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Abstract
Motivation. Recurrent substructures in RNA, known as 3D motifs, consist of networks of base
pair interactions and are critical to understanding the relationship between structure and function.
Their structure is naturally expressed as a graph which has led to many graph-based algorithms to
automatically catalog identical motifs found in 3D structures. Yet, due to the complexity of the
problem, state-of-the-art methods are often optimized to find exact matches, limiting the search to
a subset of potential solutions, or do not allow explicit control over the desired variability.

Results. We developed FuzzTree, a method able to efficiently sample approximate instances of
an RNA motif, abstracted as a subgraph within a target RNA structure. It is the first method
that allows explicit control over (1) the admissible geometric variability in the interactions; (2) the
number of missing edges; and (3) the introduction of discontinuities in the backbone given close
distances in the 3D structure. Our tool relies on a multidimensional Boltzmann sampling, having
complexity parameterized by the treewidth of the requested motif. We applied our method to the
well-known internal loop Kink-Turn motif, which can be divided into 12 subgroups. Given only the
graph representing the main Kink-Turn subgroup, FuzzTree retrieved over 3/4 of all kink-turns. We
also highlighted two occurrences of new sampled patterns. Our tool is available as free software and
can be customized for different parameters and types of graphs.
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1 Introduction

The essential regulatory and catalytic roles played by RNAs in cellular processes can largely
be attributed to the intriguing and highly versatile nature of their structures [8, 5]. The
structure of ncRNAs is inherently modular, with distinct structural domains (loops) divided
by stems of rigid canonical bonds, often responsible for their unique functions [20]. This
modular architecture has been used for advancements in structure prediction [10] and rational
design [11]. Consequently, the characterization of ncRNA structure and identification of
structural modules have become critical in the pursuit of understanding their diverse functions
and exploiting them for future applications.

Many approaches have been developed to detect and classify conserved modules. These
classifications differ in the scale adopted to detect and define a motif: RNA3DMotifsAtlas [26]
computes similarity and finds motifs at the atomic level. It can capture local similarities
omitting bulged nucleotides. A drawback of such a method is the computation time, which
restrains comparisons between loops. RNA Bricks [6] and RAG3D [34] abstract loops and
hairpins as unitary elements. At an intermediate layer, CaRNAval [27, 30] models RNA as
graphs where vertices are nucleotides, and edges are the sequence backbone phosphodiester
bonds or non-covalent interactions. These interactions can be classified following the Leontis-
Westhof (LW) annotations in 12 different geometric families [21, 31]. Such an approach
allows specific graph algorithms to discover much larger and more complex modules than by
doing atomic computations while retrieving the known structural modules. However, this
approach is not able to identify natural variations since it relies on detecting exact matches.

From the algorithmic point of view, the treewidth tw is a natural parameter to find a
match of a pattern graph GP inside a target graph GT . In 1995, Alon et al [1] proposed an
XP [9] algorithm in O

(
2|VP |ntw(GP )+1)

using the color-coding technique. It was shown more
generally that only very specific constraints on the input allow having algorithms tractable for
bounded treewidths [23]. The problem is not fixed-parameter tractable when parameterized
only by the treewidth, and it requires other parameters to become tractable. For instance,
some approaches are parameterized both by tw(GP ) and |GP |, and conversely, others are
parameterized by tw(GT ) and the maximum degree of GT [23].

However, there can be an exponential number of variants of a specific pattern so different
specialized algorithms allowing missing nodes and edges [25, 12], or requiring only labels
to be in a neighborhood [18], have been developed. Such simplifications forget about the
precise locations of interactions, which is information that we would like to preserve with
RNA structures. A recent approach specific to RNA graph fuzziness uses Relational Graph
Convolutional Network to embed the graphs in a vector space, allowing fast computation [24].
Their embedding is based on the nature of base pairs or their isostericity without taking into
account gaps or missing edges. By its nature, such a method gives no explicit control over
the sampled neighborhoods, and thresholds need to be calibrated depending on the context.

In this paper, we introduce FuzzTree, a multidimensional Boltzmann graph sampling
procedure able to sample variants of a motif in a known RNA structure. We allow weighting
and control of three key geometric features in the variants: (1) the geometric disruption of
mismatched edges, (2) missing edges still constrained by their distance in the 3D structure,
and (3) breaks in the backbone also constrained by their distance in the 3D structure. We
propose a parameterized bound on the complexity of the algorithm based on the treewidth
of the searched motif. We evaluate our method on the well-known interior loop Kink-Turn
motif [19] characterized by its sharp bend and clustered into 12 different groups in the
RNA3DMotifsAtlas [26]. We show that, from the signature representation of the main
subgroup, we sample all their known Kink-Turns in 88% of RNAs. We also retrieve two
previously un-annotated loops with a characteristic sharp bend.
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2 Method

2.1 RNA as a graph and fundamental problems
We define an RNA structure as a graph G such that its nucleotides are encoded as vertices V ,
and nucleotide interactions (canonical/non-canonical base pairs, stacking. . . ) are encoded as
directed edges E ⊂ V ×V , with labels L(e). Interactions may represent backbone connectivity
(phosphodiester bonds), or any of the 12 base-pair types defined by the Leontis-Westhof
(LW) nomenclature [31]. Each type specifies an interacting face (Watson-Crick ◦, Hoogsteen
□, Sugar ▷) for both nucleotides, along with an orientation cis (filled) or trans (empty). Note
that the geometry of the RNA structure is encoded in the edge labels, and our representation
does not depend on the sequence. In this work, we are interested in RNA 3D motifs, which
we abstract as RNA pattern graphs as depicted above. We show in Fig. 1 a Kink-Turn
motif, represented as a graph with labeled edges.

Figure 1 Kink-turn structure. On the left, the 3D structure of a Kink-Turn motif in PDB
3RW6. On the right, its representation as a pattern graph of its base pair interactions. The backbone
connections are represented as black arrowed edges.

We rewrite E, the set of edges as E = B ⊔B, composed of two distinct sets: B, the set
of edges that are backbone interactions and B, the edges involved in LW interactions.

