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Abstract
The problem of designing an RNA sequence v that encodes for a given target protein w plays an
important role in messenger RNA (mRNA) vaccine design. Due to codon degeneracy, there exist
exponentially many RNA sequences for a single target protein. These candidate RNA sequences
may adopt different secondary structure conformations with varying minimum free energy (MFE),
affecting their thermodynamic stability and consequently mRNA half-life. In addition, species-
specific codon usage bias, as measured by the codon adaptation index (CAI), also plays an essential
role in translation efficiency. While previous works have focused on optimizing either MFE or CAI,
more recent works have shown the merits of optimizing both objectives. Importantly, there is a
trade-off between MFE and CAI, i.e. optimizing one objective is at the expense of the other. Here, we
formulate the Pareto Optimal RNA Design problem, seeking the set of Pareto optimal solutions
for which no other solution exists that is better in terms of both MFE and CAI. We introduce
DERNA (DEsign RNA), which uses the weighted sum method to enumerate the Pareto front by
optimizing convex combinations of both objectives. DERNA uses dynamic programming to solve
each convex combination in O(|w|3) time and O(|w|2) space. Compared to a previous approach that
only optimizes MFE, we show on a benchmark dataset that DERNA obtains solutions with identical
MFE but superior CAI. Additionally, we show that DERNA matches the performance in terms of
solution quality of LinearDesign, a recent approach that similarly seeks to balance MFE and CAI.
Finally, we demonstrate our method’s potential for mRNA vaccine design using SARS-CoV-2 spike
as the target protein.
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1 Introduction

With the emergence of the COVID-19 pandemic, messenger RNA (mRNA) vaccines have
garnered significant attention due to their effectiveness in combating the disease [13, 17].
However, there remain significant challenges in the delivery [4] as well as the in vitro and
in vivo stability of mRNA-based vaccines and therapeutics [28]. Importantly, due to codon
degeneracy with 43 = 64 codons encoding for 20 distinct amino acids as well as translation
termination signals, there are exponentially many RNA sequences v for a single target
protein w. Synonymous codon choice impacts translational efficiency and mRNA stability in
two interrelated ways. First, a subset of “optimal” codons occur at a higher frequency in
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Figure 1 DERNA seeks Pareto optimal RNA sequences v for a target protein
w, balancing the minimum free energy (MFE) and codon adaptation index (CAI).
(a) For the Balanced RNA Design (BRD) problem, DERNA takes as input the parameter
λ ∈ [0, 1] and returns the RNA sequence v whose corresponding secondary structure P minimizes
λ · MFE(v, P ) − (1 − λ) · CAI(v, w). (b) For the Pareto Optimal RNA Design problem, DERNA
performs a systematic sweep on λ, solving multiple BRD instances and returning a set of Pareto
optimal solutions (v, P ).

highly-expressed genes [8] and “non-optimal” codons lead to increased ribosomal pausing and
decreased mRNA half-life [19, 29]. Second, depending on codon choice, each candidate RNA
sequence folds into a distinct secondary structure or conformation, affecting its thermodynamic
stability and consequently mRNA half-life. Recent studies have demonstrated the importance
of both factors, showing that increased secondary structure as well as optimal codon usage
lead to increased protein expression [16,24]. This leads to the following key question of this
paper. How does one identify RNA sequences that optimize both criteria?

Different organisms and even different genes within the same organism can have distinct
codon usage patterns. The codon adaptation index (CAI) is a measure that quantifies the
degree of codon usage bias in a protein coding sequence relative to a reference set of highly-
expressed genes [22]. The reference set is often chosen based on the assumption that these
genes have evolved to use codons that are mostly efficiently translated by the ribosome. Thus,
an RNA sequence with high CAI is expected to have higher rates of translation [8,19,29].
Specifically, for a reference gene set, we are given the relative frequencies g(x) of each codon
x in the gene set. Then, the CAI of an RNA sequence v is the geometric mean of the ratios
g(x)/ maxy∈S(x) g(y) of each codon x vs. the maximum relative frequency of a synonymous
codon y ∈ S(x) (see Equation (1)). RNA sequences that are composed of only optimal
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codons with maximum relative frequencies have by definition a CAI of 1. In our setting, it is
trivial to identify such an RNA sequence with CAI equal to 1 by simply choosing the codon
with maximum relative frequency for each amino acid of the target protein. However, such
an RNA sequence with optimal CAI may exhibit suboptimal amounts of secondary structure
(Figure 1).

RNA molecules adopt secondary structure and three-dimensional conformations as the
nucleotides within the RNA molecule and the surrounding solvent interact with each other.
When an RNA molecule folds into its conformation, it forms base-pairing interactions between
nucleotides that result in the lowest possible free energy [7]. This conformation is said to
have the minimum free energy (MFE). In general, an RNA molecule with a lower MFE is
more likely to be stable and maintain its integrity over time, whereas an RNA molecule
with a higher MFE is more likely to be degraded. Thermodynamic stability is an important
factor in identifying the most stable RNA sequences that are likely to be functional and
efficient in producing a target protein [16, 24]. Zuker and Stiegler [32] introduced a dynamic
programming algorithm to identify the conformation of RNA molecules with minimum free
energy from a given RNA sequence v. This approach was later extended independently by
Terai et al. [23] and Cohen and Skiena [1] to identify a RNA sequence v and corresponding
secondary structure with overall minimum MFE for a given target protein sequence w.
However, an RNA sequence with optimal MFE may have suboptimal CAI (Figure 1).

Recognizing the importance of examining both CAI and MFE, Zhang et al. [31] introduced
LinearDesign, which uses stochastic context-free grammars and deterministic finite automata
and applies a beam search heuristic to optimize MFE + λLD log CAI where λLD is a user-
specified parameter.

In this work, we model the trade-off between CAI and MFE as a multi-objective optimiz-
ation problem. That is, we introduce the Pareto Optimal RNA Design problem, seeking
the set of Pareto optimal solutions for which no other solution exists that is better in terms
of both MFE and CAI (Figure 1). We use the weighted sum method [30] to enumerate
the Pareto front by optimizing convex combinations of both objectives – leading to the
Balanced RNA Design problem (Figure 1). Our resulting algorithm, DERNA (DEsign
RNA), extends the Zuker and Stiegler dynamic programming approach [32] to solve each
convex combination in O(|w|3) time and O(|w|2) space. Unlike LinearDesign, where key
functions are closed source, DERNA is fully open source with all code and functionality
available to the user under a permissive license. We show on a benchmark dataset that
DERNA obtains solutions with identical MFE but superior CAI compared to CDSfold [23].
Additionally, we show that DERNA matches LinearDesign’s performance in terms of solution
quality. Finally, we run our method on the SARS-CoV-2 spike protein and demonstrate its
potential for mRNA vaccine design.

