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Abstract
One of the most fundamental problems in genome rearrangement is the (genomic) distance problem.
It is typically formulated as finding the minimum number of rearrangements under a model that are
needed to transform one genome into the other. A powerful multi-chromosomal model is the Double
Cut and Join (DCJ) model.

While the DCJ model is not able to deal with some situations that occur in practice, like
duplicated or lost regions, it was extended over time to handle these cases. First, it was extended to
the DCJ-indel model, solving the issue of lost markers. Later ILP-solutions for so called natural
genomes, in which each genomic region may occur an arbitrary number of times, were developed,
enabling in theory to solve the distance problem for any pair of genomes. However, some theoretical
and practical issues remained unsolved.

On the theoretical side of things, there exist two disparate views of the DCJ-indel model,
motivated in the same way, but with different conceptualizations that could not be reconciled so far.

On the practical side, while the solutions for natural genomes typically perform well on telomere
to telomere resolved genomes, they have been shown in recent years to quickly loose performance on
genomes with a large number of contigs or linear chromosomes. This has been linked to a particular
technique increasing the solution space superexponentially named capping.

Recently, we introduced a new conceptualization of the DCJ-indel model within the context of
another rearrangement problem. In this manuscript, we will apply this new conceptualization to the
distance problem. In doing this, we uncover the relation between the disparate conceptualizations of
the DCJ-indel model. We are also able to derive an ILP solution to the distance problem that does
not rely on capping and therefore significantly improves upon the performance of previous solutions
for genomes with high numbers of contigs while still solving the problem exactly. To the best of our
knowledge, our approach is the first allowing for an exact computation of the DCJ-indel distance for
natural genomes with large numbers of linear chromosomes.

We demonstrate the performance advantage as well as limitations in comparison to an existing
solution on simulated genomes as well as showing its practical usefulness in an analysis of 11
Drosophila genomes.
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22:2 A Capping-Free Solution to the Natural Distance Problem

1 Introduction

In genome rearrangement studies, genomes are analyzed on a high level. Most often, the
basic unit used is therefore not nucleotides, but oriented genetic markers, such as genes. The
most fundamental problem in theoretical studies of genome rearrangements is the distance
problem, which asks to provide the minimum number of rearrangements needed to transform
one genome into the other under a restricted set of operations, also called a model.

In early approaches, such as the inversion model [12], solutions to the distance problem
focused primarily on unichromosomal data, in which each marker appeared exactly once in
each genome. These assumptions limited the applications of the models to real biological
data, which often contained multiple chromosomes and a wide variety of marker distributions.
Since then, researchers have sought to enable models to handle more realistic data. A major
breakthrough was the DCJ-model introduced by Yancopoulos et al. in 2005 [18], a simple
model that was nonetheless capable of handling multiple chromosomes. In 2010, Braga,
Willing and Stoye extended the DCJ-model to the DCJ-indel model, enabling it to handle
markers unique to one genome [5]. An independent, equivalent conceptualization of the
same DCJ and indel operations was developed by Compeau in 2012 [7], although the precise
relationship of the two conceptualizations remained unclear [8]. We refer to these views as
the BWS- and Compeau-conceptualization respectively.

In 2020, the BWS-conceptualization was combined with previous results by Shao et al. [17]
in [4] to yield the performant ILP solution ding for genome pairs with arbitrary distributions
of markers, the so called natural genomes. In theory, ding enables the computation of the
rearrangement distance between any pair of genomes available today.

However, ding uses a technique known as capping, which transforms linear chromosomes
into circular ones during solving time. As described in [15], capping increases the solution
space of ILPs like ding super-exponentially in the number of linear chromosomes. Since
many assemblies available today are not resolved on a chromosome level and instead fragment
into sometimes thousands of contigs, this renders distance computation infeasible yet again
for many available genomes today. In [15], Rubert and Braga develop a heuristic solution
to reduce the search space spanned by capping. Nonetheless, no exact solutions for the
DCJ-indel distance problem of natural genomes avoiding capping exist as of yet.

In this work, we apply a new view on the DCJ-indel model developed in [3] to the
distance problem. Using this, we are able to bridge the gap between the BWS- and Compeau
conceptualizations in Section 3.1. Furthermore, this new conceptualization lends itself to a
distance formula which is simple enough to be developed into a capping-free ILP (Section 4),
which we then evaluate in Section 5 to show its performance advantage over ding.

2 Problem Definition

For this work, we use the same notation as in our previous work. Therefore large parts of
this section are adapted from [3]. We conceptualize a genome G as a graph (XG, MG ∪ AG).
Its vertices XG are the beginnings mt and ends mh of markers m := {mt, mh} ∈ MG, which
we refer to as extremities. The genome’s adjacencies AG are undirected edges {mx, ny} ∈ AG,
which signify that the extremities mx and ny are neighboring on the same chromosome. As
a shorthand notation, we write ab for an adjacency {a, b}. Both AG and MG are required to
form a matching on XG.

