225
40H 679,846 978,122 28 149,163 127
80H 1,106,286 1,594,980 26 244,372 85
95H 1,224,853 1,765,222 26 270,888 79

Evaluation Methodology

We simulated long reads using PBSIM2 v2.0.1 [39] from CHM13 assembly with N50 length
10 kb, 0.5× sequencing coverage and 5% error-rate to approximately mimic the properties of
long-reads. We labeled the IDs of the simulated reads with their true interval coordinates
in the CHM13 assembly for correctness evaluation. To confirm the correctness of a read
alignment, we used similar criteria from prior studies [5, 23, 24]. We require that the reported
walk corresponding to a correct alignment should only use the vertices corresponding to
the CHM13 assembly in the graph, and it should overlap with the true walk. We used
paftools [23] to automate this evaluation. By default, it requires the overlapping portion
to be at least 10% of the union of the true and the reported walk length. We executed all
experiments on a computer with AMD EPYC 7763 64-core processor and 512 GB RAM. We
ran each aligner using 32 threads to leverage the multi-threading capabilities of the tested
aligners. All aligners process reads in parallel. We used the /usr/bin/time -v command to
measure wall clock time and peak memory usage.

Size of Path Cover and Count of Iterations

Finding a suitable path cover P of the input graph such that |P| ≪ |V | is a crucial step in
our proposed framework because the scalability of our algorithms depends on this parameter.
We discussed a heuristic to compute path cover in Section 3.1 because determining minimum
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path cover in general graphs is NP -hard. Table 2 shows the sizes of path covers computed
by our heuristic in all four graphs. Recall that our algorithms process the weakly connected
components of a graph independently. In each graph, we indicate the size of the path cover
as a range because path covers vary per component. The results show that our heuristic is
effective in finding a small path cover (in the number of paths).

Table 2 All four graphs have multiple weakly connected components. Therefore, the size of the
identified path cover of each graph is presented as a range. The other columns show the statistics for
the number of anchors and the number of iterations used by our iterative algorithms (Algorithms 1,
2, 3). The statistics were gathered while aligning simulated long reads to cyclic pangenome graphs.

Graph
Size of Number of Number of iterations

path cover anchors Array last2reach Array D Chaining
(min-max) Mean Max Mean Max Mean Max Mean Max

10H 1-20 10,900 309,591 2.0 4 2.0 5 2.3 77
40H 1-36 10,850 309,603 2.0 4 2.0 5 2.4 72
80H 1-49 10,804 309,364 3.0 4 3.0 5 2.4 61
95H 1-59 10,798 309,367 3.0 4 3.0 5 2.4 64

The number of anchors N that were provided as input to the co-linear chaining algorithm
varies per read. We report the mean and maximum value in Table 2. Observe that N does
not change much with increasing haplotype count. Next, we evaluate the count of iterations
Γl, Γd used by our graph preprocessing algorithms (Algorithms 1–2) and also report them
as a range for each graph. These algorithms compute last2reach and D arrays. Observe
that the iteration count is significantly smaller in practice than the proven upper limit of |V |
(Lemma 7). This is because the worst-case situation is not observed in practice. Accordingly,
there is minimal time overhead during the preprocessing phase.

The count of iterations Γc required by our chaining algorithm (Algorithm 3) varies per
component as well as per read. We collect the iteration count statistics as follows. For a
single read, we define the iteration count as the maximum number of iterations used over
all components. Based on this definition, we report the average and the maximum count
over all reads in Table 2. Observe that the average count is < 2.5 using all four graphs. The
maximum count is < 100. These numbers are again significantly better compared to the
upper bound from Lemma 9.

Alignment of Simulated Reads to Cyclic Graphs

We assessed the performance of PanAligner against two sequence-to-graph aligners, Minigraph
v2.20 [24] and GraphAligner v1.0.17b [42], that can handle cycles. Unlike PanAligner,
Minigraph and GraphAligner use heuristics to join anchors. Minichain [5] and Graph-
Chainer [30] were excluded from this comparison because they do not support cyclic graphs.

We highlight the accuracy, runtime, and memory usage of different aligners using graphs
10H and 95H in Tables 3 and 4, respectively. Observe that PanAligner outperformed
Minigraph and GraphAligner in terms of accuracy, i.e., the fraction of correctly aligned
reads. This advantage is even more apparent if low-confidence alignments with mapping
quality < 10 are ignored. We show the comparison plots in Figure 5. Both PanAligner and
Minigraph left a small fraction of reads unaligned. This may be because (i) both methods
drop high-frequency minimizer matches, and (ii) they do not consider low-scoring chains for
the extension stage. In contrast, GraphAligner achieved higher recall by aligning all reads,
but this came at the expense of lower accuracy.

WABI 2023
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Table 3 A comparison of the performance of long-read aligners using the 10H graph. MQ stands
for mapping quality.

PanAligner Minigraph GraphAligner
Indexing time (sec) 96 57 238
Alignment time (sec) 2924 46 4928
Memory usage (GB) 23.14 23.19 24.68
Unaligned reads 1.18% 2.17% 0%
Incorrectly Aligned reads 0.79% 1.19% 1.47%
Unaligned reads (MQ≥10) 3.51% 5.85% 0.78%
Incorrectly Aligned reads (MQ≥10) 0.20% 0.32% 0.91%

Table 4 A comparison of the performance of long-read aligners using the 95H graph. MQ stands
for mapping quality.