2 Problem Statement

A secondary structure for an RNA sequence with length n is a set of ordered base pairings
(i, j) ∈ [n] × [n] such that each base is paired with at most one other base and there are no
crossings base pairings (also known as pseudoknots). More formally, we define a secondary
structure as follows.

▶ Definition 1. A set P ⊆ [n] × [n] of base pairings is a secondary structure provided (i) for
each base pairing (i, j) ∈ P it holds that i < j, and for any two base pairings (i, j), (i′, j′) ∈ P

it holds that (ii) i = i′ if and only if j = j′ and (iii) if i < i′ < j then i < i′ < j′ < j.

WABI 2023
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Figure 2 There are five secondary structure elements. (a) Stacking. (b) Hairpin loop.
(c) Bulge loop. (d) Internal loop. (e) Multi-branch loop. Each structural element is defined by a
unique set P ′ of nucleotide indices involved in base pairings (indicated in red). In addition, each
structural element corresponds to a unique face of a planar embedding comprised of subsequences
v(P ′) (indicated in green). Nucleotides next to the base pairings (indicated in gray) are involved in
providing a free energy contribution to some structural components.

Following Zuker and Stiegler [32], a secondary structure P can be decomposed into several
secondary structure elements, such that the free energy of the secondary structure P is the
sum of the free energies contributed by each secondary structure element, defined as follows.

▶ Definition 2. A subset P ′ = {i, p1, q1, . . . , pk, qk, j} ⊆ [n] of bases is a secondary structure
element of P provided (i) i < p1 < q1 < . . . < pk < qk < j, (ii) (i, j) ∈ P , (iii) (pl, ql) ∈ P

for each l ∈ [k] and (iv) there exists no base pairing (i′, j′) ∈ P such that i < i′, j′ < p1 < j;
i < qk < i′, j′ < j; or ql < i′, j′ < pl+1 for all l ∈ {1, . . . , k − 1}.

Alternatively, each secondary structure element corresponds to a unique face of a planar
embedding of the secondary structure. Denoting the subsequence vi, . . . , vj by v[i, j], the
subsequences that make up each face or secondary structure element are defined as follows.

▶ Definition 3. A secondary structure element P ′ = {i, p1, q1, . . . , pk, qk, j} ⊆ [n] is comprised
of RNA subsequences v(P ′) = {v[i, p1], v[q1, p2], . . . , v[qk−1, pk], v[qk, j]}. For k = 0, i.e.
P ′ = {i, j}, the corresponding RNA subsequence v(P ′) equals {v[i, j]}.

Depending on the topology, we distinguish five types of secondary structure elements.
In the simplest case, base pairing (i, j) is immediately followed by the pairing (i + 1, j − 1),
which is called a stacking element.

▶ Definition 4. A secondary structure element P ′ of the form {i, i + 1, j − 1, j} is a stacking
element.

Base pairing (i, j) forms a hairpin loop if there are no other base pairings involving bases
i + 1, . . . , j − 1.

▶ Definition 5. A secondary structure element P ′ of the form {i, j} is a hairpin loop.

If base pairing (i, j) does not form a stacking element and there are other base pairings
(i′, j′) occurring between i and j then (i, j) forms an interior loop element. We distinguish
three types of interior loop elements: (i) a bulge loop, (ii) an internal loop and (iii) a
multi-branch loop. The first two types correspond to a interior loop element enclosing a
single base pairing (p1, q1), i.e. k = 1.

In a bulge loop, the enclosing base pairing is contiguous to either i or j, i.e. p1 = i + 1 or
q1 = j − 1.
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▶ Definition 6. A secondary structure element P ′ of the form {i, p1, q1, j} is a bulge loop
provided (i) (p1, q1) ̸= (i + 1, j − 1) and (ii) p1 = i + 1 or q1 = j − 1.

On the other hand, in an internal loop the enclosing base pairing is not contiguous, i.e.
p1 > i + 1 and q1 < j − 1.

▶ Definition 7. A secondary structure element P ′ of the form {i, p1, q1, j} is an internal
loop provided i + 1 < p1 < q1 < j − 1.

If the interior loop element encloses more than one base pairing, i.e. k > 1, then we call
the secondary structure element a multi-branch loop.

▶ Definition 8. A secondary structure element P ′ of the form {i, p1, q1, . . . , pk, qk, j} is a
multi-branch loop provided k > 1.

As mentioned, we define the minimum free energy MFE(v, P ) =
∑

(i,j)∈P MFE(v, P, (i, j))
of an RNA sequence v as the sum of the minimum free energies MFE(v, P, (i, j)) of the
secondary structure elements induced by each base pairing (i, j) ∈ P .

▶ Definition 9. The minimum free energy MFE(v, P ) of secondary structure P of RNA
sequence v equals

∑
(i,j)∈P MFE(v, P, (i, j)) where MFE(v, P, (i, j)) is the contribution of

the secondary structure element induced by a base pairing (i, j) ∈ P defined as

MFE(v, P, (i, j)) =



fs(v(P ′)), if P ′ = {i, i + 1, j − 1, j} is a stacking element,
fh(v(P ′)), if P ′ = {i, j} is a hairpin,
fb(v(P ′)), if P ′ = {i, p1, q1, j} is a bulge loop,
fi(v(P ′)), if P ′ = {i, p1, q1, j} is an internal loop,
fm(v(P ′)), if P ′ = {i, p1, q1, . . . , pk, qk, j} is a multi-branch loop.

