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Abstract

Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference
genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high
alignment score and read mappers were viewed as heuristic solutions to this well-defined problem.
For sketch-based mappers, however, there has not been a problem formulation to capture what
problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based
method that can find all possible mapping positions for a read above a certain score threshold.

In this paper, we formulate the problem of read mapping at the level of sequence sketches. We
give an exact dynamic programming algorithm that finds all hits above a given similarity threshold.
It runs in O(|t| + |p| + ℓ2) time and Θ(ℓ2) space, where |t| is the number of k-mers inside the sketch
of the reference, |p| is the number of k-mers inside the read’s sketch and ℓ is the number of times
that k-mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s
performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic
regions make it desirable to find all good mapping positions. For an equivalent level of precision as
minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.
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1 Introduction

Read mapping continues to be one of the most fundamental problems in bioinformatics.
Given a read, the broad goal is to find the location(s) in the reference genome that have a
“similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment
score and read mappers were viewed as heuristic solutions to this well-defined problem.
However, the last few years has seen the community embrace sketch-based mapping methods,
best exemplified by minimap2 [11] (see [16] for a survey). These read mappers work not
on the original sequences themselves but on their sketches, e.g. the minimizer sketch. As a
result, it is no longer clear which exact problem they are trying to solve, as the definition
using an alignment score is no longer directly relevant. To the best of our knowledge, there
has not been a problem formulation to capture what problem an exact sketch-based mapping
algorithm should solve.

In this work, we provide a problem formulation (Section 3) and an exact algorithm to
find all hits above a given score (Section 6). More formally, we consider the problem of
taking a sketch t of a text T and a sketch p of a query P and identifying all sub-sequences
of t that match p with a score above some threshold. A score function could for example
be the weighted Jaccard index, though we explore several others in this paper (Section 4).
We provide both a simulation-based and an analytical-based method for setting the score
threshold (Section 5). Our algorithm runs in time O(|t|+ |p|+ ℓ2) and space Θ(ℓ2), where ℓ

is the number of times that k-mers from p occur in t.
Other sketch-based mappers are heuristic: they typically find matching elements between

the reference and the read sketches (i.e. anchors) and extend these into maps using chain-
ing [16]. Our algorithm is more resource intensive than these heuristics, as is typical for exact
algorithms. However, a problem formulation and an exact algorithm gives several long-term
benefits. First, the exact algorithm could be used in place of a greedy heuristic when the
input size is not too large. Second, the formulation can spur development of exact algorithms
that are optimized for speed and could thus become competitive with heuristics. Third, the
formulation could be used to find the most effective score functions, which can then guide the
design of better heuristics. Finally, our exact algorithm can return all hits with a score above
a threshold, rather than just the best mapping(s). This is important for tasks such as the
detection of copy number variation [12] or detecting variation in multi-copy gene families [1].

We evaluate our algorithm (called eskemap), using simulated long reads from the T2T
human Y chromosome (Section 7). For the same level of precision, the recall of eskemap is
0.88, compared to 0.76 of minimap2. This illustrates the power of eskemap as a method
to recover more of the correct hits than a heuristic method. We also compare against
Winnowmap2 [10] and edlib [18], which give lower recall but higher precision than eskemap.

2 Preliminaries

Sequences. Let t be a sequence of elements (e.g. k-mers) that may contain duplicates.
We let |t| denote the length of the sequence, and we let t[i] refer to the i-th element in t,
with t[0] being the first element. For 0 ≤ i ≤ j < |t|, let t[i, j] represent the subsequence
(t[i], t[i + 1], . . . , t[j]). The set of elements in t is denoted by t, e.g. if t = (ACG, TTT, ACG) then
t = {ACG, TTT}. We let occ(x, t) represent the number of occurrences of an element x in t,
e.g. occ(ACG, t) = 2.
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Sketch. Let T be a string and let t be the sequence of k-mers appearing in T . Note that t is
a sequence of DNA sequences. For example, if T = ACGAC and k = 2, then t = (AC, CG, GA, AC).
For the purposes of this paper, a sketch of T is simply a subsequence of t, e.g. (AC, GA). This
type of sketch could for example be a minimizer sketch [15, 17], a syncmer sketch [6], or a
FracMinHash sketch [9, 7].

Scoring Scheme. A scoring scheme (sc, thr) is a pair of functions: the score function
and the threshold function. The score function sc is a function that takes as input a pair
of non-empty sketches and outputs a real number, intuitively representing the degree of
similarity. We assume it is symmetric, i.e. sc(p, s) = sc(s, p) for all sketches p and s. If the
score function has a parameter, then we write sc(s, p; θ), where θ is a vector of parameter
values. The threshold function thr takes the length of a sketch and returns a score cutoff
threshold, i.e. scores below this threshold are not considered similar. Note that the scoring
scheme is not allowed to depend on the underlying nucleotide sequences besides what is
captured in the sketch.

Miscellenous. We use Uk to denote the universe of all k-mers. Given two sequences p

and s, the weighted Jaccard is defined as
∑

x∈Uk
min(occ(x,p),occ(x,s))∑

x∈Uk
max(occ(x,p),occ(x,s))

. It is 0 when s and p

do not share any elements, 1 when s is a permutation of p, and strictly between 0 and 1
otherwise. The weighted Jaccard is a natural extension of Jaccard similarity that accounts
for multi-occurring elements.

3 Problem Definition

In this section, we first motivate and then define the Sketch Read Mapping Problem. Fix a
scoring scheme (sc, thr). Let p and t be two sketches, which we refer to as the pattern and the
text, respectively. Define a candidate mapping as a subinterval t[a, b] of t. A naive problem
definition would ask to return all candidate mappings with sc(p, t[a, b]) ≥ thr(|p|).1 How-
ever, a lower-scoring candidate mapping could contain a higher-scoring candidate mapping
as a subinterval, with both scores above the threshold. This may arise due to a large
candidate mapping containing a more conserved small candidate mapping, in which case both
candidate mappings are of interest. But it may also arise spuriously, as a candidate mapping
with a score sufficiently higher than thr(|p|) can be extended with non-shared k-mers that
decrease the score but not below the threshold.