Moreover, since vertices in both pattern and target graphs are indexed by their sequence
position, we introduce a precedence relation ≺, inducing a strict total order within the pattern
and target graphs. A valid occurrence of a pattern within a target must be monotonous, i.e.
remain consistent with the strict precedence relation ≺.

The Monotonous Subgraph Isomorphism (MSI) problem identifies an occurrence of a
pattern GP = (VP , EP ) inside a target graph GT = (VT , ET ). In the context of RNA, GP is
a (closed) motif and ≺ −Hamiltonian, i.e. the total order over VP induced by the relation
≺ represents a (Hamiltonian) path in GP , while GT represents an entire RNA structure.
Formally, the problem of searching for GP within GT can be defined as:

▶ Problem 1. Monotonous Subgraph Isomorphism Problem (MSI)
Input: Pattern graph (≺ −Hamiltonian) GP = (VP , EP ); Target graph GT = (VT , ET )
Output: Mapping M : VP → VT such that
∀(u, v) ∈ VP

2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)
∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET ⇒ L((u, v)) = L((M(u), M(v))) (label comp.)
∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET (no missing edge)

or ∅ if no such mapping exists.

The MSI problem represents a constrained version of Subgraph Isomorphism, a well-studied
NP-complete problem [13, 23] with mildly-depressing prospects regarding parameterized
complexity. Indeed, Subgraph Isomorphism does not admit Fixed-Parameter Tractable (FPT)
or slicewise polynomial (XP) solutions for various graph parameters, including the treewidths

WABI 2023
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tw(GP ) and tw(GT ) of the pattern and target graphs. Namely, the problem was shown [23]
to be NP-hard even when max(tw(GP ), tw(GT )) ≤ 2 (Para NP-hardness), ruling out the
existence of FPT or XP algorithms under standard hypotheses.

The MSI problem retains the classical NP-hardness of Subgraph Isomorphism since it
can be shown to generalize the NP-hard structure-sequence alignment in RNA [28]. However,
MSI can be solved in time O

(
|EP |.|VT |tw(VP )+1)

(XP algorithm) using classic dynamic
programming based on a tree decomposition of GP (see Section 2.5 and Supp. Mat. A.2.2).
Such an algorithm has polynomial complexity for any fixed value of the treewidth tw(GP ), a
parameter that remains bounded in practice (typically 2 or 3) for RNA motifs.

2.2 Capturing geometric and chemical similarities
We now extend our problem to embrace the natural diversity of RNA motifs in structures.
More precisely, we are interested in sampling graph occurrences that are in the geometric
neighborhood of a core motif. To do so, we allow the motif to be deformed by three different
biologically relevant edit operations detailed below. Each contributes additively and has
its own neighborhood threshold, and corresponding difference function, as depicted in
Table 1:

T L represents how much we allow the edge label, the type of the canonical or non-canonical
bond, to be modified. It measures the geometric difference between two interactions (see
Sec. 2.4.1).
T E corresponds to the maximum number of edges/base pairs within the pattern structure
that can be omitted (see Sec. 2.4.2).
T G is the maximum allowed distance when introducing a backbone discontinuity, a new
gap. As insertions alter the distance between bonds, T G regulates here the maximum
sum over these shifts (see Sec. 2.4.3).

We denote by GEO the geometric distance between two nucleotides u1 and u2 as

GEO(u1, u2) = min
ai∈atoms(ui)|i∈{1,2}

||a1 − a2||2,

and use it to define two additional criteria to constrain admissible solutions:
First, nucleotides mapped to the nodes of a missing edge must be closer than Dedge Å;
Second, we enforce a maximal distance Dgap between the nucleotide on both sides of
an introduced gap. These values correspond to the phosphodiester atoms’ distances
between the nucleotides. Capping these distances beyond a fixed value not only yields
more realistic outputs but also greatly improves the runtime of our algorithm.

We use the isodiscrepancy index [31] to quantify geometrically the difference between base
pair families and provide values measuring three terms: (1) the difference of intra-base pair
C1’–C1’ distances; (2) after aligning one base, the inter-base pair C1’–C1’ distance between
the C1’ atoms of the second bases of the base pairs; (3) The angle on an axis perpendicular
to the base pair plane required to superpose the second bases. This isostericity measure is
defined for pairs of base pairing families (BPF), each representing one of the 12 canonical
and non-canonical conformations and named as BPFi,∀i ∈ J1, 12K. Inter-family variations
are frequent and therefore the average isodiscrepancy of a family to itself is not 0. To correct
for this phenomenon, we define the ISO difference between two families as:

ISO(BPFi, BPFj) = isodiscrepancy(BPFi, BPFj)− isodiscrepancy(BPFi, BPFi).

Moreover, we set the value of ISO to 0 involving undefined labels, backbones or phantom
interactions.
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We define a backbone path as a sequence of at least 2 nucleotides connected through
backbone edges.

The set P of paths associated with a target graph GT =
(
VT , ET = BT ⊔BT

)
is defined as:

P =
⋃

k∈N,k⩾2
{(p0, ..., pk) | ∀i ∈ J0, k − 1K, (pi, pi+1) ∈ BT }.

With this definition, gaps are just paths in P with specific restrictions on length and
composition.

A mapping M lying in a relevant neighborhood of a pattern graph is a solution to a
problem that we call the Fuzzy Monotonous Subgraph Isomorphism problem (FMSI),
which can be defined as:

▶ Problem 2. Fuzzy Monotonous Subgraph Isomorphism problem (FMSI)
Input: Pattern graph GP =

(
VP , EP = BP ⊔BP

)
(≺ −Hamiltonian) , target graph GT =(

VT , ET = BT ⊔BT

)
and neighborhood thresholds (T L, T E, T G, Dedge, Dgap)

Output: Mapping M : VP → VT such that:
1. ∀(u, v) ∈ VP

2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)
2.

∑
(u,v)∈BP

ISO(L(u, v), L(M(u), M(v))) ⩽ T L (label compatibility)
3.