The actual definitions of fs, fh, fb, fi and fm depend on the used energy model. Briefly, in
the widely used Turner energy model [26], the stacking energy value fs is computed using a
lookup table indexed by the four nucleotides comprising the base pairings (i, j), (i + 1, j − 1).
Similarly, the hairpin energy value fh is a function of the four nucleotides vi, vi+1, vj−1, vj and
the length j − i + 1 of the hairpin loop. For a bulge loop, the energy value fb is a function of
the four nucleotides in the base pairings (i, j), (p1, q1) and the number of unpaired nucleotides
in the loop v({i, p1, q1, j}). For an internal loop, the energy value fh is a function of the eight
nucleotides vi, vi+1, vp1−1, vp1 , vq1 , vq1+1, vj−1, vj surrounding the base pairings (i, j), (p1, q1)
as well as the number of unpaired nucleotides in the loop v({i, p1, q1, j}). Finally, the energy
value fm is a function of the number k of base pairings enclosed in the multi-loop, the four
nucleotides surrounding each base pairing and the number of unpaired nucleotides in the
loop v({i, p1, q1, . . . , pk, qk, j}). We refer to Appendix A.1 for more details.

The classical RNA Secondary Structure Prediction problem is defined as follows.

▶ Problem 1 (RNA Secondary Structure Prediction (RSSP)). Given an RNA
sequence v ∈ Σn

rna, find a secondary structure P such that MFE(v, P ) is minimized.

This problem can be solved in O(n3) time using the Zuker algorithm [32]. In this work we
are interested in a reverse translation variant of the problem. That is, given a protein sequence
w ∈ Σm

prot where Σprot is the set of 20 amino acids, we seek a corresponding RNA sequence
v ∈ Σ3m

rna that translates into w. To that end, we use the function S : Σprot → P(Σ3
rna) such

that S(α) is the set of codons that encode amino acid α ∈ Σprot. We define σ(a, s) = 3(a−1)+s

to indicate the RNA sequence index corresponding to protein sequence index a ∈ [m] and
codon index s ∈ {1, 2, 3}.

WABI 2023
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▶ Definition 10. RNA sequence v ∈ Σn
rna encodes for protein sequence w ∈ Σm

prot provided
(i) |v| = n = 3m = 3|w| and (ii) v[σ(a, 1), σ(a, 3)] ∈ S(wa) for all protein indices a ∈ [m].

Rather than only considering the minimum free energy MFE(v, P ), we also take species-
specific codon usage bias into account. In other words, given species-specific relative codon
frequencies g : Σ3

rna → [0, 1], we compute the codon adaptation index CAI(v, w) defined as
follows.

▶ Definition 11. The codon adaptation index CAI(v, w) of RNA sequence v that translates
into protein sequence w is defined as

CAI(v, w) = m

√√√√ m∏
a=1

g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) (1)

where g(x) is the species-specific relative frequency of codon x ∈ Σ3
rna such that g(x) ≥ 0 for

all codons x and
∑

x∈Σ3
rna

g(x) = 1.

The CAI ranges from 0 to 1, where a value of 1 indicates that for each amino acid
wa the maximum frequency codon arg maxx∈S(wa) g(x) is used [22]. Thus, given a target
protein sequence w, there are two competing objective functions; we seek a corresponding
RNA sequence v and secondary structure P that simultaneously minimizes MFE(v, P )
and maximizes CAI(v, w). Equivalently, rather than maximizing CAI(v, w), we maximize
CAI(v, w) defined as

CAI(v, w) = m

√√√√ m∏
a=1

g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) ∝

m∑
a=1

log g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) = CAI(v, w). (2)

We model the trade-off between MFE and CAI by introducing a parameter λ ∈ [0, 1] and
minimizing a convex combination of MFE(v, P ) and −CAI(v, w).

▶ Problem 2 (Balanced RNA Design (BRD)). Given a protein sequence w ∈ Σm
prot and

parameter λ ∈ [0, 1], find an RNA sequence v ∈ Σ3m
rna with secondary structure P such that

(i) v encodes for w and (ii) solution (v, P ) minimizes λ · MFE(v, P ) − (1 − λ) · CAI(v, w).

We say that a solution (v, P ) is Pareto optimal if (v, P ) is better than all other feasible
solutions in at least one of the two objectives. In other words, there does not exist another
solution (v′, P ′) that is better in both objectives, or equal in one objective and better in the
other. In our final problem, we seek all Pareto optimal RNA sequences v.

▶ Problem 3 (Pareto Optimal RNA Design (PORD)). Given a protein sequence w ∈
Σm

prot, enumerate all RNA sequences v ∈ Σ3m
rna each with a secondary structure P such that

(i) v encodes for w and (ii) (v, P ) is Pareto optimal w.r.t. to MFE(v, P ) and CAI(v, w).

3 Methods

3.1 RNA Design with Fixed λ

In the Balanced RNA Design problem (Problem 2), we are given a protein sequence
w ∈ Σm

prot and parameter λ ∈ [0, 1] that models the trade-off between MFE and CAI. In
this section, we show how to solve this problem using dynamic programming. Specifically,
for protein sequence indices a, b ∈ [m], codon indices s, t ∈ {1, 2, 3}, codons x ∈ S(wa) and
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y ∈ S(wb), O[a][b][s][t][x][y] is the minimum objective value when solving a problem instance
restricted to RNA sequence v[σ(a, s), σ(b, t)] such that codons x and y are used to encode
amino acids wa and wb, respectively. Using O[a][b][s][t][x][y], we express the objective value
of an optimal solution as

min
x∈S(w1),y∈S(wm)

O[1][m][1][3][x][y]. (3)

To see why this is the case, observe that O[1][m][1][3][x][y] equals the minimum objective
value for the complete RNA sequence v[σ(1, 1), σ(m, 3)] = v[1, 3m] = v restricted to using
codons x and y for amino acid w1 and wm, respectively. Thus, the overall minimum objective
value is obtained for the codon pair (x, y) ∈ S(w1)×S(wm) that minimizes O[1][m][1][3][x][y].