Because of that requirement, each path in G is simple and alternates between markers
and adjacencies. A component of a genome is thus either a linear or circular simple path.
We refer to them as linear and circular chromosomes respectively. The extremities in which
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Figure 1 Genome of 7 markers with one linear and one circular chromosome. Markers drawn as
arrows, adjacencies drawn as double lines.
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Figure 2 MRD for two genomes on an unresolved homology (≡1) with families {11, 12},

{21, 22, 23}, {31, 32}, {41}, {51}.

a linear chromosome ends are called telomeres. Additionally, we refer to a subpath of a
chromosome of which the first and last edge are markers as a chromosome segment (called a
marker path in [3]). An example of a genome is given in Figure 1.

In our model, each marker is unique, thus there are no markers shared between genomes.
Therefore, in order to calculate a meaningful distance between genomes, we borrow a concept
from biology, namely homology. Homology can be modeled as an equivalence relation on
the markers, i.e. m ≡ n for some m, n ∈ MG. We call the equivalence class [m] of a marker
m its family. We also extend the equivalence relation to the extremities with mt ≡ nt

and mh ≡ nh if and only if m ≡ n, but require no head being equivalent to any tail, i.e.
mt ̸≡ nh∀m, n ∈ MG. We can then extend the equivalence relation to adjacencies as ab ≡ cd

if and only if both of the extremities are equivalent, i.e. a ≡ c ∧ b ≡ d or a ≡ d ∧ b ≡ c.
To illustrate our concept of homology, we introduce the Multi-Relational Diagram (MRD),

a graph data structure here that is also useful for the distance computation. We deviate
from the definition in [4] by omitting indel edges from our definition.

▶ Definition 1. The MRD of two genomes A,B and a homology relation (≡) is a graph
MRD(A,B, ≡) = (V, E) with V = XA ∪ XB and two types of edges E = Eγ ∪ Eξ, namely
adjacency edges Eγ = AA ∪ AB and extremity edges Eξ = {{x, y} ∈ XA × XB | x ≡ y}.

We give an example of a MRD in Figure 2. We see that in that example, 41 and 51
have no homologues in the other genome respectively. We refer to such markers as singular.
Additionally, We call a circular or linear chromosome consisting only of singular markers a
circular or linear singleton.

Note also that the family {21, 22, 23} in this example has more than just one marker
per genome. We call markers of such families ambiguous. We refer to a homology, in
which no markers are ambiguous as resolved. In order to determine the precise nature of
rearrangements occurring between two genomes, it is helpful to find a matching between the
markers of two genomes.

WABI 2023
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Figure 3 MRD for two genomes on a resolved homology (
⋆
≡1) with families {11, 12},

{21, 22}, {23}, {31, 32}, {41}, {51}. Extremities of singular markers (called lava vertices from Section 3
onward) are filled black. (

⋆
≡1) is a (maximal) matching on (≡1) of Figure 2.

▶ Definition 2. A matching ( ⋆≡) on a given homology (≡) is a resolved homology for which
holds m

⋆≡ n =⇒ m ≡ n for any pair of markers m, n.

We call two genomes A,B equal under a homology (≡), if there is a matching ( ⋆≡) on (≡),
such that each marker and adjacency of A has one equivalent in B under ⋆≡ and vice versa.

We note that when the homology is resolved, in the MRD at most one extremity edge
connects to each vertex. Because the adjacencies form a matching on the extremities, the
resulting MRD consists of only simple cycles and paths. We therefore call such MRDs simple.
We note that a simple MRD fits the definition of a simple rearrangement graph as studied in
Section 3 of [3]. An example of a simple MRD is given in Figure 3.

Rearrangements in our transformation distance are modeled by the Double-Cut-And-Join
(DCJ) operation. A DCJ operation applies up to two cuts in the genome and reconnects the
incident extremities or telomeres. More formally, we can write as in [2]:

▶ Definition 3. A DCJ operation transforms up to two the adjacencies ab, cd ∈ AA or
telomeres s, t of genome A in one of the following ways:

ab, cd → ac, bd or ab, cd → ad, bc

ab, s → as, b or ab, s → bs, a

ab → a, b

s, t → st

To model markers being gained or lost, we introduce segmental insertions and deletions.

▶ Definition 4. An insertion of length k transforms a genome A into A′ by adding a chro-
mosome segment p = p1, p2, ..., p2k−1p2k to the genome. Note that this adds the markers
(p1, p2), ..., (p2k−1, p2k) ∈ MA′ . An insertion may additionally either add the adjacency
p2kp1 ∈ AA′ , apply the transformation ab → ap1, p2kb for an adjacency ab or the transform-
ation s → p1s for a telomere s. A deletion of length k removes the chromosome segment
p = p1, ..., p2k and creates the adjacency ab if previously ap1, p2kb ∈ AA.

We are now in a position to formulate the distance problem as finding a shortest trans-
formation of DCJ and indel operations of one genome into the other.

▶ Problem 5. Given two genomes, A,B and a homology (≡), find a shortest sequence
s1, ..., sk of DCJ and indel-operations transforming A into a genome equal to B. We call the
length of k the DCJ-indel distance of A,B under (≡) and write did

DCJ(A,B, ≡) = k.

The original DCJ-indel model by Braga et al. [6] only allowed indels on chromosome seg-
ments of singular markers to avoid scenarios that deleted and reinserted whole chromosomes.
For a resolved homology ⋆≡, we call did

DCJ(A,B,
⋆≡) the restricted DCJ-indel distance if we

allow only indels of segments comprised solely of singular markers in scenarios in Problem 5.
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Figure 4 All different types of components in a simple MRD. Vertices of genome A are on the
top, vertices of genome B are on the bottom of each component. Lava vertices are filled black.