∑
(u,v)∈BP

1− 1(M(u),M(v))∈BT
⩽ T E (few missing edges)

4. ∀(u, v) ∈ BP , (M(u), M(v)) /∈ BT , GEO(M(u), M(v)) ⩽ Dedge (edge distance limit)
5.

∑
(p0,...,pk)∈P,k⩾3 GEO(p0, pk) ⩽ T G (path size limitation)

6. ∀(u, v) ∈ BP ,∃(p0, p1, p2, ..., pk) ∈ P such that (no missing backbone path)
p0 = M(u), pk = M(v) (*)
GEO(p0, pk) ⩽ Dgap (**)

or ∅ if no such mapping exists.

Intuitively, a valid mapping M has to respect the six following conditions: The mono-
tonicity condition enforces pattern nodes to map successive nodes in the target. The label
compatibility controls how much the geometric differences cumulative is allowed between
pattern and matched edges (see Sec. 2.4.1). The few missing edges constraint ensures that
pattern edges that are not mapped to an edge in the target are not numerous. (see Sec. 2.4.2)
The edge missing limit forces each couple of mapped nodes with no edges to have a
bounded geometric distance between each other. (see Sec. 2.4.2) The path size limitation
controls how large the cumulative of gaps geometric lengths can be. (see Sec. 2.4.3) The no
missing backbone path condition (as unfolded in Prob. 2) ensures that the start and
end points of a path are mapped nodes (*). It also restrained allowed geometric length of
individual path (**). (see Sec. 2.4.3) We note that due to the monotonicity condition, it
implies that no target node in p1, . . . , pk−1 can belong to the mapping.

Subsequently, we will denote by neighborhoodGP
(GT ) all the occurrences of the desired

pattern graph GP (in its geometric neighborhood) in our RNA graph target GT as defined
by the previous FMSI mapping.

In practice, RNA graphs are fully ordered but do not necessarily contain a Hamiltonian
path due to backbone disconnections, leading to a graph composed of multiple strands. We can
reconstitute a Hamiltonian path (with no complexity overhead) in the pattern graph by adding
some “phantom edges” (with a specific label) when the backbone is missing which correspond
to the set of edges {(i, i + 1) | i ∈ GP , (i, i + 1) /∈ EP ∪ L(i, j) ̸= “B53”}. Additionally, to
ensure that such edge can be mapped in the target GT in a way that will conserve the monoton-
icity of the mapping, we add in GT the set of edges {(i, j) | (i, j)∈GT , i ≺ j ∩ L(i, j) ̸=“B53”}.

WABI 2023
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Table 1 Neighborhood thresholds and differences. Each measure has a threshold over the
sum of differences over all edges in the graph pattern.

Threshold T F Difference dF Fuzzy mapping M of GP found in GT

T L Isostericity ISO
u

u'
R

A

R

A

PG TM in G

I SO (u,u') ≤ TL

T E Missing edges number
R

A

R

A

PG TM in G

missing edges number = 1≤ TE

GEO (n1
n1

,n2

n2

) ≤Dedge

T G Geometric GEO from
3D structure

PG TM in G

R

A
N

R
N

R

A

R

GEO(n1,n3) +GEO (n3,n5) ≤ TG

GEO (n1,n3) ≤Dgap

GEO (n3,n5) ≤Dgapn3

n5
n4

n2

n1

2.3 Locating alternative occurrences through sampling
Focusing on neighborhoodGP

(GT ) is not an easy task as naive methods would describe both
this set and its complementary. In the clique worst case, it consists to explore

(|GT |
|GP |

)
graphs.

Even the simple exploration of neighborhoodGP
(GT ) can be tedious, in particular, when

neighborhood thresholds are quite large, which is often the case for label and gap thresholds.
Furthermore, due to the nature of the neighborhoods, numerous instances of a few nucleotides
apart will often be found. It is relevant in terms of neighborhoods, but, from the biological
standpoint, they represent all the same RNA portion and the same underlying geometry and
should not be distinguished: a single representative will be enough. It oriented us toward
sampling, to identify sets of candidate – ideally diverse – subgraphs inside the target graph
GT that are at a reasonable “ distance” from the interesting motif GP .

This shift in paradigm builds on recent advances in Multidimensional Boltzmann distri-
butions and sampling [2, 15].

Generally, a Boltzmann distribution is such that the probability of any possible
outcome G depends on its (pseudo-)energy E:

P(G) = e−βE(G)

Z
where Z =

∑
G′

e−βE(G′) (1)

where β is a real number, akin to an inverse temperature. A Multidimensional Boltzmann
distribution (MBD) is a special type of Boltzmann distribution, where the energy is a
weighted combination over a collection of features {Fi} of interest, such that

E(G) = w1 × F1(G) + w2 × F2(G) + . . .
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where w1, w2 . . . are real-valued weights. Weights can be used to steer the sampling towards
regions of interest. They can also be learned, through convex optimization, to match
the expectations of F1, F2 . . . to user-specified values. Moreover, sampling with a pseudo-
temperature β → ∞ gracefully specializes in a uniform random generation of outcomes
achieving optimal (i.e. minimal) value for E.

In our case, an outcome is a graph G ⊂ GT , such as G is the image of mapping M and
we have 3 features, one for each neighborhood. Given a specific neighborhood threshold T F ,
its relative feature F measures how much the weight of edits DF relative to neighborhoods,
further introduced as a difference in 2.4, deviate from a given center T F∗. For instance,
T F∗ can be chosen as equal to 0 if we want to sample mostly G with no fuzziness or as
equal to T F /2 if we want to sample them with average fuzziness. More details on this choice
and about Boltzmann sampling are available at Supp. Mat. A.1. MBD is well-suited to
the sampling that we want to make: the exponential decrease of the probability with the
features gives low probabilities to the graphs that are far in terms of neighborhoods from
GP , which allows us to characterize well neighborhoodGP

(GT ). In particular, we can define
F such that it takes a value equal to +∞ when the corresponding neighborhood threshold
T F , for a mapping M , is not respected, forbidding simply M to be sampled. Additionally,
the Multidimensional character of the distribution allows us to take into account the 3
neighborhoods on labels, edges and gaps at the same time.