Let Γ = {(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)} be the set of allowed base pair-
ings in the Turner energy model [14]. To express the contribution of the CAI, we
introduce the shorthand ḡ(w, x) = log(g(x)/ maxy∈S(w) g(y)) such that CAI(v, w) =∑m

a=1 ḡ(wa, v[σ(a, 1), σ(a, 3)]). We define O[a][b][s][t][x][y] recursively as

min



−(1 − λ)ḡ(wa, x), if a = b, x = y,
∞, if a = b, x ̸= y,
O[a][b][s + 1][t][x][y], if a < b, s ∈ {1, 2},
O[a][b][s][t − 1][x][y], if a < b, t ∈ {2, 3},

min
x′∈S(wa+1)

{O[a + 1][b][1][t][x′][y]} − (1 − λ)ḡ(wa, x), if a ≤ b − 1, s = 3,

min
y′∈S(wb−1)

{O[a][b − 1][s][3][x][y′]} − (1 − λ)ḡ(wb, y), if a ≤ b − 1, t = 1,

min
a≤c<b,t′∈{1,2},x′∈S(wc)


O[a][c][s][t′][x][x′]

+E[c][b][t′ + 1][t][x′][y]
+(1 − λ)ḡ(wc, x′)

 , if a < b,

min
a≤c<b−1,y′∈S(wc),x′∈S(wc+1)

{
O[a][c][s][3][x][y′]

+E[c + 1][b][1][t][x′][y]

}
, if a < b − 1,

E[a][b][s][t][x][y], if a < b, (xs, yt) ∈ Γ.

There are two components in the objective function, the CAI and the MFE. We account
for MFE upon identifying structural elements at base pairing (σ(a, s), σ(b, t)) using the
energy functions in Definition 9. To avoid double counting, we must ensure that CAI is only
accounted for once for each codon. As such, we include a CAI contribution when crossing
codon boundaries or reaching a valid base case.

The first case in the above recurrence corresponds to the base case where a = b and
x = y. In that case, base pairing between σ(a, s) and σ(b, t) is not possible as the Turner
energy model [14] requires at least two nucleotides in between a pairing. In this base case,
we must account for the CAI contribution of codon x. The other base case occurs when
a = b and x ̸= y, which is not allowed as any one amino acid must be encoded by a single
codon – this case thus receives a value of ∞.

The next two cases correspond to, respectively, incrementing either the left index σ(a, s)
or decrementing the right index σ(b, t) without crossing any codon boundary and leaving the
corresponding nucleotide unpaired. As such, we do not have to account for CAI. However, in
the following two cases, we additionally cross the codon boundary and thus must account
for the CAI contribution of respectively codons x and y. Next, we include two cases
corresponding to bifurcating into two parts, one part is between nucleotides σ(a, s) and

WABI 2023
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Figure 3 Dynamic programming for solving the Balanced RNA Design problem.
(a) To solve this problem, we store four dynamic programming tables O, E, M and N with
identical dimensions indexed as [a][b][s][t][x][y]. Rows and columns correspond to pairs (a, s), (b, t) ∈
[m] × {1, 2, 3}, respectively, both ordered lexicographically in increasing order. With the exception
of the base cases for table O where a = b (indicated in light gray), the recurrences require a < b

(indicated in blue). The dashed lines outline the entries of the table on which the red entry depends.
(b) Each entry [(a, s)][(s, t)] expands into another codon-by-codon table, whose rows are codons
x ∈ S(wa) and columns are codons y ∈ S(wb).

σ(c, t′) and the other part is between nucleotides σ(c, t′) + 1 and σ(b, t). In the first case, the
split happens inside a codon, i.e. t′ ∈ {1, 2}. We must include a correction of +(1−λ)ḡ(wc, x′)
as both parts will include a CAI contribution of the same codon x′. On other hand, when
the split happens outside a codon, i.e. t′ = 3 then no such correction is needed.

The last case corresponds to base pairing between σ(a, s) and σ(b, t). Specific-
ally, E[a][b][s][t][x][y] denotes the optimal objective value when nucleotides vσ(a,s)
and vσ(b,t) correspond to codons x and y, respectively, and form a base pairing.
When calculating E[a][b][s][t][x][y], we consider the minimum among the five cases
corresponding the five secondary structures elements defined in Section 2. That
is, E[a][b][s][t][x][y] equals min{Es[a][b][s][t][x][y], Eh[a][b][s][t][x][y], Eb[a][b][s][t][x][y],
Ei[a][b][s][t][x][y], Em[a][b][s][t][x][y]}. The precise definitions are given in Appendix A.2. In
particular, we require two additional recurrences M [a][b][s][t][x][y] and N [a][b][s][t][x][y] for
solving the multi-branch loop case.

3.1.1 Dynamic Programming, Time and Space Complexity

We store the following four tables: (i) O[a][b][s][t][x][y], (ii) E[a][b][s][t][x][y],
(iii) M [a][b][s][t][x][y] and (iv) N [a][b][s][t][x][y], each with the same dimensions. In particular,
as each potential base pairing (σ(a, s), σ(b, t)) corresponds to exactly one of five structural
elements, we do not store the corresponding values Es[a][b][s][t][x][y], Eh[a][b][s][t][x][y],
Eb[a][b][s][t][x][y], Ei[a][b][s][t][x][y] and Em[a][b][s][t][x][y] separately, but only their min-
imum value in E[a][b][s][t][x][y]. Note that the four stored tables have the same dimensions
comprised of protein sequence indices a, b ∈ [m], codon indices s, t ∈ {1, 2, 3}, and codons
x ∈ S(wa) and y ∈ S(wb). Letting K denote the maximum number of codons associated
with a single amino acid – the amino acids leucine (L), serine (S) and arginine (R) each have
K = 6 of codons – we conclude that the space complexity is O(m2K2).

Inspection of the recurrences reveals that the computation of each entry [a][b][s][t][x][y] in
the four tables does not require access to entries [a][b][s][t][x′][y′] using other codons x′ ̸= x
and y′ ̸= y. On the other hand, we do require access to entries [a′][b′][s′][t′][x′][y′] where
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σ(a′, s′) ≥ σ(a, s), σ(b′, t′) ≤ σ(b, t) (indicated with dashed lines in Figure 3). Moreover, with
the exception of the base cases for table O, where a = b, the recurrences require a < b. This
means we can organize the four tables as two-dimensional tables where the rows correspond
to entries (a, s) and the columns correspond to entries (b, t), both sorted in increasing
lexicographical order. Each entry [(a, s)][(b, t)] corresponds to another two-dimensional
table whose rows correspond to codons x ∈ S(wa) and columns to codons y ∈ S(wb) – see
Figure 3b. We fill out the tables diagonally. More precisely, filling out the four entries
indexed by [a][b][s][t][x][y], we check if base pairing between σ(a, s) and σ(b, t) is possible,
i.e. if (xs, yt) ∈ Γ. If so, we will first fill out the entry in E followed by N and then finally
M . On the other hand, we will first fill out the entry in N , then M and finally E. After
completely filling out tables E, M and N , we fill out table O. This ordering follows from the
recurrences. We use back pointers to identify the optimal solution (v, P ) when backtracing.