PanAligner Minigraph GraphAligner
Indexing time (sec) 83 61 272
Alignment time (sec) 9276 58 5170
Memory usage (GB) 43.6 24.68 26.1
Unaligned reads 1.60% 2.24% 0%
Incorrectly Aligned reads 1.28% 1.93% 2.98%
Unaligned reads (MQ≥10) 4.20% 6.21% 0.84%
Incorrectly Aligned reads (MQ≥10) 0.57% 0.85% 2.33%

Table 2 shows that the size of the path cover computed by our heuristic increases by
roughly a factor of three from 10H to 95H. We can see how this parameter proportion-
ally affects PanAligner’s runtime in Tables 3 and 4. PanAligner’s runtime is significantly
higher than Minigraph for both 10H and 95H graphs because it uses an iterative algorithm.
Runtimes of PanAligner and GraphAligner are in the same order of magnitude. PanAligner’s
computational needs are within practical limits, thus making it an effective method for
accurately aligning long reads or contigs to cyclic pangenome graphs. We observe a consistent
drop in alignment accuracy of all three aligners with increasing haplotype count (Figure 5).
This is likely because the number of combinatorial paths to which a read can align grows
exponentially with respect to the haplotype count.

(a) 10H. (b) 40H. (c) 95H.

Figure 5 The plots show the fraction of aligned reads and the accuracy obtained by using all
the aligners on graphs 10H, 40H, and 95H. These plots were generated by varying mapping quality
cutoffs from 0 to 60. X-axis in these plots uses a logarithmic scale to indicate the percentage of
incorrectly aligned reads.
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Alignment of Simulated Reads to Acyclic Graphs

We also tested PanAligner for acyclic pangenome graphs. We followed the same procedure
as [5] to generate a DAG from 95 haplotype-phased assemblies and refer to this graph
as 95H-DAG. This graph was generated by disabling inversion variants during graph
construction in Minigraph [24]. 95H-DAG has 1.2M vertices and 1.8M edges. We also include
Minichain v1.0 [5] and GraphChainer v1.0.2 [30] in this comparison. GraphChainer uses
a co-linear chaining algorithm for DAGs without penalizing gaps. For DAG inputs, the
problem formulation in PanAligner becomes equivalent to the one used in Minichain [5]. A
single iteration of our algorithms suffices for DAGs. Therefore, we simply check if the input
graph is a DAG at the preprocessing stage, and run a single iteration of Algorithms 1–3.
PanAligner achieves similar performance as Minichain in terms of speed and accuracy for
DAGs (Table 5). It compares favorably to other methods in terms of accuracy.

Table 5 A comparison of the performance of long-read aligners using the 95H-DAG graph. MQ
stands for mapping quality.

Pan- Minichain Mini- Graph- Graph-
Aligner graph Aligner Chainer

Indexing time(sec) 78 77 62 276 575
Alignment time(sec) 2406 2515 50 5136 23710
Memory usage (GB) 30.04 25.61 24.79 26.12 185.83
Unaligned reads 1.62% 1.62% 2.23% 0% 0%
Incorrectly Aligned reads 1.28% 1.29% 1.92% 3.06% 4.93%
Unaligned reads (MQ≥10) 4.75% 4.75% 6.26% 0.85% 0%
Incorrectly Aligned reads (MQ≥10) 0.53% 0.54% 0.84% 2.41% 4.93%

6 Discussion

Co-linear chaining is a fundamental technique for scalable sequence alignment. Several classes
of structural variants, such as duplications, tandem repeat polymorphism, and inversions,
are best represented as cycles in pangenome graphs [41, 26]. Existing alignment software
designed for cyclic graphs are based on heuristics to join anchors [24, 42]. We proposed
the first practical problem formulation and an efficient algorithm for co-linear chaining on
pangenome graphs with cycles. We gave a rigorous analysis of the algorithm’s time complexity.
The proposed algorithm serves as a useful generalization of the previously known ideas for
DAGs [5, 29, 30, 33]. We implemented the proposed algorithm as an open-source software
PanAligner. We demonstrated that PanAligner scales to large pangenome graphs built by
using haplotype-phased human genome assemblies. It offers superior alignment accuracy
compared to existing methods.

In our formulation, we did not allow anchors to span two or more vertices in a graph
for simplicity of notations, but the proposed ideas can be generalized. PanAligner software
borrows seeding logic from Minigraph [24], which also restricts anchors within a single vertex.
This simplification is appropriate if the graph only includes structural variants (> 50 bp).
The current version of PanAligner software may not be suitable for graphs which include
substitution and indel variants.

Future work will be directed in the following directions. First, we will test the performance
of PanAligner on pangenome graphs that are constructed by using alternative methods,
e.g., [16, 19, 26]. Second, we will explore formulations for haplotype-constrained co-linear
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chaining to control the exponential growth of combinatorial search space with the increasing
number of haplotypes [34, 48]. Third, we will generalize the proposed techniques for aligning
reads to long-read genome assembly graphs which also contain cycles. It will be interesting
to understand whether the small width assumption is appropriate for assembly graphs.
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