A general framework called InfraRed [33], initially introduced in the context of RNA
design [15], can be used to generate efficiently, in a parameterized manner, the MBD. It
automatically processes constraints and elements of the scoring into a graph, decomposes it
into a Tree Decomposition, and generates automatically the bottom-up dynamic programming
sampling procedures. More details on the Tree Decomposition and the dynamic programming
used in InfraRed can be found in Supp. Mat. A.2.

2.4 Neighborhood difference description
Our goal is to be able to retrieve from a general motif all natural occurrences and their
variability. We can observe in well-known motif families that some bases change, some can
be added or removed. For instance, the graph pattern GP on Fig. 2 is a Kink-Turn whose
occurrences in the same sub-family can have up to four missing edges. Other sub-families
of Kink-Turn motifs can have differences in bond types, additional interactions, or even
gaps induced by additional nucleotides. We will define difference functions that will be the
features in the MBD and will restrain the samples to a “reasonable” neighborhood of the
pattern GP that can be explicitly defined.

For any feature F (here F ∈ {L, E, G}, where L are label changes, E missing edges, and
G new gaps) the Neighborhood cumulative difference DF quantifies how distant a
mapping is, relatively to a given neighborhood threshold T F that cannot be exceeded.

Formally, we define a neighborhood cumulative difference DF relatively to a neighborhood
threshold T F as:

▶ Definition 1 (Neighborhood cumulative difference / neighborhood difference). Given a
pattern graph GP =

(
VP , EP = BP ⊔BP }

)
, a target graph GT =

(
VT , ET = BT ⊔BT

)
and a mapping M , a neighborhood cumulative difference is a function DF relatively to a
neighborhood threshold T F that act as a wrapper around dF

GT
:

DF (GP , GT , M) =
∑

(u,v)∈EP

dF
GT

(u, v, M)

WABI 2023
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G
 
   P

 
   GT1

 
   GT2

Part of Part of

Figure 2 Kink-turn signature and targets. On the left, signature graph of the Kink-Turn
IL_29549.9 family and our search pattern. In the middle and on the left, mappings that were missed
during the search for the pattern. GT 1 due to the same nucleotide merging the end of a cSS and a
cWW. GT 2 due to its too large difference.

where dF
GT

(u, v, M) is the neighborhood difference relative to GT , a function that measures,
relatively to F , how “different” are the edges in the pattern ((u, v) ∈ GP ) from the edges in
the mapping ((M(u), M(v)) ∈ GT ).

How the difference is measured depends on the feature as described below.
Neighborhood cumulative differences serve in the Boltzmann distribution to quantify

each type of edit. Due to the additivity of these deformations, the neighborhood cumulative
differences are computed over all edges in the pattern and their equivalent in the mapping.
While our neighborhood cumulative differences are defined relative to the edges of GP here,
they can be easily defined on nodes should novel sequence-dependant features be included.
We will now discuss in detail the 3 sources of operations and their neighborhood cumulative
difference. A summary is shown in Table 1.

2.4.1 The label difference
The label difference, as represented in Fig. 3, accounts for the difference between base
pairs families and we use for that the isodiscrepancy [31] as introduced in part 2.2. We now
compute the label difference DL relative to the neighborhood threshold T L as a neighborhood
cumulative difference entirely defined by the sum over each pattern edge of its mapping
neighborhood difference dL

GT
equals to:

dL
GT

(u, v, M) = ISO(L(u, v), L(M(u), M(v))).

2.4.2 The edge difference
While the previous section deals with how to incorporate edges changing their type, i.e. their
interaction geometry, we must also consider that some of these base pair interactions might
simply be missing due to the noisiness of the experiments, the accuracy of the annotation, or
the flexibility of the module. A natural way to account for missing edges is to count them and
enforce an upper bound on the amount. Doing so would omit important geometric information
that we have available in the 3D structure. An interaction is missing, but we still want
to constrain the physical distance between the mapped nodes of the missing edge. Indeed,
with no limitation on that distance, the partner node of a missing edge could be virtually
anywhere in the target structure. This is undesirable since we are interested in patterns
matching the local conformations. It is also highly inefficient in terms of computation.
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T             PMapping M found in G  for G

DL (GP ,GT ,M ) = dLGT
(6,7,M ) +dLGT

(5,8,M ) +0
DL (GP ,GT ,M ) = I SO ( , ) + I SO ( , ) +0
DL (GP ,GT ,M ) = 11.3+8.2= 19.5

Figure 3 Label difference. Computation of the label difference on a mapping between a motif
GP and an RNA target graph GT . Label difference is computed using the isostericity ISO to account
for the geometric difference between bounds as described in Stombaugh et al [31].
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R
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G
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T            PMapping M found in G  for G

DE (GP ,GT ,M) = 2

DE (GP ,GT ,M) = dE
GT

(1,10

0

,M)
dE

GT
(5 + 

+ 
,8,M)

Figure 4 Edge difference. Computation of the edge difference on a mapping between a motif
GP and an RNA target graph GT . We assume here that Dedge >> max(GEO(1, 10), GEO(5, 8)).

Therefore, we will accept mappings of the extremities of an edge in the pattern to nodes
u, v that are at most at a set threshold distance Dedge computed from the 3D structure (i.e.
GEO(u, v) < Dedge). Setting a weight of ∞ to mappings outside the threshold allows the
sampling to simply reject such instances. We additionally use the edge difference to reject
cases where backbones are mapped to couples of nodes that are not backbones by putting a
weight ∞ in that case. The total edge difference DE relative to neighborhood threshold T E ,
is a neighborhood cumulative difference entirely defined by the sum over dE

GT
with values

defined as followed and shown in Fig. 4:

dE
GT

(u, v, M) =



0 if (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

or (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

1 if (u, v) ∈ BP ∩ (M(u), M(v)) /∈ BT

and GEO(M(u), M(v)) ⩽ Dedge

∞ otherwise.