For each entry O[a][b][s][t][x][y], the running time is dominated by the case to determine
E[a][b][s][t][x][y]. That is, for each entry E[a][b][s][t][x][y], it takes O(K2) time to compute a
stacking element or a hairpin loop element, O(mK2) time to compute a bulge loop element,
and worst case O(m2K6) time to determine the contribution of an internal loop element. To
remedy the worst case O(m2K6) time, we follow other secondary structure prediction methods
and employ a parameter L to bound the maximum interior loop size, including bulge loop and
internal loop [9,12]. Then, the time to determine the contribution of an internal loop element
can be reduced to O(mLK6). Since there are O(m2K2) entries to compute, the overall time
complexity of solving the dynamic program is O(m2K2) · O(mLK6) = O(m3LK8).

When disregarding CAI, i.e. λ = 1, we can adapt the recurrences such that for each entry
E[a][b][s][t][x][y], it would take O(1) time to compute a a stacking or a hairpin loop element,
O(m) time to compute a bulge loop element, and worst case O(m2) time to determine the
contribution of an internal loop element. With a similar implementation of a maximum
interior loop size L, the time to compute an internal loop element can be reduced to O(mL).
Thus, the overall time complexity drops to O(m2K2) · O(mL) = O(m3LK2) when λ = 1.

3.2 Pareto Optimal RNA Design
In the Pareto Optimal RNA Design problem (Problem 3), we are given a protein
sequence w ∈ Σm

prot and seek a set of Pareto optimal solutions (v, P ). We use the weighted
sum method [30]. In this method, distinct convex combinations of the multiple objective
functions is optimized. In our case this corresponds to solving distinct convex combinations
of the two objectives MFE (Definition 9) and CAI (Equation (2)), which correspond to
solving distinct instances of the Balanced RNA Design problem with varying values of
the parameter λ ∈ [0, 1]. The weighted sum method has several limitations: (i) multiple
λs may generate the same solution, (ii) the non-convex part of the Pareto front cannot be
recovered, and (iii) there are non-uniform sampling issues [2, 5].

We mitigate the first limitation by recursively examining λ values. More specifically, we
maintain a queue Q of intervals [λ−, λ+] as well as a hash table X such that X[λ] yields the
solution (v, P ) of the Balanced RNA Design (BRD) problem instance (w, λ). Initially,
Q contains a single interval [ϵ, 1 − ϵ] where ϵ is a small constant (the default value in our
implementation is ϵ = 10−5). Additionally, we initialize X[ϵ] and X[1 − ϵ] with the solutions
of BRD problem instances (w, ϵ) and (w, 1 − ϵ), respectively. As long as the queue Q is
not empty, we obtain an interval [λ−, λ+] from Q, and solve a new BRD instance (w, λ)
where λ = λ− + (λ+ − λ−)/2, yielding solution (v, P ). If this solution differs from X[λ−]
and X[λ+], we set X[λ] = (v, P ) and add (λ−, λ) and (λ, λ+) to the queue Q if λ − λ− > τ .
We use a default value of 10−3 for the threshold parameter τ .

WABI 2023



21:10 DERNA: Balancing MFE and CAI for Pareto Optimal RNA Design

3.3 Implementation Details of DERNA
We implemented our algorithms for solving the BRD and PORD problems in C++11. The
resulting method, DERNA (short for DEsign RNA), is available at https://github.com/
elkebir-group/derna.git under the BSD 3-clause license. Usage instructions and examples
are also available on the GitHub site.

DERNA uses the same energy model [15] as CDSfold [23]. For codon usage data, DERNA
use the Homo sapiens codon usage table published in the codon usage database [18]. In
addition, DERNA accepts alternative energy models and codon usage data in CSV format.

To validate the correctness of our algorithm and its implementation, we split our recur-
rences into two separate components and utilized two separate tables to store the MFE and
the CAI separately. Using the real data instances examined in Section 4, for each solution
(v, P ) identified by DERNA, we confirmed that the MFE predicted by DERNA matched
the MFE calculated using the Zuker algorithm [32] when given DERNA’s inferred RNA
sequence v. Additionally, we recomputed the CAI of DERNA’s inferred RNA sequence v
and confirmed that the resulting value matched the CAI inferred by DERNA.

4 Results

We compare DERNA to CDSfold [23] and LinearDesign [31] on 100 protein sequences from
the UniProt database [3] (Section 4.1) as well as on a case study involving the SARS-CoV-2
spike protein (Section 4.2). While the LinearDesign paper [31] describes both an exact and
heuristic algorithm, only the heuristic algorithm was publicly available. As such, we were
only able to include the heuristic algorithm in our benchmarking. All experiments were
performed on a laptop with an Apple M1 Max 10-core CPU and 64 GB of RAM.

4.1 Benchmarking on 100 UniProt Protein Sequences
We begin by performing experiments that prioritize MFE over CAI in Section 4.1.1. In
Section 4.1.2, we focus on the Pareto Optimal RNA Design problem, seeking solutions
that collectively capture the trade-off between MFE and CAI.

4.1.1 Prioritizing MFE
The goal of this section is to assess the ability of RNA design methods to prioritize MFE
over CAI. We seek solutions that achieve the minimum MFE and, as a secondary criterion,
achieve largest CAI – i.e. among the space of solutions that achieve minimum MFE, we prefer
those solutions that have the largest CAI value. We benchmarked using the same 100 protein
sequences used in the CDSfold paper [23], which come from the UniProt database [3] and
have lengths ranging from 78 to 2828 amino acids (Figure 4a). By design, CDSfold does not
take CAI into account. Our method DERNA as well as LinearDesign support balancing MFE
and CAI. For DERNA, we set λ = 1 − ϵ = 1 − 10−5. We note that LinearDesign’s objective
function is slightly different than DERNA’s, seeking an RNA sequence v and secondary
structure P that minimize MFE(v, P ) − λLD · log CAI(v, w) for a target protein sequence w.
To similarly prioritize MFE, we set λLD = ϵ = 10−5 for LinearDesign and ran it with default
parameters.