For unresolved homologies, we can apply the same model by just finding a matching
on the original homology. However, in order to not create a similar “free lunch” issue, we
restrict ourselves to an established model, the Maximum Matching model [11]. We call a
matching (+≡) on a homology (≡) maximal if it has at most one singular marker for every
family in (≡).

▶ Problem 6. Given two genomes, A,B and a homology (≡), find a maximal matching (+≡)
on (≡), such that did

DCJ(A,B,
+≡) is minimized.

3 A New DCJ-Indel Distance Formula

We note that the only maximal matching on a resolved homology ( ⋆≡) is ( ⋆≡) itself. Thus, for
resolved homologies, in any scenario for Problem 6, we know deletions can only affect singular
markers. Let us now regard the MRD of a pair of genomes A,B for a resolved homology
( ⋆≡). Since each marker has at most one homologue, each vertex is connected to at most one
extremity edge. Since adjacency edges form a matching on the vertices, again, the graph
consists only of simple cycles and paths. All cycles are even and we write the set of cycles as
C◦. Paths can end either in a vertex without an extremity edge or adjacency edge. We name
the vertices, in which a path ends in its endpoints. Vertices without extremity edges are
special, because, as we established earlier, they are the extremities of the markers that will
be part of indels during the sorting. We therefore name them lava vertices. The other type
of vertex is a vertex without an adjacent adjacency edge, i.e. a telomere. Note that there is a
special case wherein a lava vertex can also be a telomere. We can then identify different types
of paths by their endpoints. We write a or b for a lava vertex and A or B for a telomere,
depending on whether its part of genome A or B. We then obtain a partition of paths into 10
different subsets, namely PA◦A,PA|B ,PB◦B ,PA◦a,PA|b,PB|a,PB◦b,Pa◦a,Pa|b,Pb◦b. In order
to be consistent with [3], we use ◦ and | to distinguish even and odd paths respectively.
Furthermore, we write px(∗)y as a shorthand for the cardinality of Px(∗)y and Px(∗)y for a
generic example of an element of Px(∗)y.

Usually it is not necessary to think of all 10 different sets as separate entities, because
they behave very similarly with respect to applied DCJ or indel operations. In textual form
we therefore often use a coarser distinction, naming paths with two lava vertices as pontoons,
paths with a telomere and a lava vertex as piers as well as paths with two telomeres as
viaducts. An overview of this notation is given in Figure 4.

Another notation, we adopt from [3] is for a DCJ ab, cd → ac, bd affecting the adjacencies
ab and cd in components Kab, Kcd of the MRD respectively, we can instead view the DCJ as
Kab, Kcd → Kac, Kbd transforming the components Kab, Kcd into Kac, Kbd. In combination

WABI 2023



22:6 A Capping-Free Solution to the Natural Distance Problem

Figure 5 An example of a DCJ operation that can be written as PA◦a, PB|a → PA|B , Pa◦a.

with the generic member notation from above, we can write operations abstractly like so:
PA◦a, PB|a → PA|B , Pa◦a. For reference, we have also shown this DCJ operation in Figure 5.
Based on this notation and with the help of observations from [3], it is possible to derive a
distance formula. We do so in detail in Supplement S.1. However, this formula is equivalent
to that of Compeau and BWS as we will see in the following subsection. We thus only state
it here.

▶ Theorem 7. For two genomes A,B and a resolved homology ( ⋆≡) for which both genomes
contain no circular singletons, we have the distance formula

did
DCJ(A,B,

⋆≡) = n − c◦ +
⌈

pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B

2

⌉
with n the number of matched markers, n = |{(m, n) ∈ MA × MB | m

⋆≡ n}|.

Note that the constraint to genomes without circular singletons constitutes no serious
restriction, as Compeau showed that circular singletons each require one indel operation and
can thus be dealt with in pre-processing [8].

To more easily address individual terms in the formula, we use the followig shorthands,

F := n − c◦ + P̃ := n − c◦ +
⌈

p̃

2

⌉
:= n − c◦ +

⌈
pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B

2

⌉
.

3.1 Relation of the BWS- and Compeau-Conceptualization
We now examine how the terms in our distance formula relate to both the Compeau- and
BWS-conceptualizations of the DCJ-indel model. In doing that, we uncover the nature of
the relation between these two views that have been perceived as entirely separate since their
conception [8].

Braga et al. [6] and Compeau [8] use the adjacency and breakpoint graphs respectively.
Both graphs are strongly related to the MRD. In fact, one obtains the adjacency graph by
collapsing all adjacency edges of a simple MRD and the breakpoint graph by collapsing all
its extremity edges. In order to avoid confusion, we will present their results here as if they
had been formulated on a simple MRD. When consulting the original works in [6, 8], the
reader should keep this in mind. Particularly in [8] the length of a path is determined by
its adjacency edges instead of by its extremity edges as defined here. Therefore, parities of
viaducts and pontoons are exactly opposite in [8] to the ones stated here.