2.4.3 The gap difference
A frequent type of natural variability in a motif family is the occurrence of bulging out
nucleotides in what would be a continuous sequence in the pattern. These insertions can be
of different sizes, but we require that they do not modify (too much) the local structure. To
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Figure 5 Fake edges. Addition of fake edges to account for gaps. Fake edges are added only
when distance is below Dgap and when both nucleotides are fully connected by backbone edges. For
instance here, we add no fake edge between C and A at the bottom of GT as these two nucleotides
are not connected by a full path of backbones.

take arbitrary insertions into account, we introduce fake edges between any two nucleotides
present on the same backbone that are at a distance below Dgap. An illustration of this
process is shown in Fig. 5. For convenience, these edges are added in BT to keep valid the
cases of the edge difference where backbones are wrongly mapped.

An additional difference compared to the missing interaction edges of the previous section
is how we sum the total neighborhood difference DG. We accumulate the total physical
distance (i.e. GEO) between the nodes connected through the fake edges. This allows an
arbitrarily large structure to bulge out without the need to verify or specify admissible lengths,
as long as the nucleotides around this inserted gap are close geometrically as illustrated in
Fig. 6.

Formally, the gap difference DG relative to neighborhood threshold T G is a neighborhood
cumulative difference over all edges in the matching entirely defined by the sum of the
neighborhood differences dG

GT
:

dG
GT

(u, v, M) =


GEO(M(u), M(v)) if (M(u), M(v)) is

a “Fake Edge” in ET

0 otherwise.

A limitation of this approach is that we cannot detect the deletion of nodes from the
pattern. A workaround is to remove all the nodes in the pattern graph that do not directly
participate in a base pair interaction, and reconnect the disconnected backbones. Using the
new pattern with a large gap threshold T G would allow us to retrieve the original motif
neighborhood efficiently, but introduce more spurious matches.

2.5 Algorithm and complexity
Our method is based on Infrared [15, 33], a declarative framework that automatically
generates a dynamic programming procedure for MBD sampling, based on a nice tree
decomposition (TD). The dynamic programming procedure used in Infrared is described
in Supp. Mat. A.2. It precomputes the partition function of the MBD through a bottom-
up recursion and uses local contributions to perform an exact sampling within the MBD
distribution. Within this framework, a combinatorial problem is abstracted as a set of
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Figure 6 Gap difference. Computation of gap difference on a mapping between a motif GP

and an RNA target graph GT . We recall that nucleotide labels are not taken into account.

variables {Xi}i, each assigned an integer value within a bounded domain. Assignments
must respect various constraints expressed as functions {Ci}i, each defined over a subset of
variables. Similarly, feature functions {Fj}j associate real-valued contributions to subsets of
variables, and are summed to represent the pseudo-energy of an assignment.

In this setting, we abstract each node i of the graph pattern GP as a variable Xi, taking
value in J1, nK. The value of Xi represents the mapping of node i in the graph GT = (VT , ET )
with |VP | = k and |VT | = n. Within RNA motifs, the number of partners of a position is
bounded, so we have |EP | ∈ O(k). Remark that all deviations from the pattern defined in
Sections 2.4.1 through 2.4.3, can be expressed locally as sums on the edges of the pattern
graph. It follows that the dependencies dep implied by our cumulative differences are only
binary, and restricted to pairs sharing an edge in GP : dep = {(Xi, Xj) | (i, j) ∈ EP }. The
graph of constraints is thus reducible to the input pattern graph GP , as shown in Fig. 8.

Due to the neighborhood threshold T F being a global property over the mapping, the
sampling is followed by a rejection step for samples that exceed a neighborhood threshold.
An example of such rejection is depicted in Fig. 7. Asymptotically, such rejection will at
worst induce a constant overhead with T F chosen independently from |GP | and |GT |.
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REJECTION 
    AREA

Figure 7 Rejection step. In the above example, rejection is depicted only for the edge
neighborhood for the sake of simplicity. Found motifs above T E thresholds are rejected afterward.
Found motifs with an edge difference close to T E

2 = 1 here have more chance to be sampled.

▶ Proposition 2. A generation of t Boltzmann-distributed (1) putative solutions to FMSI
can be performed in time O

(
n k t + k n(ϕ+1)) where ϕ is the treewidth of the pattern GP .
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graph of constraints C and all nodes of GT as values that can be taken by the variables in C.

This complexity directly follows from the complexity of the algorithm [15] underlying
Infrared for a graph GP = (VP , EP ) (with |VP | = k). Restricted to binary constraints/fea-
tures associated with (a subset of) E, the computation of the partition function can be
performed in time O((|EP |+ |VP |)×∆ϕ+1), where ∆ is the size of the assignment domain for
individual variables, and ϕ is the treewidth of GP . A stochastic backtrack follows, leading to
the generation of t Boltzmann-distributed assignments in time O(|VP |∆ t). The complexity
stated above is obtained by observing that |EP | ∈ Θ(k), and that ∆ ∈ Θ(n).

We conclude by noting that preprocessing, including computations of geometrical distances
and augmentation of GT graph, can be performed once, in O(n2) time and space, leading to
a negligible overhead in comparison to the computation of the partition function. Meanwhile,
an optimal tree decomposition can be theoretically obtained in time only super polynomial
in ϕ [3].

A summary of the complexity and capacity of our FuzzTree method is depicted in Table 2.
Regarding the parameterized complexity [9], the FuzzTree method is XP in the treewidth of
the pattern graph, both in time and in space. It represents progress compared to VF2 [7],
which is indeed implemented and efficient in practice due to the profusion of lookahead rules
but has a worst-case time complexity similar to O(nn). In practice, VF2 becomes costly
with dense graphs, even in its most modern versions [4, 17]. Furthermore, we compete with
the bound from the Color-Coding [1] technique by improving it in time and space. 2O(k) is
replaced by k ⩽ n in our bounds, which allows us to get rid of k as a parameter to restrict it
simply to the treewidth in our RNA case.