To eliminate most of these spurious cases, we say that a candidate mapping t[a, b] is
reasonable if and only if for x ∈ {t[a], t[b]}, occ(x, t[a, b]) ≤ occ(x, p). In other words, a
reasonable candidate mapping must start and end with a k-mer that has a match in the
pattern. We also naturally do not wish to report a candidate mapping that is a subinterval
of a longer candidate mapping with a larger score. Formally, we call a candidate mapping
t[a, b] maximal if there does not exist a candidate mapping t[a′, b′], with a′ ≤ a ≤ b ≤ b′ and
sc(t[a′, b′], p) > sc(t[a, b], p). We can now formally define t[a, b] to be a final mapping if it is
both maximal and reasonable and sc(t[a, b], p) ≥ thr(|p|). The Sketch Read Mapping Problem
is then to report all final mappings. We now restate the problem in a succinct manner:

1 Notice that in this framing, the threshold is not a single parameter but can vary depending on the read
length. This gives flexibility to the scoring function, since the scores of candidate mappings of reads of
different lengths do not need to be comparable to each other. Moreover, computing the threshold value
is not a challenge since it needs to be computed just once for each read.

WABI 2023
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Figure 1 An example of the Sketch Read Mapping Problem. We show all candidate mappings
t[a, b] for a given pattern p and a text t. Each candidate mapping is represented by its score
calculated using scℓ(p, t[a, b]; 1) (see Section 4). Reasonable candidate mappings are shown in black
(rather than gray) and final mappings are further bolded.

▶ Definition 1 (Sketch Read Mapping Problem). Given a pattern sketch p, a text sketch t, a
score function sc, and a threshold function thr, the Sketch Read Mapping Problem is to find
all 0 ≤ a ≤ b < |t| such that

sc(p, t[a, b]) ≥ thr(|p|),
occ(t[a], t[a, b]) ≤ occ(t[a], p),
occ(t[b], t[a, b]) ≤ occ(t[b], p),
there does not exist a′ ≤ a ≤ b ≤ b′ such that sc(t[a′, b′], p) > sc(t[a, b], p), i.e. t[a, b] is
maximal.

4 Score Function

In this section, we explore the design space of score functions and fix two score functions for
the rest of the paper. Let p be the sketch of the pattern and let s be a continuous subsequence
of the sketch of the text t, i.e. s = t[a, b] for some a ≤ b. For example if p = (ACT, GTA, TAC)
and t = (AAC, ACT, CCT, GTA), we could have s = t[1, 3] = (ACT, CCT, GTA). In the context
of the Sketch Read Mapping Problem, p is fixed and s varies. Therefore, while the score
function is symmetric, the threshold function sets the score threshold as a function of |p|.
Since p is fixed, the threshold is a single number in the context of a single problem instance.

In the following, we exclusively consider score functions that calculate the similarity of s

and p by ignoring the order of k-mers inside the sketches. Taking k-mer order into account
would likely make it more complex to compute scores, while not necessarily giving better
results on real data. However, score functions that do take order into account are possible
and could provide better accuracy in some cases.

A good score function should reflect the number of k-mers shared between s and p. For a
given k-mer x, we define

xmin := min(occ(x, p), occ(x, s))
xmax := max(occ(x, p), occ(x, s))
xdiff := xmax − xmin
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Intuitively, x occurs a certain number of times in p and a certain number of times in s; we
let xmin be the smaller of these two numbers and xmax be the larger of these two numbers.
Similarly, xdiff is the absolute difference between how often x occurs in p and s. We say that
the number of shared occurrences is 2xmin and the number of non-shared occurrences is xdiff.
These quantities are governed by the relationships

|s|+ |p| =
∑

x∈Uk

occ(x, p) + occ(x, s) =
∑

x∈Uk

xmin + xmax =
∑

x∈Uk

2xmin + xdiff. (1)

A good score function should be (1) increasing with respect to the number of shared
occurences and (2) decreasing with respect to the number of non-shared occurences. There
are many candidate score functions within this space. The first score function we consider is
the weighted Jaccard. Formally,

scj(s, p) :=
∑

x∈Uk
xmin∑

x∈Uk
xmax

=
∑

x xmin

|s|+ |p| −
∑

x xmin
=

∑
x xmin∑

x(xmin + xdiff) (2)

The above formula includes first the definition but then two algebraically equivalent versions
of it, derived using Eq. 1. The weighted Jaccard has the two desired properties of a score
function and is a well-known similarity score. However, it has two limitations. First, the use of
a ratio makes it challenging to analyze probabilistically, as is the case with the non-weighted
Jaccard [3]. Second, it does not offer a tuning parameter which would control the relative
benefit of a shared occurence to the cost of a non-shared occurence. We therefore consider
another score function, parameterized by a real-valued tuning parameter w > 0:

scℓ(s, p; w) :=
∑

x∈Uk

xmin − wxdiff.

It is sometimes more useful to use an equivalent formulation, obtained using Eq. 1:

scℓ(s, s′; w) =
∑

x∈Uk

(1 + 2w)xmin − w(|s|+ |s′|). (3)

As with the weighted Jaccard, scℓ has the two desired properties of a score function. But,
unlike the weighted Jaccard, it is linear and contains a tuning parameter w.