With the exception of the longest sequence (Q9NR99) with 2828 amino acids, which
LinearDesign failed to complete within 24 hours (after which we killed the process), all
methods ran successfully on all sequences. Moreover, with the exception of protein sequence
Q9HAE3 (with 211 amino acids), all methods achieved the same minimum MFE (Figure 4b.

https://github.com/elkebir-group/derna.git
https://github.com/elkebir-group/derna.git
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Figure 4 DERNA with λ = 1 − ϵ identifies solutions that achieve optimal MFE and
largest CAI as a secondary objective. (a) We used 100 UniProt sequences, with varying lengths
as shown. (b) With one exception (discussed in the text), all methods returned solutions with
the same MFE. (c) However, the CAI values differed drastically between methods, with DERNA
(λ = 1 − ϵ) and LinearDesign outperforming CDSfold. (d) As an example, we show protein sequence
P15421 for which CDSfold (top) and DERNA (bottom) inferred the same MFE and identical
secondary structures. However, the solutions contain different codons resulting in different CAI
values. (e) Wall-clock running times.

However, the CAI values varied between methods. In particular, DERNA with λ = ϵ and
LinearDesign λLD achieved larger CAI values than CDSfold for all instances (Figure 4c
and Figure S1). This makes sense because CDSfold only optimizes MFE but not CAI. The
improved CAI values suggest that the sequences generated using our approach may exhibit
higher in vivo translational efficiency without sacrificing mRNA half-life [16].

To further illustrate this point, we highlight the results for protein sequence P15421
with 78 amino acids. Both CDSfold and DERNA achieved the same MFE value of −148.7,
yielding identical secondary structures (in terms of complementary base pairings) consisting
of mostly stacking elements that achieve the lowest MFE. CDSfold, however, identified a
different RNA sequence than DERNA resulting in a CAI of 0.707 whereas DERNA achieved
a CAI of 0.736. The two RNA sequences differ at four codons encoding four distinct amino
acids. For each such amino acid, DERNA used the codon that achieved the largest CAI value.
For example, for the first codon encoding for the amino acid lysine (K), DERNA used the
codon GUG with a relative usage frequency of 1 whereas CDSfold used the codon GUA with
a smaller relative frequency of 0.253. The other three codons differed in a similar fashion.
We note that LinearDesign identified the same RNA sequence as DERNA for this instance.

As for the CAI values inferred by LinearDesign, these largely match those inferred
by DERNA (Figure 4c and Figure S1). The only exception is protein sequence Q9HAE3
where LinearDesign performed better in terms of CAI with a value of 0.754 vs. 0.748 for
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DERNA. The solution inferred by DERNA, however, has a better MFE of −369.9 vs −369.4
for LinearDesign. Using a smaller λ = 0.062509 < 1 − ϵ, DERNA was able to recover
LinearDesign’s solution. On the other hand, we were not able to identify a λLD value for
which LinearDesign would identify DERNA’s solution that achieved better MFE. A potential
reason for this is that publicly-available version of LinearDesign is not an exact algorithm.

Finally, we consider the running times of CDSfold, LinearDesign and DERNA. Leaving
out the largest instance (for which LinearDesign failed), we found that LinearDesign was
the fastest algorithm with running times ranging from 1.80 to 1149.02 seconds, followed by
CDSfold ranging from 1.86 to 3411.91 seconds and then DERNA with running times ranging
from 16 to 21434 seconds. It is important to note that DERNA is an exact algorithm, while
the publicly-available version of LinearDesign is a heuristic utilizing beam search. Indeed, as
discussed above there was one instance were LinearDesign returned a suboptimal solution
(in terms of the lexicographical objective of prioritizing MFE first followed by CAI).

We note that the difference in running times between DERNA and CDSfold because
DERNA takes into consideration both MFE and CAI whereas CDSfold only considers MFE.
As discussed in Section 3.1.1, leaving out CAI from the objective value reduces the asymptotic
running time from O(m3LK8) to O(m3LK2) where m is the protein sequence length and K

and L are constants corresponding to the maximum number of codons per amino acid and the
maximum interior loop length, respectively. Indeed, this is also reflected in wall-clock times
when running an altered version of DERNA that only considers MFE, reducing the running
times to between 2 and 4951 seconds, closely matching those of LinearDesign (Figure 4e).
As expected, however, this comes at the expense of decreased CAI values for the inferred
RNA sequences (Figure 4c and Figure S1).

4.1.2 Balancing MFE and CAI
We now assess DERNA’s ability to identify Pareto optimal solutions. To that end, we
ran DERNA in λ-sweep mode with a termination threshold value of τ = 0.001. Note
that the number of λ values explored by DERNA depends on both the value of τ as
well as the input instance itself. Unlike our method, LinearDesign does not include an
automated way of altering their λLD parameter. As such, we manually varied λLD ∈
{10−10, 10−3, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100} – we did not set λLD to the same, instance-
specific λ values examined by DERNA as the two parameters play different roles in the
corresponding objective functions of both methods. Due to an increased number of runs per
instance, we restricted our analysis to the 50 smallest instances with lengths ranging from 78
to 494 amino acids.

We begin by discussing the results for protein sequence P15421, which has 78 amino
acids. DERNA examined 27 distinct λ values, leading to 12 distinct solutions (Figure 5a).
On the other hand, the list of 14 λLD values resulted in 9 distinct solutions identified by
LinearDesign. Recall that λ = 1 prioritizes MFE for DERNA whereas λ = 0 prioritizes
CAI. Moreover, recall that each value of λ ∈ [0, 1] leads to a Pareto optimal solution. A
natural question is what is the smallest value λMFE that resulted in the optimal MFE? For
protein sequence P15421 this was λMFE = 0.0371186. Given that τ = 0.001, this means that
DERNA does not explore the part of the Pareto front that contains solutions with higher
CAI values. Indeed, for this protein sequence, the largest non-optimal CAI value identified
by DERNA equals 0.968613, obtained using λ = 0.000987, followed by a CAI of 0.923779
using λ = 0.001963. On the other hand, the largest non-optimal CAI value identified by
LinearDesign equals 0.991, which was obtained using λLD = 10, with a total of 7 solutions
that have a CAI of at least 0.923779. A downside of LinearDesign’s objective function, which
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is of the form MFE(v, P ) − λLD · log CAI(v, w), is that a non-bounded λLD = ∞ is required
to exclusively prioritize CAI as opposed to a bounded value of λ = 1 for DERNA. Here,
LinearDesign obtained this CAI-optimal solution only using λLD = 100.