We will compare the models by examining the chromosome segments that are deleted
or inserted (see Definition 4), which we refer to as indel groups. We say an adjacency ab

or its extremities a, b are part of an indel group p if there is a′b′ ≡ ab with a′b′ ∈ p or p

starts and ends in a′ and b′. In terms of indel groups, our view is closely related to the
BWS-conceptualization, because both create the indel groups implicitly during sorting (see
Supplement S.1). In terms of the graph, our conceptualization is more closely related to
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Bracelets Chains

Figure 6 Components resulting from a completion as in [8]. Vertices and Edges added during
completion are colored in grey.

Figure 7 Path as found in [4] as another way of writing the paths in [6] by adding indel edges
between lava vertices of the same gene. Indel edges here drawn in dashed. In this work, indel edges
are omitted and the collection of components arising is called a bridge.

Compeau’s because it essentially operates on the same type of components (lava vertices are
called open in [8], piers are π- and γ-paths and pontoons are {π, π}-, {π, γ}- and {γ, γ}-paths).
However, in [8], indels are not modeled as an explicit operation, but instead emulated by
integrating or excising artificial circular chromosomes during sorting. Adding the correct
chromosomes, the completion, is therefore the main problem solved in [8]. These additional
chromosomes are then the explicitly constructed indel groups in the sorting. Because the
homology of the markers needed for the completion is already known beforehand on a resolved
homology, the task is to find the correct new adjacencies to add to the graph. Then, if an
adjacency a′b′ is found in the completion, the extremities a ≡ a′, b ≡ b′ of the originally
singular markers will be part of the same indel group. Once the completion is constructed,
there are no more lava vertices in the graph. Instead, former piers and pontoons are joined
into new components, either bracelets, which are circular and consist of pontoons only, or
chains, which consist of two piers and possibly pontoons. An example of a completion can
be found in Figure 6.

In [6], lava vertices are avoided by viewing singular markers as part of adjacencies of
matched markers, called G-adjacencies. This is equivalent to connecting the head and tail
vertex of a singular marker with a special type of edge, called indel edge as is done in [4]. We
call a collection of components that can be traversed as one once indel edges are introduced a
crossing. We distinguish between circular crossings called ferries and linear crossings called
bridges.

▶ Definition 8. A pontoon bridge b1, .., bk for k ≥ 2 is a string of components bi, such that
b1, bk are piers, (bi)k−1

i=2 are pontoons and there are singular markers (mi)k−1
i=1 with mi ≠ mj

for i ̸= j whose extremities are contained as lava vertex in bi, bi+1 for all mi. A string of
components is called a bridge if it is a pontoon bridge or consists of a single viaduct.

▶ Definition 9. A pontoon ferry f1, ..., fl for l ≥ 1 is a string of pontoons fi, such that here
are singular markers (mi)l

i=1 with mi ̸= mj for i ≠ j whose extremities are contained as lava
vertices in fi, fi+1 for all mi for i < l and the extremities of ml are contained in f1 and fl.
A string of components is called a ferry if it is a pontoon ferry or consists of a single cycle.

Ferries and bridges are cycles and paths in [6] respectively. An example of a bridge can be
found in Figure 7. Crossings are first sorted separately in [6], so we start our comparison
by doing the same. We thus aim to find internal operations that only involve components
of the same crossing. During sorting, we want to make sure that the operations we apply
are not only optimal in the context of the crossing, but in the graph as a whole. There are

WABI 2023
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Figure 8 Safe DCJ operations accumulating markers separated by even pontoons (in [6] called a
run) remain optimal in the safe bracelet joining the extremities of these markers.

certain operations that are guaranteed to be optimal because they reduce F in any MRD
by 1, no matter which other components are found in the graph. We call such an operation
safe. For example, extracting a cycle from any component is safe (as ∆c◦ = 1), whereas
recombining two even piers, such as PA◦a, PA◦a → PA◦A, Pa◦a is not safe, because it is only
optimal under the premise that pA◦a > pB|a. There are only 7 distinct types of safe DCJ
operations. We list them in Table 1. We also note that as in [6], instead of sorting A to B,
we can sort both A and B to a common genome. By thinking this way, we can better exploit
the symmetry of the situation.

Table 1 All safe types of DCJ operations. Each reduces the F by 1, no matter the number
of other components in the graph. Above are all safe operations in a pure DCJ scenario. The
operations below can also function as safe deletions if one of the resultants in brackets is removed.
For reference: F = n − c◦ +

⌈
(pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B)/2

⌉
.

Safe operation −∆c◦ ∆pa|b ∆ max(pA◦a, pB|a) ∆ max(pA|b, pB◦b) −∆pA|B

K → K′ + C◦ -1 0 0 0 0
PA◦A → PA|B , PA|B 0 0 0 0 -2
PB◦B → PA|B , PA|B 0 0 0 0 -2

PA◦A, PB◦B → PA|B , PA|B 0 0 0 0 -2
Pa|b, Pa|b → (Pa◦a)∗, (Pb◦b)∗ 0 -2 0 0 0
PA◦a, PB|a → PA|B , (Pa◦a)∗ 0 0 -1 0 -1
PA|b, PB◦b → PA|B , (Pb◦b)∗ 0 0 0 -1 -1