To understand how score functions relate to each other, we introduce the notion of
domination and equivalence. Informally, a score function sc1 dominates another score
function sc2 when sc1 can always recover the separation between good and bad scores that
sc2 can. In this case, the solution obtained using sc2 can always be obtained by using
sc1 instead. Formally, let sc1 and sc2 be two score functions, parameterized by θ1 and
θ2, respectively. We say that sc1 dominates sc2 if and only if for any parameterization
θ2, threshold function thr2, and pattern sketch p there exist a θ1 and thr1 such that, for
all sequences s, we have that sc2(s, p; θ2) ≥ thr2(|p|) if and only if sc1(s, p; θ1) ≥ thr1(|p|).
Furthermore, sc1 dominates sc2 strictly if and only if the opposite does not hold, i.e. sc2
does not dominate sc1. Otherwise, sc1 and sc2 are said to be equivalent, i.e. if and only if
each one dominates the other.

We can now precisely state the relationship between scℓ and scj, i.e. that scℓ strictly
dominates scj. In other words, any solution to the Sketch Read Mapping Problem that is
obtained by scj can also be obtained by scℓ, but not vice-versa. Formally,

▶ Theorem 2. scℓ stricly dominates the weighted Jaccard score function scj.

WABI 2023
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Proof. We start by proving that scℓ dominates scj. Let p be a pattern sketch and let thrj

be the threshold function associated with scj. We will use the shorthand t = thrj(|p|). First,
consider the case that t < 1. Let w = t

1−t and let thrℓ evaluate to zero for all inputs. Let s

be any sketch. The following is a series of equivalent transformations that proves domination.

scj(s, p) ≥ t∑
x xmin∑

x xmin + xdiff
≥ t∑

x

xmin ≥
∑

x

txmin + txdiff∑
x

(1− t)xmin − txdiff ≥ 0

∑
x

xmin −
t

1− t
xdiff ≥ 0

scℓ(s, p; w) ≥ thrℓ(|p|)

Next, consider the case t > 1. In this case, for all s, scj(s, p) < t, since the weighted Jaccard
can never exceed one. Observe that scℓ(s, p; w) ≤ |p| for any non-negative w. Therefore, we
can set thrℓ(|p|) = |p|+ 1 and let w be any non-negative number, guaranteeing that for all s,
scℓ(s, p; w) < thrℓ(|p|).

Finally consider the case that t = 1. Then, scj(s, p) ≥ t if and only if s and p are
permutations of each other, i.e. xdiff = 0 for all x. Setting thrℓ(|p|) = |p| and letting w be
any strictly positive number guarantees that scℓ(s, p; w) ≥ thrℓ(|p|) if and only if s and p are
permutations of each other.

To prove that scℓ is not dominated by scj, we fix w = 1 (though any value could be
used) and give a counterexample family to show that scj cannot recover the separation
that scℓ can. Pick an integer i ≥ 1 to control the size of the counterexample. Let p be
a pattern sketch of length 4i consisting of arbitrary k-mers. We construct two sketches,
s1 and s2. The sequence s1 is an arbitrary subsequence of p of length i. Observe that∑

x∈p∪s1
xmin =

∑
x occ(x, s1) = i. The sequence s2 is p appended with arbitrary k-mers to

get a length 12i. Observe that
∑

x∈p∪s2
xmin =

∑
x occ(x, p) = 4i. Using Eq. 3 for scℓ and

Eq. 2 for scj,

scℓ(s1, p) = −2i

scℓ(s2, p) = −4i

scj(s1, p) = 1/4
scj(s2, p) = 1/3

Under scℓ, s1 has a higher score, while under scj, s2 has a higher score. If thrℓ is set to accept
s1 but not s2 (e.g. thrℓ = −3i), then it is impossible to set thrj to achieve the same effect. In
other words, since scj(s2) > scj(s1), any threshold that accepts s1 must also accept s2. ◀

Next, we show that many other natural score functions are equivalent to scℓ. Consider
the following score functions:
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scA(s, p; a1) :=
∑

x∈Uk

(a1xmin − xdiff) with a1 > 0

scB(s, p; b1, b2) :=
∑

x∈Uk

(b1xmin − b2xdiff) with b1 > 0 and b2 > 0

scC(s, p; c1, c2) :=
∑

x∈Uk

(c1xmin − c2xmax) with c1 > c2 > 0

scD(s, p; d1, d2) :=
∑

x∈Uk

(d1xmin)− d2|s| with d1 > 2d2 and d2 > 0

The conditions on the parameters are there to enforce the two desired properties of a
score function. Each of these score functions is natural in its own way, e.g. scA is similar
to scℓ but places the weight on xmin rather than on xdiff. One could also have two separate
weights, as in the score scB. One could then replace xdiff with xmax, as in scC, which is
the straightforward reformulation of the weighted Jaccard score as a difference instead of
a ratio. Or one could replace xdiff with the length of s, as in scD. The following theorem
shows that the versions turn out to be equivalent to scℓ and to each other. The proof is a
straightforward algebraic manipulation and is left for the appendix.

▶ Theorem 3. The score functions scℓ, scA, scB, scC, and scD are pairwise equivalent.

5 Choosing a Threshold

In this section, we propose two ways to set the score threshold. The first is analytical
(Section 5.1) and the second is with simulations (Section 5.2). The analytical approach gives
a closed form formula for the expected value of the score under a mutation model. However,
it only applies to the FracMinHash sketch, assumes a read has little internal homology, and
does not give a confidence interval. The simulation approach can apply to any sketch but
does not offer any analytical insight into the behavior of the score. The choice of approach
ultimately depends on the use case.

We first need to define a generative mutation model to capture both the sequencing and
evolutionary divergence process:

▶ Definition 4 (Mutation model). Let S be a circular string2 with n characters. The mutation
model produces a new string S′ by first setting S′ = S and then taking the following steps:
1. For every 0 ≤ i < n, draw an action ai ∈ {sub, del, unchanged} with probability of psub

for sub, pdel for del, and 1− psub − pdel for unchanged. Also, draw an insertion length bi

from a geometric distribution with mean pins
3.