In addition, our method handles at the same time multiple labels on edges, directed
graphs and can integrate node labels. The latter has not been implemented but can be
added, as with labels on edges, without complexity overhead.
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Table 2 Complexities for RNA motif search. Comparison of state-of-the-art methods for
RNA motif search. With ϕ = tw(GP ), n = |VT |, k = |VP | and t the number of samples.

Method Name Color-Coding [1] VF2 [7] VeRNAl [24] FuzzTree

Year 1995 2004 (updated up
to 2018) 2021 2022

Method Tree coloring DFS with search
space reduction

Relational Graph
Convolution Net-
work

Sampling tech-
nique

Time complexity 2O(k)nϕ+1log(n) O(deg(GT )n) Exponential O
(
knt + knϕ+1)

Space complexity 2O(k)nϕ+1 O(n) Exponential O
(
nϕ+1)

Supported graph Directed and undir-
ected Undirected Directed and undir-

ected
Directed and undir-
ected

Supported labels One label by edge One label by node
Any number of la-
bels on edges and
nodes

Any number of la-
bels on edges and
nodes

Type of found
neighborhoods None None Isostericity related

Exact bound on
isostericity, miss-
ing edge and miss-
ing gap.

Implementation? No Yes Yes Yes

3 Results

3.1 Computations
The larger target graphs (of more than 500 nucleotides) were split into overlapping voxels to
increase computational efficiency. We extracted |GT | graphs centered in each nucleotide c at
a given radius R from c. For an extracted graph G, centered on c, we have:

∀j ∈ G, R(G) = GEO(j, c) ⩽ R.

Choices of technical parameters, such as the value for R, hardware and computation times are
discussed in Supp. Mat. A.3. For the sake of efficiency, we refrained from adding “phantom
edges” described in Section 2.2. Doing so enables possible violations of the monotonicity,
leading to the detection of motif occurrences in the context of a more remote homology, but
necessitated a further round of rejection (whose impact on performances remained negligible).

3.2 Data: the Kink-Turn motifs family
All interactions in the RNA structures are provided by FR3D [29]. We also use interactions
annotated as “near”. The Kink-Turn is an important RNA structural motif common in duplex
RNA that creates a sharp axial bend, enabling crucial tertiary interactions and binding [19].
The Kink-Turn has been shown to appear in multitudes of contexts through computational
and experimental methods [16, 22]. As of January 2023, there were 72 instances of the
Kink-Turn RNA annotated in the RNA3DMotifAtlas [26]. One was omitted because it was
not annotated on the main structure but one of its symmetric alternatives. The others span
46 different RNAs and are divided into 12 different families with different lengths, between 9
and 23 nucleotides and base pair signature. Members of the same family also differ in terms
of number of nucleotides and pairing.

The Kink-Turn family IL_29549.9 in RNA3DMotifsAtlas has the most occurrences (32)
and its signature graph shown in Fig. 2 is used as the pattern graph GP for the subsequent
sampling.

WABI 2023



20:14 Exploring the Natural Fuzziness of RNA Non-Canonical Geometries

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y

5Y7M_D
3SIV_C_F

6SY4_C
6SY6_D

2R8S_R

1U6B_B_C
5TBW_1
5J7L_DA_AA

Sensitivity and specificity of found mappings for the Kink Turn family with near

Figure 9 Sensitivity and Specificity of regions corresponding to sampled graphs in
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one or multiple Kink-Turns can be found. To keep track of them, nodes whose sensitivity is not
equal to one, are named of the graph “RNAname“_“chain”.

Empirically, RNA 3D motifs are small motifs that, despite not being tree-like, have
relatively small treewidth. It is especially the case for the Kink-Turn family, where 50
Kink-Turns pattern graphs have treewidth equal to 2 and 21 have treewidth equal to 3, which
makes our parameterization in treewidth practically quite relevant.

3.2.1 Results
We use the parameters shown in Table 3 with GP in Fig. 2 to sample at least 1000 graphs
in each of the 46 RNA structures. We also introduce a bias in the Boltzmann distribution
to favor values of neighborhood thresholds equal to T F

2 (instead of 0) to favor slightly
fuzzy mappings more often than exact mappings or extremely fuzzy ones. This choice is
motivated by the focus on the neighborhood more than on the exact mappings for which lots
of techniques already exist.

Table 3 Parameters. Used parameters and relevant range for FuzzTree computation on the
Kink-Turn group.

Parameter T L T E T G Dedge Dgap R nb_samples
Used value 20.0 4 20.0 5.0 10.0 R(GP ) + Dgap

4 1000
Relevant range [0, 50] J0, 6K [0, 50] [5, 10] [5, 20] R(GP ) + [ Dgap

4 , Dgap]

Our sampling returns sub-graphs of the target graphs GT . Using a python implementation
of VF2 [14, 7], we annotate in the 46 RNAs graphs all nucleotides in any of the mappings.
Each of the connected components in the 46 RNAs becomes a hit. The True Positives (TP)
are these covering a known Kink-Turn found by our method. The True Negative (TN) are
those that do not cover a Kink-Turn, rightly not found by our method. P designs the set of
all Kink-Turn motifs and N the set of all other motifs. We show the sensitivity (TP/P) and
specificity (TN/N) per RNA structure in Fig. 9.

In 38 out of the 46 RNAs a sensitivity of 1 is achieved, all Kink-Turns are covered in
graphs sampled by our method. The missing Kink-Turns fall into two categories. First,
too many missing edges: with only 6 Leontis-Westhof interactions in GT , allowing more
missing edges would match any interaction in the targets. Second, backbone connections
replaced by Leontis-Westhof interactions, as seen in the middle of Fig. 2, is not an allowable
transformation in our model.
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We also obtain in 33 RNAs a specificity over 75%. It indicates that even with relatively
lax parameters, not that many other instances in comparison to the amount of known
Kink-Turns are close to GT .