The most obvious safe operation is the extraction of an even cycle from another component.
If one continues to extract even cycles from an even pontoon p = x1...xk, one arrives at the
pontoon p′ = x1xk, which consists of a single adjacency. The corresponding markers can
then be dealt with with the same indel operation, meaning x1, xk are part of the same indel
group. Braga et al. notice the same thing in [6]; they refer to markers that are only separated
by even pontoons as a run, which they notice can be “accumulated” in this fashion. For
an extensive example, see Figure S.2.1 in Supplement S.2, Steps (a), (b). In [8], genomes
are not explicitly sorted, so there is no true equivalent to safe operations, but Compeau
systematically finds chains and bracelets he can be sure are optimal in any breakpoint graph
(Algorithm 9, Steps 1 to 3). We therefore call these chains and bracelets safe, too. In fact,
the very first safe bracelet Compeau identifies, is a 1-bracelet consisting of a single even
pontoon (Lemma 5 in [8]). If one creates this bracelet from the even pontoon p = x1...xk

the adjacency added for the completion is x′
1x′

k with x1 ≡ x′
1 and xk ≡ x′

k. Thus, here
too, x1xk are part of the same indel group. This way of constructing the indel groups is
shown in Supplement S.2, Figure S.2.2 with Bracelets (a), (b). Notice also that the safe
operations sorting the two adjacent lava vertices of an even pontoon together remain optimal
in a bracelet like this (see Figure 8).

The next safe bracelet Compeau finds, is joining two odd pontoons together. He shows
that it is safe by ruling out all other uses of two pontoons as at best co-optimal (Lemma 6,
Proof of Thm 8 and Step 2 of Algorithm 9 in [8]). An example can be found as Bracelet (c) of
Figure S.2.2. This again, corresponds to a safe operation, namely Pa|b, Pa|b → Pa◦a, Pb◦b. In
fact, all safe chains and bracelets of two components correspond directly to safe operations. We
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Figure 9 For all safe DCJ operations with two piers or pontoons as sources, there is a safe
bracelet or chain in which the same operation is optimal and vice versa.

have visualized this fact in Figure 9. Note that the corresponding safe operation again remains
optimal in the safe chain or bracelet. Because of this more direct correspondence between the
Compeau-conceptualization and our formula, we focus more on the correspondence between
the BWS-conceptualization and our formula in the following. Braga et al. identify the same
operation by noticing that the number of runs can be reduced by 2 if one applies cuts in
between between runs of A and B (see Proposition 3 in [6]). This is of course precisely a DCJ
with two odd pontoons as sources in our model. Because the resultants of this operation
are the two even pontoons Pa◦a, Pb◦b, these can in turn be reduced to single adjacencies by
excising even cycles. Again, the implication for indel groups in all models is that for two odd
pontoons p1 = a1x1, ..., xkb1, p2 = a2xk+1, ..., xlb2, the adjacency a1a2 can be part of the
same indel group if b1b2 is part of the same indel group and vice versa. This equivalence is
further illustrated by comparing the effects of Steps (c) and (d) of Figure S.2.1 to Bracelet (c)
of Figure S.2.2 of Supplement S.2.

Dealing in this fashion with all pontoons of a crossing, we reduce all but possibly one odd
pontoon to single adjacency edges, which can then be dealt with in a single indel operation.
Because ferries must contain an even number of odd pontoons, they can be sorted entirely
by safe operations in this way. To quantify the number of operations needed, Braga et al.
define the indel potential λ(X) of a crossing X as the number of indel operations obtained
in a DCJ-optimal sorting [6]. Since it is possible to trade off indel and DCJ operations,
this definition is not easily reflected in the other conceptualizations. However, as they show
that sorting a crossing X separately needs did

DCJ(X) = dDCJ(X) + λ(X) steps, we can also
think of the indel potential as the overhead introduced by the singular markers if we sort the
crossing separately. In [6], it is shown that λ(X) =

⌈
Λ(X)+1

2

⌉
with Λ(X) the number of runs

for a crossing X. If a ferry contains at least two runs, we can find a bijection between runs
and odd pontoons. Denoting q(X) as the contribution to quantity q by crossing X. We can
thus write Λ(X) = pa|b(X) for a ferry with at least two runs. Therefore, we find for a ferry
X with at least two runs, their formula translates to ours,

n(X) − c(X) + λ(X) = n(X) − c(X) +
⌈

Λ(X) + 1
2

⌉
= n(X) − 1 + Λ(X) + 2

2 = n(X) + Λ(X)
2 = n(X) +

⌈
pa|b(X)

2

⌉
.

Similarly, this equivalence can be shown if there is only 1 run in X. By the Compeau method,
if there are d singular markers, d markers are added as part of completion chromosomes, so
the number of markers after completion is N = n + d. Meanwhile, each Pa◦a and Pb◦b creates
a bracelet. Each pair Pa|b, Pa|b also forms a bracelet. Since d = pa|b + pa◦a + pb◦b, we have
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n(X) +
⌈

pa|b(X)
2

⌉
= n(X) +

pa|b(X)
2 = n(X) −

pa|b(X)
2 + pa|b(X)

= n(X) + d(X) −
pa|b(X)

2 − pa◦a(X) − pb◦b(X)

= N(X) − (pπ,π(X) + pγ,γ(X) +
⌊

pπ,γ(X)
2

⌋
),

which is precisely the Compeau formula if no piers or viaducts are involved. We see that our
formula acts as a sort of missing link between the two other formulas here. Since ferries can
be dealt with entirely with internal safe operations, this formula can even be generalized to
the whole graph for circular genomes. In fact, this has been done in [4], yielding our formula
for this specific case.