2. Let track be a function mapping from a position in S to its corresponding position in S′.
Initially, track(i) = i, but as we delete and add characters to S′, we assume that track is
updated to keep track of the position of S[i] in S′.

3. For every i such that ai = sub, replace S′[i] with one of the three nucleotides not equal to
S[i], chosen uniformly at random.

4. For every 0 ≤ i < n, insert bi nucleotides (chosen uniformaly at random) before
S′[track(i)].

5. For every i such that ai = del, remove S′[track(i)] from S′.

2 We assume the string is circular to avoid edge cases in the analysis but, for long enough strings, this
assumption is unlikely to effect the accuracy of the results.

3 Here, a geometric distribution is the number of failures before the first success of a Bernoulli trial. This
geometric distribution has parameter 1

pins+1 .
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5.1 Analytical Analysis
To derive an expected score under the mutation model, we need to specify a sketch. We will
use the FracMinHash sketch [9], due its simpliticy of analysis [7].

▶ Definition 5 (FracMinHash). Let h be a hash function that maps a k-mer to a real number
between 0 and 1, inclusive. Let 0 < q ≤ 1 be a real-valued number called the sampling rate.
Let S be a string. Then the FracMinHash sketch of S, denoted by s, is the sequence of all
k-mers x of S, ordered as they appear in S, such that h(x) ≤ q.

Consider an example with k = 2, S = CGGACGGT, and the only k-mers hashing to a value ≤ q

being CG and GG. Then, s = (CG, GG, CG, GG).
We make an assumption, which we refer to as the mutation-distinctness assumption,

that the mutations on S never create an k-mer that is originally in S. Based on previous
work [4], we find this necessary to make the analysis mathematically tractable (for us). The
results under this assumption become increasingly inaccurate as the read sequence contains
increasingly more internal similarity. For example, reads coming from centromeres might
violate this assumption. In such cases, it may be better to choose a threshold using the
technique in Section 5.2.

We can now derive the expected value of the score under the mutation model and
FracMinHash.

▶ Theorem 6. Let S be a circular string and let S′ be generated from S under the mutation
model with the mutation-distinctness assumption and with parameters psub, pdel, and pins.
Let s and s′ be the FracMinHash sketches of S and S′, respectively, with sampling rate q.
Then, for all real-valued tuning parameters w > 0,

E[scℓ(s, s′; w)] = |s|q (α + w(2α− 2 + pdel − pins)) ,

where α = (1−pdel−psub)k

(pins+1)k−1 .

Proof. Observe that under mutation-distinctness assumption, the number of occurrences
of a k-mer that is in s can only decrease after mutation, and a k-mer that is newly created
after mutation has an xmin of 0. Therefore, applying Eq. 3,

scℓ(s, s′; w) =
∑
x∈s

(1 + 2w)(occ(x, s′)− w(|s|+ |s′|)

(Recall that s is the set of all k-mers in s.) We will first compute the score conditioned on
the hash function of the sketch being fixed. Note that when h is fixed, then the sketch s

becomes fixed and s′ becomes only a function of S′. By linearity of expectation,

E[scℓ(s, s′; w) | h] =
∑
x∈s

(1 + 2w)E[occ(x, s′) | h]− w(|s|+ E[|s′| | h]) (4)

It remains to compute E[|s′| | h] and E[occ(x, s′) | h]. Observe that the number of
elements in s′ is the number of elements in s minus the number of deletions plus the sum of
all the insertion lengths. By linearity of expectation,

E[|s′| | h] = |s| − pdel|s|+ pins|s| = |s|(1− pdel + pins)

Next, consider a k-mer x ∈ s and E[occ(x, s′)]. Recall by our mutation model that no
new occurrenes of x are introduced during the mutation process. So occ(x, s′) is equal to
the number of occurrences of x in S that remain unaffected by mutations. Consider an
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occurrence of x in s. The probability that it remains is the probability that all actions on
the k nucleotides of x were “unchanged” and the length of all insertions in-between the
nucleotides was 0. Therefore,

E[occ(x, s′) | h] = occ(x, s)(1− pdel − psub)k

(
1

pins + 1

)k−1
= αocc(x, s)

Putting it all together,

E[scℓ(s, s′; w) | h] =
∑
x∈s

(1 + 2w)E[occ(x, s′) | h]− w(|s|+ E[|s′| | h])

= α(1 + 2w)
∑
x∈s

occ(x, s)− w(|s|+ |s|(1− pdel + pins))

= α(1 + 2w)|s| − w(|s|+ |s|(1− pdel + pins))
= |s|(α(1 + 2w)− w(2− pdel + pins)))
= |s|(α + w(2α− 2 + pdel − pins))

To add the sketching step, we know from [7] that the expected size of a sketch is the size
of the original text times q. Then,

E[scℓ(s, s′; w)] = E[E[scℓ(s, s′; w) | h]]
= E[|s|(α + w(2α− 2 + pdel − pins))]
= E[|s|](α + w(2α− 2 + pdel − pins))
= |s|q(α + w(2α− 2 + pdel − pins)) ◀

5.2 Simulation-Based Analysis

First, we choose the parameters of the mutation model according to the target sequence
divergence between the reads and the reference caused by sequencing errors, but also due
to the evolutionary distance between the reference and the organism sequenced. If one is
also interested in mapping reads to homologous regions within the reference that are related
more distantly, e.g. if there exist multiple copies of a gene, the mutation parameters can be
increased further.