3.2.2 Other identified regions
An additional 198 locations in the 46 RNAs were identified. The Kink-Turn is essentially an
internal loop motif. We investigate if other internal loops sharing the same main 3D feature, a
sharp bend in an interior loop, are found. Using the python library forgi [32] we decomposed
these regions in their secondary structure elements. The majority, 125, mapped to regions
forming multiloops. A total of 33 were covering continuous double-stranded regions. The
angles of surrounding stems for each interior loop in the 46 RNAs (in blue) the identified
Kink-Turns in these RNAs (red) and the other 33 elements (in green) are shown in Fig. 10.

Figure 10 Angles in radiants. In blue for stems around every interior loop in the 46 RNAs.
In red for the Kink-Turns identified in these RNAs. In green for the additional 33 continuous
double-stranded regions.

There are 10 additional regions with angles above 1.4rad, and two of these had a sharp
turn in their structure in un-annotated region as seen in Fig. 11. We show below their graph
of interactions, with the cross-strand stackings in orange.

The first is in 5J7L chain DA and positions 78–86, 96–108. It overlaps an un-annotated
motif (IL_85931.1) that covers positions 81–85, 97–101, and 103–105. The second is located
in 7RQB, chain 1A, positions 2129–2138, 2153–2160, and is not covered or surrounded by
any annotated motif.

4 Conclusion

In this paper, we introduce FuzzTree, a multidimensional Boltzmann method for sampling a
graph pattern neighborhood in a target graph. FuzzTree defines three types of neighborhoods
based on RNA geometric diversity, LW interaction modifications, missing edges, and breaks
in the backbone. Each can be explicitly controlled. We show that our sampling method
complexity is parameterized by the treewidth of the pattern graph.

Two main limitations are inherent to our approach. Due to the intrinsic nature of
sampling, we cannot be assured that all neighboring graphs will be reported. In itself, for
large patterns, this is a feature since sampling allows uniform exploration of the exponentially

WABI 2023



20:16 Exploring the Natural Fuzziness of RNA Non-Canonical Geometries

Figure 11 Other matches. 5J7L on the left and 7RQB on the right. The 3D structure on the
left has IL_85931.1 highlighted in cyan, on the right each nucleotide is colored independently. In the
graphs, red nodes are matched with the pattern. Blue edges are in the RNA structure and red ones
are in the pattern, indicating modifications and removal. Red dashed lines are introduced “Fake
edges”. Magenta dashed lines indicate stackings.

growing neighborhood. By enabling per-feature biases, FuzzTree can also be calibrated to
favor the sampling of graphs at a desired location in the neighborhood to favor specific types
of variants (e.g., isostericity of modified edges). Letting the sampling run for longer will also
mitigate the problem. More importantly, some patterns cannot be identified, particularly if
an LW interaction is replaced by a backbone connection. While such cases are rare, they do
exist, and additional improvement will be needed to capture them.

We evaluate our method on the Kink-Turn group, a well-known interior loop motif that
induces a sharp bend in the structure and is annotated in 46 different RNA structures.
The Kink-Turns are grouped in the RNA3DMotifAtlas into 12 different subgroups with
varying lengths and interactions. Using only the signature graph of one subgroup, FuzzTree
samples conformations of over 2/3 of all Kink-Turns and identifies all of them in 88% of RNA
structures. A closer examination of the other sampled patterns reveals two previously un-
annotated sub-structures, each with a characteristic G-A trans-Hoogsteen-sugar interaction
and a sharp local bend.

Future work to complement this should broaden the evaluation framework by testing
FuzzTree on diverse RNA modules. There is also a need for new techniques to overcome
pattern identification limitations and explore adaptive sampling strategies to dynamically
steer the sampled neighborhood.

While FuzzTree was developed and adapted for RNA structure modules, it highlights the
flexibility of multidimensional Boltzmann sampling and could be applied to other biological
networks such as protein-protein interaction networks or metabolic pathways. Addressing
these questions and areas for future work could lead to more comprehensive insights into
complex RNA structures and other biological networks.
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A Supplementary material

A.1 About the sampling process
Sampling from a Multidimensional distribution in our case can be written formally as below:

▶ Definition 3 (Boltzmann distribution/Partition function). In the Multidimensional
Boltzmann Distribution, the probability to sample graph G, subgraph of GT with features
F1, .... Fm (that embody neighborhoods differences of GP for mapped graph G in GT ) of
respective weights w1, ... wm (that we can write more simply w = (w1, ...wm)) is proportional
to its energy:

PGP ,GT
(G | w) =

∏m
i=1 e−βwi.Fi(G)

Zw

where β := (RT )−1, R is the Gas constant, T the temperature in Kelvin, and Zw denotes the
partition function

Zw =
∑

G⊆GT

m∏
i=1

e−βwi.Fi(G)

We can forget about the β contribution as we can rewrite the weight w′i = βwi. The weights
wi are values chosen or tuned by us.

Tuning the weights is done by fixing a mean T F∗ (and T F threshold) for each type of
neighborhood. We can then tune the weight w(Fi) to give more “importance” that will favor
value around T F∗. In practice, when a feature for a neighborhood varies greatly between
instances, it means that this neighborhood is strongly relevant to distinguish the different
matches. It gives us an incentive to modify its weight accordingly. To do so, instead of
choosing weights manually, we solve the following problem:

minw

m∑
i=1
|E[Fi|w]− F ∗i |

This problem is known to be convex. We used so convex optimization method. Further
details about this problem, including the proof of convexity, are addressed in [15].

A.2 Computation of the partition function using dynamic programming
A.2.1 Definitions
First, we introduce the formal definition of the treewidth, we also depict what is a nice
tree decomposition (NTD) as it allows a simpler search during the dynamic programming
procedure. NTD implies no additional cost because an NTD has at most a size n = |GT |.