Using this way of examining the contribution of individual crossings, we were also able
to re-calculate the indel potential with our formula for all 10 types of bridges in [6]. The
results can be found in Table S.2.1 of Supplement S.2. Notably, when sorting a bridge
independently, one can also first exhaust all safe operations. After this, only the piers and
possibly a single odd pontoon might be “left over” (see also Figure S.2.1 after Step (d)).
We call these components unsaturated. Since each safe operation also has a corresponding
safe chain or bracelet, these are also the only components, which end up in unsafe chains
if one restricts the completion to a single crossing (compare to Figure S.2.2). Since every
other component can be dealt with safe operations, unsaturated components are the only
ones that might have to be involved in what is called in [6] a (path) recombination, that is,
a DCJ operation going beyond a single crossing. When studying recombinations, we can
therefore abstract from any concrete bridge p = p1, ..., pk with piers p1, pk and only write it
as its unsaturated components, that is p1pk if p contains an even number of odd pontoons
or as p1Pa|bpk otherwise. We call this the reduced bridge. Interestingly, Braga et al. make
the same abstraction and identify the bridges by the genome of their telomeres and the
genome of the first and last run. This direct correspondence is illustrated by comparing
Columns 1 and 4 of Table S.2.1. In [6], another observation is that (reduced) bridges of
the type PA|b, PB◦b or PA◦a, PB|a never need to appear as sources for any recombination.
Using our conceptualization, we can confirm that because PA|b, PB◦b → PA|B , Pb◦b and
PA◦a, PB|a → PA|B , Pa◦a are safe operations, these types of bridges can be sorted entirely by
internal safe operations. It therefore makes sense to group them as in [6] with viaducts, the
other type of bridge that can be sorted in this way.

All other bridges might need recombinations to be sorted optimally. If there is a safe
operation between the components of two bridges, we know that this recombination must
be optimal. In fact, if we only regard unsaturated components, we see that the only
remaining safe operations are (i) PA◦a, PB|a → PA|B , Pa◦a, (ii) PA|b, PB◦b → PA|B , Pb◦b and
(iii) Pa|b, Pa|b → Pa◦a, Pb◦b. We know (either by combinatorics or Table S.2.1) that each
source of (i) and (ii) appears in 3 types of (reduced) bridges and thus there are 3 × 3 = 9
path recombinations facilitated by each of these two safe operations. For (iii), we have 4
types of (reduced) bridges containing Pa|b and thus

(4
1
)

+
(4

2
)

= 10 path recombinations using
this operation. Of course, these are not mutually exclusive, but since Operations (i) and (ii)
involve the end of a bridge and one of its resultants is a viaduct, we can always choose to
do one of these operations first, upon which all other possible safe operations on piers and
pontoons will be in the same component and will not require any further recombinations.
In [6] all of these recombinations are catalogued. We were able to confirm this by recreating
their tables of recombinations with ∆d ≤ 0 as Table S.2.2 of Supplement S.2. It is easily
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checked that (i) and (ii) each occur 9 and (iii) occurs 10 times. The unsaturated components
after the operation in these cases form precisely those bridges listed in [6] as the resultant(s).
The precise difference for the distance as opposed to sorting the crossing separately can then
be derived by comparing the term P̃ in our formula on the graphs containing each bridge
separately and on a graph containing the union of the two bridges (see Table S.2.2 Columns 3,
6, 9, 10). In summary, we can see that in all but two cases, the DCJ chosen to recombine the
bridges in [6] is safe and the resultants are exactly comprised of the unsaturated components
after the operation.

The two exceptions are the recombinations of PA◦a, PA◦a with PB◦b, PB◦b and PA|a, PA|b
with PB|a, PB|a (marked with ⋆ in the table). In these cases, there is no safe operation and
therefore all piers remain unsaturated. The reason this recombination can still be done in some
cases is that an unsafe operation like PA◦a, PB◦b → PA|B , Pa|b in this specific case reduces F

by one, but since there are equally optimal internal operations (i.e. PA◦a, PA◦a → PA◦A, Pa◦a)
in this case, this recombination actually never has to be used. The only task remaining is then
to find a sequence of recombinations that improve upon the distance. Braga et al. give this
as their recombination groups. We have listed these groups in Table S.2.3 of Supplement S.2.
The first observation is that by exhausting all safe DCJ operations in a recombination group,
we are able to create the unsaturated components of what are called in [6] reusable resultants.
In combination with our observations about pairwise recombinations, we thus know that
all recombinations in the groups can be facilitated purely by safe DCJs. We also see that
in many cases, after sorting a group, no further unsaturated components are present. In
the other cases, Braga et al. make sure that all partners of the unsaturated components
are “used up” in earlier recombinations of the table (see last column) such that the unsafe
operations sorting the unsaturated components are still optimal.