To generate a threshold for a given read length, we generate sequence pairs (S, S′), where
S is a uniformly random DNA sequence of the given length and S′ is mutated from S

under the above model. We then calculate the sketch of S and S′, which we call s and s′,
respectively. The sketch can for example be a minimizer sketch, a syncmer sketch, or a
FracMinHash sketch. We can then use the desired score function to calculate a score for each
pair (s, s′). For a sufficiently large number of pairs, their scores will form an estimate of the
underlying score distribution for sequences that evolved according to the used model. It is
then possible to choose a threshold such that the desired percentage of mappings would be
reported by our algorithm. For example, one could choose a threshold to cover a one sided
95% confidence interval of the score.

In order to be able to adjust thresholds according to the variable length of reads produced
from a sequencing run, the whole process may be repeated several times for different lengths
of S. Thresholds can then be interpolated dynamically for dataset reads whose lengths were
not part of the simulation.
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6 Algorithm for the Sketch Read Mapping Problem

In this section, we describe a dynamic programming algorithm for the Sketch Read Mapping
Problem under both the weighted Jaccard and the linear scores (scj and scℓ, respectively).
Let t be the sketch of the text, let p be the sketch of the pattern, let L be the sequence
of positions in t that have a k-mer that is in p, in increasing order, and let ℓ = |L|. Our
algorithm takes advantage of the fact that p is typically much shorter than t and hence the
number of elements of t that are shared with p is much smaller than |t| (i.e. ℓ ≪ |t|). In
particular, it suffices to consider only candidate mappings that begin and end in positions
listed in L, since by definition, if t[a, b] is a reasonable candidate mapping, then t[a] ∈ p and
t[b] ∈ p.

We present our algorithm as two parts. In the first part (Section 6.1), we compute a
matrix S with ℓ rows and ℓ columns so that S(i, j) =

∑
x min(occ(x, p), occ(x, t[L[i], L[j]]).

S is only defined for j ≥ i. We also mark each cell of S as being reasonable or not. In the
second part (Section 6.2), we scan through S and output the candidate mapping t[i, j] if and
only if it is maximal and has a score above the threshold.

The reason that S(i, j) is not defined to store the score of the candidate mapping
t[L[i], L[j]] is that the score can be computed from S(i, j) in constant time, for both
scj and scℓ. To see this, let xmin := min(occ(x, p), occ(x, t[L[i], L[j]]). Recall that Equa-
tion (2) allows us to express scj(t[i, j], p) as a function of

∑
xmin, |p|, and the length of the

candidate mapping, i.e. j − i + 1. Similarly, we can apply Equation (1) to express scℓ as

scℓ(t[i, j], p; w) :=
∑

x

(xmin − wxdiff) =
(∑

x

xmin

)
− w(|s|+ |p| −

∑
x

2xmin)

= (1 + 2w)
∑

x

xmin − w(j − i + 1 + |p|)

Thus, once
∑

x xmin is computed, either of the scores can be computed trivially.

6.1 Computing S

We compute S using dynamic programming. For the base case of the diagonal, i.e. for
0 ≤ i < ℓ, we can set S(i, i) = 1. Here, since we know that L[i] ∈ p, we get that the k-mer
t[L[i]] occurs at least once in p and exactly once in t[L[i], L[i]]. For the general case, i.e. for
0 ≤ i < j < ℓ, we can define S using a recursive formula:

S(i, j) = S(i, j − 1) +
{

1 if occ(t[L[j]], t[L[i], L[j − 1]]) < occ(t[L[j]], p)
0 otherwise.

(5)

To see the correctness of this formula, observe that all the elements of t[L[j−1]+1, L[j]−1]
are, by definition, not in p and hence their minimum occurrence value is 0. If the element
x = t[L[j]] helps increase min(occ(x, t[L[i], L[j−1]]), occ(x, p)), then we increase the minimum
count by one, otherwise the minimum occurrence does not increase. Furthermore, we can
mark S(i, j) as being right-reasonable anytime that the top case is used and as not being
right-reasonable otherwise.

To design an efficient algorithm based on Equation (5), we need two auxiliary data
structures. The first is a hash table Hcnt that stores, for every k-mer in p, how often it
occurs in p. A second hash table Hloc stores, for every k-mer x ∈ p, the number of locations
i such that t[L[i]] = x.
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The algorithm for computing S and the hash tables is given in Algorithm 1. As a
first step, the Hcnt hash table is constructed via a scan through p. Then, the S matrix
is filled in column-by-column using Equation (5). However, doing the check to determine
which case of Equation (5) to use (i.e. to compute occ(t[L[j]], t[L[i], L[j − 1]])) would
take non-constant time using a naive approach. In order to compute this in constant
time, let c1 = occ(x, t[0, L[i − 1]]) and let c2 = occ(x, t[0, L[j − 1]]) and observe that
occ(x, t[L[i], L[j − 1]]) = c2 − c1. We will now describe how to maintain c2 and c1 as we
process a column of S, with only constant time per cell.

To compute c2, we avoid building Hloc outright and instead build Hloc at the same time
as we are processing S, column-by-column. When processing column j with x = L[j], we
start by incrementing the count of Hloc[x] (Line 7). Let Hj

loc refer to Hloc right after making
this increment. Observe that Hj

loc is Hloc but only containing the counts of locations up to
L[j], and Hℓ

loc = Hloc. Computing c2 is trivial from Hj
loc– it is simply Hj

loc[x]− 1 (Line 9).
To compute c1, we use the fact that when computing a column of S, we are processing

all the rows starting from 0 up to ℓ− 1. We initially set c1 = 0 (Line 8) and then, for each
new row i, we increment c1 if t[L[i]] = x (Line 17).

After S has been filled, we can identify which of the candidate mappings are reasonable.
Observe that a candidate mapping t[L[i], L[j]] is reasonable if and only if S(i, j) > S(i + 1, j)
and S(i, j) > S(i, j − 1). This can be verified by a simple pass through the matrix (Lines 22–
31).