▶ Definition 4 (Tree Decomposition (TD)). Given a graph G = (V, E), a tree decomposition
of G is a tree T , whose nodes are bags Y1...Yt such that: (definition from Bodlander et al [3])

1. V ⊂
t⋃

i=1
Yi

2. ∀(u, v) ∈ E,∃i ∈ J1, tK, (u ∈ Yi) ∩ (v ∈ Yi)
3. ∀u ∈ V, {u|u ∈ Yi} is a subtree of T .
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▶ Definition 5 (Nice Tree Decomposition). A tree decomposition T of G = (V, E) is said
“nice” if each bags Yi has one of the three following forms:

Introduce: Node Yi has exactly one child of index c in T and Yi = Yc ∪ {v}
Forget: Node Yi has exactly one child of index c in T and Yc = Yi ∪ {v}
Join: Node Yi has exactly two children of indices c1 and c2 in T and Yi = Yc1 = Yc2

▶ Definition 6 (Treewidth). The treewidth ϕ of a graph G is defined as the biggest bag of the
“best” tree decomposition of G:

ϕ = min
tree dec. T of G

maxYi∈T |Yi| − 1.

A.2.2 Dynamic programming solution
We now address the computation of the partition function [15] from 3 through a dynamic
programming procedure on the nice tree decomposition of GT .

It is a bottom-up dynamic procedure (from leaves to the root) that relies on the following
different equations depending on the type of the node Yi in the nice tree decomposition T .
We denote:

The set of neighborhood thresholds: F =
(
T L, T E , T G

)
.

Mi, partial mapping at node Yi of T .
The separator node of Yi, sep(Yi) chosen as the first element of the set S:

S = {x ∈ Yi | x /∈ Y ′ with Y ′ a children of Yi}.

We can point out that, with a nice tree decomposition, there exists only a unique choice
for this node and the set S is reduced to a singleton.
Given a partial mapping Mi, we introduce the following Boolean condition to map each
contribution to a single bag and avoid multiple computations of it:

C(u1, u2, Yi, Mi) = (u1 = sep(Yi) ∩Mi(u2) ̸= ∅) ∪ (u2 = sep(Yi) ∩Mi(u1) ̸= ∅).

From this we introduce ∆(·) to denote the global contribution

∆(M ′
i , GT , Yi, T F ) =

{
dF

GT
(u1, u2, M ′

i) | C(u1, u2, Yi, M ′
i) is True

}
.

We fill the dynamic programming table P that stores the partial computation of the partition
function with equations:

Forget Node Yi with child Y ′:

P [Yi; Mi] = P [Y ′; Mi]

Introduction Node, creating vertex s := sep(Yi) ∈ VP having child Y ′:

P [Yi; Mi] =
∑

v∈D(s|Mi)

P [Y ′; Mi ∪ (s← v)]×
∏

T F∈F
δ∈∆(Mi∪(s←v),GT ,Yi,T F )

e−µ.w(T F ).δ

where D(v |M) denotes the set of admissible mappings for v ∈ VP , consistent with prior
assignment M , such that:

D(v |M) :=


VT if M = ∅⋂

u∈M
s.t. u≺v

{x ∈ VT |M(u) ≺ x}
⋂

u∈M
s.t. v≺u

{x ∈ VT | x ≺M(u)} otherwise.
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Join Node:

P [Yi; Mi] =
∏

Y ′∈children(Yi)

P [Y ′; Mi]

The backtracking step to retrieve the value of probability for each graph (and so the whole
Boltzmann distribution as introduced in 3) uses the same type of equations but going from
top to bottom: a number is drawn at each node to know if we have to add a value for current
mapping, given the partial partition function computed at each step of the forward procedure.
Both the forward and backward steps are currently known procedures that have been studied
and automatized in a framework named Infrared. [33], which has the advantage to be quite
permissive about the definition of the neighborhood cumulative differences.

A.3 Choice on technical parameters
For the choice of the radius R for creating slices of target graph GT , given an extracted
graph G from GT centered in nucleotide c, we first defined R(G) = minj∈GGEO(j, c). To be
exhaustive with our search, we must ensure that every G from GT is extracted with a radius
at least equals to R(GP ) + Dgap as it ensures that we have enough “space” to make GP fit
in G even if some gaps occur. It is due to these gaps that we need to add Dgap in R. It
embodies the specific case where the gap would have increased the length of the motif to
search in GT in a single direction by putting gaps one after the other. Due to the rarity of
this case, we choose, in the tests, to use a smaller radius equal to R(GP ) + Dgap

4 . The only
taken risk here is to miss some patterns, but it is more convenient to favor time convergence
as the pathological case on gaps evoked above is not one that we would like to target.

We also choose to use a timeout equal to 2000 seconds for the convergence of our algorithm
on each extracted graph. Here again, the only risk is to miss some additional patterns.
Nonetheless, all these limitations only mean that our current results can probably be slightly
better regarding expressiveness, which means that somebody with more computational
resources could use this tool and wait for even better performances.

A.4 Time results on Narval and Beluga clusters for FuzzTree
For this paper, computations were done on the Narval cluster and the Beluga cluster of the
Digital Research Alliance of Canada. Each used node on Narval is made of 64 cores with 2
CPUs AMD Rome 7532 @ 2.40 GHz. Each used node on Beluga is made of 40 cores with 2
CPUs Intel Gold 6148 Skylake @ 2.4 GHz. Multiprocessing was used simply by separating
the computations by chains of the same RNA and next, when relevant, by slices identified in
these RNA chains.

Some time results for computation of the FuzzTree method, by requesting one motif
on each RNA chain where Kink-Turns are known, are available in Fig. 12. The time
of computation is large but it is something expected with the XP theoretical complexity.
However, one can notice that in practice the treewidth of the selected pattern is equal
to 2 which allows a complexity in O

(
n3)

. No true time discrepancy appears between the
computation without near edges and the one with. On large graphs, due to the slicing, the
time of computation is reduced, but such reduction is not perfect as slicing computation is
still quite redundant: multiple graphs cover sometimes the same portion of the Kink-Turn.
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Figure 12 Time graph of the FuzzTree method on each group of studied RNA chains.
On the Beluga cluster, computations were done on 1 processor for small RNAs (less than 500
nucleotides, which corresponds to the three first graphs) and on 40 processors for large RNAs (more
than 500 nucleotides, which corresponds to the fourth graph). In that case, the depicted time is the
sum of each time consumed for each processor.
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