4 Capping-free Generalization to Natural Genomes

In this section, we describe briefly how to generalize the distance formula presented as
Theorem 7 into an ILP for which no capping of the MRD is required. For reference, the full
ILP is given in Appendix A as Algorithm 1. The ILP works by determining a matching on
the markers as described in Problem 6. The basic framework (Constraints C.01 to C.06)
is the same as for ding [4] and the ILP by Shao et al. [17]: Variable x is used to indicate
whether or not an edge is part of the matching and zv marks the vertex v with the lowest
index ix(v) in its component. We also adopt the way circular singletons are dealt with
in [4] as Constraint C.18. The only major change we make w.r.t. [4] in Constraints C.01
to C.06 is the addition of Constraint C.02, where we allow for different matching models
than the maximum matching model by specifying an upper (Uf ) and lower bound (Lf ) for
the number of markers to be matched per family f . Specifications for how to set these
bounds to achieve the maximum matching model and other popular models can be found in
Table 2 of Appendix A. Another minor change is that we have a variable dg(u) indicating
whether a gene g(u) of an extremity u is to be singular instead of indel edges as in [4].

To distinguish different types of paths, we use binary variables to track endpoints, namely
na

v , nb
v, nA

v , nB
v as well as ma

v , mb
v, mA

v , mB
v for each vertex v. A variable ni

v is used to represent
the sub-path starting with the adjacency edge at v ending in i ∈ {A, B, a, b} while the mi

v

does the same, just for the sub-path starting with the extremity edge at v. We set these
variables accordingly at the end of a path (see Constraints C.07, C.08). We also require
only one of the variables be set per vertex (C.09). The variables are then required to be the
same if their respective vertices are connected by the respective edge (see Constraint C.10),
“passing” the label through the edge. Lastly, we require the m and n variables of a vertex
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to be equal unless that vertex is labeled by zv, i.e. it has the smallest identifier in the
component (C.11). If zv is set, we then report the component type based on the adjacent
sub-paths in rij

v if the sub-paths have the correct labels mi
v and nj

v (or mj
v and ni

v) set
(Constraints C.13, C.14). We reserve the special case mi

v = 0∀i ∧ nj
v = 0∀j for cycles and

report cycles via rc
v in these constraints. The remaining constraints deal with applying the

maximization function (C.15, C.16) for p̃ and calculating P̃ as variable q (C.17).
As an additional optimization, we set m variables to 0 in those components of the MRD

that have either no telomere or indels of a given type in Constraint C.19.

5 Evaluation of the ILP

We implemented the ILP described in the previous section and made it publicly available here:
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf. We refer to this implementation as
ding-cf for the rest of this work.

In this section, we show results of applying the ILP to both simulated and real data and
comparing its performance to the python3 version of ding [4], namely dingII, a similar ILP
solution to the DCJ-indel distance problem for natural genomes. In contrast to ding-cf,
dingII uses the capping technique.

We first test the ILPs on simulated data in Subsection 5.1 before demonstrating the
practical usefulness of rearrangement analyses even on contig level resolved genomes by
analysing 11 Drosophila genomes in Subsection 5.2.

5.1 Performance Evaluation on Simulated Data
We initially planned to use the simulation script that comes with dingII, but due to
the script regularly encountering stack overflows on large genomes owing to its reliance
on recursion, we instead re-implemented it in C++. This implementation is available at
https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj.

The re-implementation has the same features as the original script with only two minor
changes. Firstly, instead of the number of DCJ-operations to be performed being passed to
the script with additional numbers of other operations (insertions, deletions and duplications)
being randomly performed according to rate parameters, our simulation takes a fixed number
of total operations and distributes them according to rates relative to a rate of 1 for DCJ
operations. Secondly, our simulation is not yet able to simulate arbitrary trees, but instead
only simulates the topology (A,B);, which was used in [4]. For more detail on the simulation,
the interested reader is referred to the description of the original simulation script in [4].

In our experiments, we simulated two genomes from a common root for each sample. In
all experiments, we set the length of the root genomes to 20,000 markers and performed
10,000 operations in total, with an insertion rate of 0.1 and an deletion rate of 0.2 unless
specified otherwise. For reference, this amounts to 5882 DCJ operations in expectation for
a duplication rate of 0.4 to compare to experiments run with the python script of dingII.
The shape parameter for the Zipf distribution was set to 4 for indel lengths and to 6 for
duplication lengths. In all experiments, we used gurobi10.0 on a single thread on an AMD
EPYC 7452 Processor to solve the ILPs, limiting its runtime to 1h (3600s). Both experiments
were designed to test parameters to which ILPs like ding have been shown to be sensitive.

In our first experiment, we increased the duplication rate in steps of 0.1 from 0.1 to 1.1,
generating 10 genome pairs from a root genome with 1 linear chromosome per step. We then
created the ILPs for dingII and ding-cf. The number of ambiguous families ranged from
615 to 2760 (median 2708) in this experiment with the maximum family size per sample
reaching up to 7 markers.

https://gitlab.ub.uni-bielefeld.de/gi/ding-cf
https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj
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(a) (b)

Figure 10 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a
common root, in (a) increasing the duplication rate in steps of 0.1 from 0.1 to 1.1, in (b) increasing
the number of linear chromosomes in the root genome progressively from 10 to 50 to 100, 200 and
300.

(a) (b)

Figure 11 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a
common root increasing the duplication rate in steps of 0.1 from 0.1 to 1.1 with (a) 100 total linear
chromosomes and (b) 200 total linear chromosomes on average per sample pair.