6.2 Computing Maximality

In the second step, we identify which of the candidate mappings in S are maximal. Our
algorithm is shown in Algorithm 2. We traverse S column-by-column starting with the last
column and then row-by-row, starting from the first row. While traversing S, we maintain a
list M of all maximal reasonable candidate mappings above the threshold found so far and
their scores. M has the invariant that the candidate mappings are increasingly ordered by
their start positions.

To maintain the invariant that M is sorted by start position, we maintain a pointer cur

to a location in M (Lines 7–11). At the start of a new column traversal, when the row i = 0,
cur points to the start of M . As the row is increased, we move cur forward until it hits the
first value in M with a start larger than i. When a new final mapping is added to M , we do
so at cur, which guarantees the order invariant of M (Lines 16–20).

Due to the order cells in S are processed during our traversal, a candidate mapping
t[L[i], L[j]] is maximal if and only if its score is larger than the score of all other
final mappings in M with position i′ ≤ i. For a given column, since we are processing
the candidate mappings in increasing order of i, we can simultenously maintain a running
variable maxSoFar that holds the maximum value in M up to cur (Line 8). We can then
determine if a candidate mapping is maximal by simply checking its score against maxSoFar

(Line 14).
Note that as long as we have not yet seen any final mapping up to position i′ ≤ i, a

candidate mapping is already maximal if its score equals thr(|p|). This is ensured via a
flag supMpFnd and an additional satisfiable subclause (Line 14). As soon as maxSoFar is
updated, supMpFnd is set (Line 10).
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Algorithm 1 Part 1 of eskemap Algorithm.
Input: two sketches t and p

Output: the matrix S and annotation of each upper diagonal cell as being reasonable or not

1: Construct Hcnt
2: Initialize Hloc to be an empty hash table initialized with zeros
3: Construct L array
4: S(0, 0) = 1
5: for j = 1 to ℓ− 1 do
6: x← t[L[j]]
7: Hloc[x] = Hloc[x] + 1
8: c1 ← 0 ▷ This will hold occ(x, t[0, L[i− 1]])
9: c2 ← Hloc[x]− 1 ▷ This holds occ(x, t[0, L[j − 1]])

10: for i = 0 to j − 1 do
11: if c2 − c1 < Hcnt[x] then
12: S(i, j)← S(i, j − 1) + 1
13: else
14: S(i, j)← S(i, j − 1)
15: end if
16: if t[L[i]] = x then
17: c1 ← c1 + 1
18: end if
19: end for
20: S(j, j)← 1
21: end for
22: for i = 0 to ℓ− 1 do ▷ Mark each cell as reasonable or not
23: Mark S(i, i) as reasonable
24: for j = i + 1 to ℓ− 1 do
25: if S(i, j) > S(i + 1, j) and S(i, j) > S(i, j − 1) then
26: Mark S(i, j) as reasonable
27: else
28: Mark S(i, j) as not reasonable
29: end if
30: end for
31: end for
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Algorithm 2 Part 2 of eskemap algorithm.
Input: two sketches t and p, the matrix S computed by Algorithm 1, a score function, and a
threshold function thr
Output: all final mappings that are reasonable, maximal, and have a score of at least thr(|p|)

1: Let M be an empty linked list with (i, j, s) tuples.
2: for j = ℓ− 1 down to 0 do
3: maxSoFar ← thr(|p|)
4: cur ←M.start

5: supMpFnd← false
6: for i = 0 to j do
7: while cur ̸= M.end and cur.i ≤ i do
8: maxSoFar = max(maxSoFar, cur.s)
9: cur++

10: supMpFnd← true
11: end while
12: if S(i, j) is reasonable then
13: s← score of S(i, j)
14: if s > maxSoFar or (¬supMpFnd ∧ s = thr(|p|) then
15: Output t[L[i], L[j]]
16: if cur ̸= M.start then
17: M.insertBefore(cur, (i, j, s))
18: else
19: M.insertAt(cur, (i, j, s))
20: end if
21: end if
22: end if
23: end for
24: end for

6.3 Runtime and Memory Analysis

The runtime for Algorithm 1 is Θ(ℓ2) + |t|+ |p|. Note that the Hcnt table can be constructed
in a straightforward manner in O(|p|) time, assuming a hash table with constant insertion
and lookup time; the L array is constructed in O(|t|). Algorithm 2 runs two for loops with
constant time internal operations, with the exception of the while loop to fast forward the
cur pointer. The total time for the loop is amortized to O(ℓ) for each column. Therefore,
the total time for Algorithm 2 is Θ(ℓ2). This gives the total running time for our algorithm
as O(|t|+ |p|+ ℓ2).

The total space used by the algorithm is the sum of the space used by S (i.e. Θ(ℓ2)) and
the space used by Hcnt, Hj

loc, and L. The Hcnt table stores |p| integers with values up to |p|.
However, notice that when |p| > ℓ, we can limit the table to only store k-mers that are in t,
i.e. only ℓ k-mers. We can also replace integer values greater than ℓ with ℓ, as it would not
affect the algorithm. Therefore, the Hcnt table uses O(ℓ log ℓ) space. The Hj

loc table stores at
most ℓ entries with values at most ℓ and therefore takes Θ(ℓ log ℓ) space. Thus our algorithm
uses a total of Θ(ℓ2) space.
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7 Results

We implemented the eskemap algorithm described in Section 6 using scℓ as score func-
tion and compared it to other methods in a read mapping scenario. For better compar-
ability, we implemented it with the exact same minimizer sketching approach as used
by minimap2. Source code of our implementation as well as a detailed documenta-
tion of our comparison described below including exact program calls is available from
https://github.com/medvedevgroup/eskemap.