We now extend these analyses to all 50 protein sequences. First, we observed that the
median value of λMFE – the smallest λ that produces an MFE optimal solution – equals
0.0546964. Second, for τ = 0.001, the median number of λs examined by DERNA is
36 (Figure S2a), yielding a median number of 17 solutions (Figure S2b). On the other
hand, the 14 λLD examined by LinearDesign yielded a median number of 13 solutions
(Figure S2c). To compare MFEs across instances, we define the MFE percentage as
(MFE(w, λ) − MFE(w, 0)/(MFE(w, 1) − MFE(w, 0)) for each protein sequence w where
MFE(w, λ) equals the MFE value of the solution obtained using λ. In other words, an
MFE percentage of 100% means that the identified solution achieved the best possible MFE
whereas an MFE percentage of 0% means that the worst MFE that favors CAI was obtained.
We define CAI percentage similarly. Matching the previous analysis, we indeed see that
DERNA favored the part of the Pareto front that prioritizes MFE (Figure 5b). Conversely,
for our choices of λLD, LinearDesign more heavily favored the part of the Pareto front that
prioritizes CAI (Figure 5c).

Finally, we delve more into the trade-off between CAI and MFE. To that end, we explored
the following two questions. First, if one is willing to accept a certain CAI percentage, what
is the best MFE that one can obtain? Second, for a specified minimum MFE percentage,
what is the best CAI that one can obtain? Among the 50 considered instances, we found that
if we accept solutions with a CAI percentage of at least 50% the corresponding best MFE
percentages for these solutions identified by DERNA range from 81.298% to 92.65% with
a median of 88.066% (Figure 5e). However, increasing the minimum CAI percentage to at
least 80%, resulted in a decrease in best MFE of solutions identified by DERNA, with MFE
percentages ranging from 55.624% to 72.965% with a median of 61.263%. Conversely, for
an MFE percentage of at least 50%, DERNA obtained solutions that have CAI percentages
ranging from 86.403% to 91.386% with a median of 87.874% (Figure 5f). Increasing the
minimum MFE percentage to at least 80%, resulted in a decrease in best CAI of solutions
identified by DERNA, with CAI percentages ranging from 54.443% to 71.362% with a
median of 61.075%. When designing an RNA sequence for a target protein it is important to
understand the trade-off between MFE and CAI, especially when trying to identify a single
solution on the Pareto front.

4.2 Case Study: SARS-CoV-2 Spike Protein
The spike (S) protein on the surface of the SARS-CoV-2 virus is responsible for recognizing
and binding to the host cell’s receptors, as well as merging itself with the host cell membrane,
without which the virus would be unable to interact with the host cells and initiate infection
[10]. The SARS-CoV-2 S protein, with its 1273 amino acids, is therefore the primary target
of the Moderna and Pfizer-BioNTech mRNA vaccines [20].

We applied LinearDesign to the S protein using a list of manually set values for λLD,
specifically λLD ∈ {10−10, 10−3, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100}. LinearDesign generated 14
distinct solutions corresponding to the 14 chosen λ values. Similarly, we ran DERNA on the
S protein with termination threshold τ = 0.0001, ten times smaller than the previous analysis
in Section 4.1.2. DERNA evaluated 76 distinct λ values and generated 56 distinct solutions.
The set of solutions obtained through LinearDesign overlaps with those generated by DERNA
(Figure 6a), with 3 identical solutions identified by both LinearDesign and DERNA.
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Figure 5 DERNA models the trade-off between MFE and CAI. These analyses are
restricted to the 50 smallest UniProt sequences. (a) Solutions identified by DERNA (blue) and
LinearDesign (red) for proteins sequence P15421. The right y-axis shows the MFE whereas the left
y-axis shows the range-normalized MFE percentage. Similarly, the top x-axis shows the CAI wheres
the bottom x-axis shows the range-normalized CAI percentage. (b-d) MFE and CAI percentages
inferred by both methods across all 50 instances. (e) For each instance, we show the best MFE
percentage on the y-axis when only considering solutions that achieve the CAI percentage specified
on the x-axis. (f) For each instance, we show the best CAI percentage on the y-axis when only
considering solutions that achieve the MFE percentage specified on the x-axis.

Finally, we compared DERNA’s solutions to the Pfizer-BioNTech and Moderna mRNA
sequences. The Pfizer-BioNTech mRNA sequence has an MFE of −1217 and a CAI of 0.95
(Figure 6b). For the same CAI value, DERNA identified a solution with a better MFE of
−1955.2 (Figure 6c). On the other hand, the Moderna mRNA sequence has an MFE of
−1369.2 and a CAI of 0.98. Similarly, for the same CAI value, DERNA identified a solution
with a better MFE of −1724.8 These two alternative solutions might lead to increased mRNA
half-life without sacrificing translational efficacy [16, 24]. We note that the overall minimum
MFE equals −2486.7 with a corresponding CAI of 0.737 (Figure S3a), whereas solutions
with overall maximum CAI of 1 lead to a decreased best MFE of −1384.3 (Figure S3b).

5 Discussion

Given a target protein sequence w, we introduced the Pareto Optimal RNA Design
(PORD) problem of identifying a set of Pareto optimal solutions (v, P ) composed of an RNA
sequence v that encodes for w and its corresponding secondary structure P that together
balance the minimum free energy (MFE) and codon adaptation index (CAI). In addition, we
introduced the Balanced RNA Design (BRD) problem, where we additionally take as
input the parameter λ ∈ [0, 1] and return an RNA sequence v whose corresponding secondary
structure P minimizes λ · MFE(v, P ) − (1 − λ) · CAI(v, w). To solve both problems, we
introduced DERNA (DEsign RNA). Building on the work of Zuker and Stiegler [32], DERNA
solves the BRD problem via dynamic programming in O(|w|3) time and O(|w|2) space. In
addition, DERNA solves the PORD problem via the weighted sum method [30], enumerating
the Pareto front by solving multiple distinct instances of the BRD problem via a systematic
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Figure 6 DERNA identifies alternative sequences for the SARS-CoV-2 spike (S)
protein. (a) Solution identified by DERNA (blue) and LinearDesign (red). (b) Secondary structures
of the Pfizer-BioNTech and Moderna mRNA vaccine sequences and alternative solutions provided
by DERNA, from left to right are Pfizer-BioNTech, DERNA with λ = 1.5 · 10−3, Moderna, and
DERNA with λ = 10−4 respectively.