7.1 Datasets
For our evaluation, we used the T2T reference assembly of human chromosome Y (T2T-
CHM13v2.0) [13]. The chromosome contains many ampliconic regions with duplicated genes
from several gene families. Identifying a single best hit for reads from such regions is not
helpful and instead it is necessary to find all good mappings [5]. Such a reference poses a
challenge to heuristic algorithms and presents an opportunity for an all-hits mapper like
eskemap to be worth the added compute.

We simulated a read dataset on this assembly imitating characteristics of a PacBio Hifi
sequencing run [8]. For each read, we randomly determined its length r according to a gamma
distribution with a 9000bp mean and a standard deviation of 7000bp. Afterwards, a random
integer i ∈ [1, n− r + 1] was drawn as the read’s start position, where n refers to the length
of the chromosome. Sequencing errors were simulated by introducing mutations into each
read’s sequence using the mutation model described in Definition 4 and a total mutation
rate of 0.2% distributed with a ratio of 6:50:54 between substitution/insertion/deletion, as
suggested in [14]. Aiming for a sequencing depth of 10x, we simulated 69401 reads.

The T2T assembly of the human chromosome Y contains long centromeric and telomeric
regions which consist of short tandem and higher order repeats. Mapping reads in such
regions results in thousands of hits that are meaningless for many downstream analyses and
significantly increases the runtime of mapping. Therefore, we excluded all reads from the
initially simulated set which could be aligned to more than 20 different, non-overlapping
positions using edlib (see below). After filtering, a set of 32295 reads remained.

7.2 Tools
We compared eskemap to two other sketch-based approaches and an exact alignment ap-
proach. The sketch-based approaches were minimap2 (version 2.24-r1122) and Winnowmap2
(version 2.03), run using default parameters. In order to be able to compare our results also
to an exact, alignment-based mapping approach, we used the C/C++ library of Edlib [18]
(version 1.2.7) to implement a small script that finds all non-overlapping substrings of the
reference sequence a read could be aligned to with an edit distance of at most T . We tried
values T ∈ {0.01r, 0.02r, 0.03r}, where recall that r is the read length. We refer to this script
as simply edlib.

For eskemap, we aimed to make the results as comparable as possible to minimap2.
We therefore used a minimizer sketch with the same k-mer and window size as minimap2
(k = 15, w = 10). However, we excluded minimizers that occurred > 100 times inside the
reference sketch, to limit the O(ℓ2) memory use of eskemap, even as this exclusion may
potentially hurt eskemap’s accuracy. We used the default w = 1 as the tuning parameter in
the linear score. To set the score threshold, we used the dynamic procedure described in
Section 5.2. In particular, we used five different sequence lengths for simulations and used a

https://github.com/medvedevgroup/eskemap
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Figure 2 Mapping accuracies of all tools. For edlib, the color of the cross encodes the various
edit distance thresholds (0.01, 0.02, 0.03). For eskemap, the color of the circles indicate the score
threshold used, in terms of the target confidence interval used (0.7, 0.8, 0.9, 0.95). The ground truth
is determined by combining the mappings from all tools and filtering out those with bad BLAST
scores. The most lenient thresholds for edlib and eskemap were used.

divergence of 1%. We used the same sequencing error profile as for read simulation. Four
thresholds were then chosen so at to cover the one-sided confidence interval of 70%, 80%,
90%, and 95%, respectively.

7.3 Accuracy Measure

We compared the reference substrings corresponding to each reported mapping location of
any tool to the mapped read’s sequence using BLAST [2]. If a pairwise comparison of both
sequences resulted either in a single BLAST hit with an E-value not exceeding 0.014 and
covering at least 90% of the substring or the read sequence or if a set of non-overlapping
BLAST hits was found of which none had an E-value above 0.01 and their lengths summed
up to at least 90% of either the reference substring’s or the read sequence’s length, we
considered the reference mapping location as homologous.

For each read, we combine all the homologous reference substrings found across all tools
into a ground truth set for that read. We then measure the accuracy of a mapping as follows.
We determined for each k-mer of the reference sequence’s sketch whether it is either a true
positive (TP), false positive (FP), true negative (TN) or false negative (FN). A k-mer was
considered a TP if it was covered by both a mapping and a ground truth substring. It was
considered a FP if it was covered by a mapping, but not by any ground truth substring.
Conversely, it was considered a TN if it was covered by neither a mapping nor a ground
truth substring and considered a FN if it was covered by a substring of the ground truth
exclusively. The determination was performed for each read independently and results were
accumulated per tool to calculate precision and recall measures.

4 In order to ensure robustness of results, BLAST runs were also repeated for E-value thresholds of 0.005
and 0.001 causing only neglectable differences for subsequent analyses.
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Table 1 Runtime and memory usage comparison of all sketch-based methods. The tools were
called to map 32295 simulated PacBio Hifi sequencing reads on the T2T assembly of human
chromosome Y. Runtimes are shown both as total values and normalized by the number of reported
mapping positions.

Tool User Time [s] Memory [GB]

total per mapping

eskemap 100,770 0.01 69
minimap2 26,232 0.55 4.5
Winnowmap2 9,207 0.19 7

7.4 Accuracy Results
The precision and recall of the various tools is shown in Figure 2. The most controlled
comparison can be made with respect to minimap2, since the sketch used by eskemap is a
subset of the one used by minimap2. At a score threshold corresponding to 70% recovery,
eskemap achieves the same precision (0.999) as minimap2. However, the recall of eskemap is
0.88, compared to 0.76 of minimap2. This illustrates the potential of eskemap as a method
to recover more of the correct hits than a heuristic method. More generally, eskemap
achieves a recall around 90%, while all other tools have a recall of at most 76%. However,
both edlib and Winnowmap2 achieve a slightly higher precision (by 0.001).