sweep on λ. On a benchmark dataset of 100 protein sequences, we demonstrated that
DERNA obtained solutions with identical MFE but superior CAI compared to CDSfold [23],
a previous approach that only optimizes MFE. Additionally, we showed that DERNA matched
LinearDesign’s performance in terms of solution quality, a recent approach that similarly
seeks to balance MFE and CAI. While LinearDesign demonstrated better performance in
terms of runtime, it is important to note that it employs a parameter-dependent algorithm
that produces heuristic outcomes, whereas DERNA is guaranteed to solve the problem to
optimality. In addition, key functionality of LinearDesign is closed source, whereas DERNA
is fully open source. Finally, we demonstrated our method’s potential for mRNA vaccine
design using SARS-CoV-2 spike as the target protein.

For future development, it would be beneficial to integrate additional secondary structures
beyond the five already considered in the algorithm, such as dangling ends. In particular,
dangling ends allow one to capture the importance of 5’ end in mRNA stability. That is,
several studies have shown that secondary structure near the 5’ untranslated region leads
to decreased translation initiation and therefore decreased translational efficiency [6,25,27].
It will be particularly interesting to identify RNA sequences whose best MFE secondary
structure lacks secondary structure at the 5’ – this will probably require similar techniques
as employed in traditional RNA design where one seeks an RNA sequence that folds into a
desired RNA secondary structure [9,11]. Finally, it will be valuable to investigate computing
the Pareto front through algebraic dynamic programming [21].
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A Supplementary Methods

A.1 Turner Energy Function
In this section, we give detailed definitions for fs, fh, fb, fi and fm based on the
Turner energy model [14]. Let v ∈ Σn

rna be an RNA sequence. Recall that Γ =
{(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)} is the set of allowed base pairings.

We begin with fs, which takes in two base pairings (vi, vj), (vi+1, vj−1) ∈ Γ. Then, fs
computes the free energy contributed by the stacking element as

fs(vivj , vi+1, vj−1) = stacking[(vi, vj)][(vi+1, vj−1)]

where stacking : Γ × Γ → R is a lookup table with experimentally measured element energies.
For the hairpin element, fh takes in the base pairing (vi, vj) ∈ Γ, the unpaired nucleotides

vi+1, vj−1, and the length of the hairpin loop l = j − i. Then, fh yields the free energy
contributed by the hairpin loop as
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fh(vi, vj , vi+1, vj−1, l) = hairpin[l]+mismatchH[(vi, vj ])][vi+1][vj−1]
+1{l = 3 ∧ (vi, vj) ∈ {(A, U), (U, A)}} · D

where hairpin : N → N and mismatchH : Γ × Σrna × Σrna → R are lookup tables with free
energies for the length of the hairpin and paired and their directly adjacent nucleotides,
respectively. Finally, D is an additional penalty term applied to AU base pairings.

For the bulge loop element, fb takes in two base pairings (vi, vj), (vp1 , vq1) ∈ Γ and the
length of the bulge loop l = max (j − i, q1 − p1). The free energy fb contributed by the bulge
loop equals

fb(vi, vj , vp1 , vq1 , l) = bulge[l]+1{(vi, vj) ∈ {(A, U), (U, A)}} · D

+1{(vp1 , vq1) ∈ {(A, U), (U, A)}} · D

where bulge : N → R is a lookup table with free energies for the length of the hairpin, and D

is an additional penalty term applied to AU base pairings.
For the internal loop element, fi takes in takes in two base pairings (vi, vj), (vp1 , vq1) ∈

Γ, the unpaired nucleotides vi+1, vj−1, vp1−1, vq1+1, and the length of the left loop
ll = j − i as well as the length of the right loop lr = q1 − p1. The free energy
fi(vi, vj , vp1 , vq1 , vi+1, vj−1, vp1−1, vq1+1, ll, lr) contributed by the internal loop equals

mismatchI[(vi, vj)][(vp1 , vq1)][vi+1][vj−1][vp1−1][vq1+1] + internal[ll + lr] + |ll − lr| · E

where internal and mismatchI are lookup tables with experimentally measured energies, and
E is a penalty applied to imbalanced loops. Note that the above equation is a simplification
– in the actual implementation the used lookup table mismatchI may vary based on ll and lr.

A.2 Recurrences for Structural Elements
Due to space constraints we omit the precise definitions of the recurrences of the various
structural elements.
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Figure S1 Comparison of CAI values for the benchmark dataset of 100 protein
sequences. We compare CDSfold, DERNA with λ = 1, DERNA with λ = 1 − ϵ and LinearDesign
with λLD = ϵ. (a) DERNA with λ = 1 performs slightly worse than CDSfold in terms of CAI.
However, neither method optimizes for CAI. (b-c) DERNA with λ = 1 − ϵ and LinearDesign achieve
better CAI values than CDSfold. (d) With the exception of one protein sequence (Q9HAE3),
discussed in the main text, LinearDesign and DERNA achieve the same CAI value. For protein
sequence Q9HAE3, LinearDesign achieves a better CAI of 0.754 vs 0.748 for DERNA, but this
comes at the expense of MFE (LinearDesign: −369.4 vs. DERNA: −369.9).

WABI 2023



21:20 DERNA: Balancing MFE and CAI for Pareto Optimal RNA Design

20 25 30 35 40 45 50 55
# unique  values

0

2

4

6

8

10

Co
un

t
a

10 15 20 25 30
# unique DERNA solutions

0

2

4

6

8

10

12

Co
un

t

b

8 9 10 11 12 13 14
# unique LinearDesign solutions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
un

t

c

Figure S2 Distribution of (a) the number of unique λ values, (b) the number of unique
solutions by DERNA, and (c) the number of unique solutions by LinearDesign for the
dataset of 50 protein sequences.

Figure S3 DERNA identifies distinct mRNA sequences for SARS-CoV-2 S protein
for (a) λ = ϵ (b) λ = 1 − ϵ.
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