7.5 Time and Memory Results
We compared the runtimes and memory usage of all sketch-based methods (Table 1). Cal-
culations were performed on a virtual machine with 28 cores and 256 GB of RAM. We did
not include edlib in this alignment since, as an exact alignment-based method, it took much
longer to complete (i.e. running highly parallelized on many days on a system with many
cores). We see that both heuristics are significantly faster than our exact algorithm. However,
they also find many fewer mapping positions per read. E.g., only one mapping position is
reported for 67% and 75% of all reads by minimap2 and Winnowmap2, respectively. In
comparison, eskemap finds more than one mapping position for almost every second read
(49%). When the runtime is normalized per output mapping, eskemap is actually more
than an order of magnitude faster than the other tools.

The memory usage of eskemap is dominated by the size of S. In particular, the highest
value of ℓ was 185, 702 and a matrix with dimensions ℓ× ℓ that stores a 4-byte value in the
upper diagonal takes 69GB, which corresponds to the peak reported in Table 1. As expected,
the memory use depends on the repetitiveness of the text and on the sketching scheme used.

8 Conclusion

In this work, we formally defined the Sketch Read Mapping Problem, i.e. to find all positions
inside a reference sketch with a certain minimum similarity to a read sketch under a given
similarity score function. We also proposed an exact dynamic programming algorithm called
eskemap to solve the problem, running in O(|t| + |p| + ℓ2) time and Θ(ℓ2) space. We
evaluated eskemap’s performance by mapping a simulated long read dataset to the T2T
assembly of human chromosome Y and found it to have a superior recall for a similar level
of precision compared to minimap2, while offering precision/recall tradeoffs compared with
edlib or Winnowmap2.
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A clear drawback of eskemap remains its high memory demand for storing the dynamic
programming matrix. If many k-mers from a read’s sketch occur frequently inside the sketch
of the reference sequence, its quadratic dependence on the number of shared k-mers becomes
a bottleneck. It may be possible to modify the algorithm to store only the recently calculated
column, but that would require a novel way to perform the maximality check of Algorithm 2.

In order to further improve on eskemap’s runtime, a strategy could be to develop filters
that prune the result’s search space. This could be established, e.g., by terminating score
calculations for a column once it is clear an optimal solution would not make use of the
rest of that column. Our prototype implementation of eskemap would also benefit from
additional engineering of the code base, potentially leading to substantial improvements of
runtime and memory in practice.

Having an exact sketch-based mapping algorithm at hand also opens the door for the
exploration of novel score functions to determine sequence similarity on the level of sketches.
Using our algorithm, combinations of different sketching approaches and score functions may
be easily tested. Eventually, this may lead to a better understanding of which sketching
methods and similarity measures are most efficient considering sequences with certain
properties like high repetitiveness or evolutionary distance.
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A Proofs

Proof of Theorem 3. Observe that domination is a transitive property, i.e. if sc1 dominates
sc2 and sc2 dominates sc3, then sc1 dominates sc3. To prove equivalence, we will prove the
following circular chain of domination: scℓ ← scB ← scC ← scD ← scA ← scℓ.

First, observe that scB trivially dominates scℓ by keeping the threshold function the same
and setting b1 = 1 and b2 = w.

Next, we prove that scC dominates scB. Let p be a pattern and let t = thrB(|p|). Set
thrC = thrB and c1 = b1 + b2 and c2 = b2. Then, for all s, the following series of equivalent
transformations proves that scC dominates scB.

scB(s, p; b1, b2) ≥ t∑
x

b1xmin − b2xdiff ≥ t∑
x

b1xmin − b2(xmax − xmin) ≥ t∑
x

(b1 + b2)xmin − b2xmax ≥ t

scC(s, p; c1, c2) ≥ thrC(|p|)

Next, we prove that scD dominates scC. Let p be a pattern and let t = thrC(|p|). Set
d1 = c1 + c2, d2 = c2, and thrD(i) = thrC(i) + ic2. Then, for all s, the following series of
equivalent transformations proves that scD dominates scC.
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scC(s, p; c1, c2) ≥ thrC(|p|)∑
x

c1xmin − c2xmax ≥ t

∑
x

c1xmin − c2

(
|s|+ |p| −

∑
x

xmin

)
≥ t∑

x

(c1 + c2)xmin − c2|s| − c2|p| ≥ t∑
x

(c1 + c2)xmin − c2|s| ≥ t + c2|p|

scD(s, p; d1, d2) ≥ thrD(|p|)

Next, we prove that scA dominates scD. Let p be a pattern and let t = thrD(|p|). Set
a1 = d1

d2
− 2 and thrA(i) = thrD(i)

d2
− i. Then, for all s, the following series of equivalent

transformations proves that scD dominates scC.

scD(s, p; d1, d2) ≥ thrD(|p|)(∑
x

d1xmin

)
− d2|s| ≥ t(∑

x

d1xmin

)
− d2

(∑
x

2xmin +
∑

x

xdiff − |p|

)
≥ t∑

x

((d1 − 2d2)xmin − d2xdiff) + d2|p| ≥ t

∑
x

(
d1 − 2d2

d2
xmin − xdiff

)
+ |p| ≥ t

d2∑
x

(
(d1

d2
− 2)xmin − xdiff

)
≥ t

d2
− |p|

scA(s, p; a1) ≥ thrA(|p|)

Finally, we prove that scℓ dominates scA. Let p be a pattern and let t = thrA(|p|). Set
w = 1

a1
and thrℓ(i) = thrA(i)

a1
. Then, for all s, the following series of equivalent transformations

proves that scℓ dominates scA.

scA(s, p; a1) ≥ thrA(|p|)∑
x

(a1xmin − xdiff) ≥ t

∑
x

(xmin −
1
a1

xdiff) ≥ t

a1

scℓ(s, p; w) ≥ thrℓ(|p|) ◀
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