We show the results in runtimes of gurobi10.0 in Figure 10 (a). We see clearly that
dingII has a performance advantage over ding-cf as long as the number of linear chromo-
somes is low. This is not surprising as dingII works in a very similar manner to ding-cf,
but with fewer variables because it only needs to identify odd pontoons due to capping trans-
forming other types of paths to pontoons and cycles. However, we see that the performance
loss is not dramatic, staying well within a few minutes of solving time for this experiment.
Nonetheless, the expected exponential increase in runtimes of ding-cf happens earlier than
the one demonstrated for ding in [4]. We were able to further verify that on genomes with
few linear chromosomes, ding-cf behaves similarly to ding for varying different parameters
but having worse performance overall in Supplement S.3.

To test the actual use case for ding-cf, that is, high numbers of linear chromosomes, we
increased the number of linear chromosomes in the root genome progressively from 10 to 50
to 100, 200 and 300 chromosomes with a fixed duplication rate of 0.4 and 10 samples per
step. The runtimes are shown in Figure 10. We see that up to 100 linear chromosomes in the
simulated pair of genomes, dingII on average outperforms ding-cf, but its runtime rises
exponentially until the majority of the dingII ILPs are not solved within an hour of solving
time. Meanwhile, the runtimes of ding-cf are stable throughout the experiments, staying
below 100 seconds in each case.
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Figure 12 Runtimes for ding-cf for genomes simulated from a root with 500 to 2000 chromosomes
in steps of 250.

In order to test the composite effect of the number of duplicates and the number of linear
chromosomes on solving times, we repeated the first experiment (Figure 10 (a)) with 50 and
100 linear chromosomes at the root genome, resulting in total numbers of about 100 and 200
linear chromosomes for each pair. The results (shown in Figure 11) indicate that both ILPs
react strongly to the combined effect for the first increase to 100 linear chromosomes with
dingII still outperforming ding-cf on these samples whereas the second increase to 200
only has a minor effect on ding-cf while for dingII many of the pairs with high duplicate
numbers become unsolvable within an hour.

To confirm that the number of linear chromosomes alone only plays a minor part in the
runtime of ding-cf, we ran another experiment, this time keeping the duplication rate fixed
at 0.4 and increasing the number of linear chromosomes in the root genome from 500 to
2000 in steps of 250 with 10 samples per step. The runtimes are given in Figure 12 and
exhibit only a minor, linear increase. In fact, the increase is so slow that even for 2000 linear
chromosomes at the root (c.a. 4000 linear chromosomes of the pair in total), the runtime is
still below 100 seconds for all 10 samples.

5.2 Analysis of Drosophila Genomes

We obtained 11 assemblies of species in the Drosophila genus previously analyzed by Rubert
and Braga [15]. We used FFGC to extract the longest transcript of each locus and ran
OrthoFinder version 2.3.7 [10] to obtain orthologous groups. We then translated the
genomes into unimog files using the orthogroups as families and translating linear contigs into
linear chromosomes. We then filtered out any empty chromosomes. The genomes obtained
in this fashion comprised 13,143 markers spread on 97 linear chromosomes on average. More
detailed statistics about the genomes after this preprocessing step are listed in Table S.4.1 of
Supplement S.4.

We then used ding-cf to calculate pairwise distances, running gurobi10.0 on a single
thread on an AMD EPYC 7452 Processor for 24 hours. Of the 55 resulting ILPs, we obtained
an exact result for 9 and approximate results for 45, all of which deviated at less than 2% from
the exact solution. Only one run, namely D. melanogaster vs D. willistoni did not yield any
result within 24 hours. We therefore re-ran the solver on this ILP, this time using 15 threads
and a time limit of 20 hours. In this run, an approximate solution with 0.48% gap was found.
We give the distance data obtained in this manner in Table S.4.3 and detailed performance
results in Table S.4.2 of Supplement S.4. Additionally we performed an experiment with the
same parameters with the dingII ILP. Table S.4.2 shows that even though this dataset is
not extremely fragmented, ding-cf outperforms dingII on the majority of samples.



L. Bohnenkämper 22:15

D. ananassae

D. grimshawi

D. mojavensis

D. virilis

D. willistoni

D. persimilis

D. erecta

D. melanogaster

D. sechellia
D. simulans

D. yakuba

1000.0

Figure 13 Neighbor joining tree inferred from the distances in Table S.4.3 using SplitsTree4.
Edge lengths are drawn proportional to their weight. The absolute edge lengths can be found in
Supplement S.4.

Phylogenetic Analysis. We proceeded to construct a phylogenetic tree via Neighbor Joining
using SplitsTree4 [13]. The tree, shown in Figure 13, is entirely consistent with the current
state of knowledge about the Drosophila phylogeny. Additionally, the phylogenetic signal
in the distance data is remarkably strong. To demonstrate this fact, we calculated the
distance matrix for the path metric of the tree and compared it to the distances calculated
by ding-cf. On average, the tree path metric deviates only by 0.53% per entry from
the distances calculated by ding-cf with the largest relative difference being 2.2% for the
distance of D. melanogaster and D. simulans. For reference, we give the full distance matrix
of the path metric in Table S.4.4 of Supplement S.4. We were able to further confirm this
strong correspondence between the tree and the distance data via a split decomposition with
SplitsTree4 in Supplement S.4.1 [1, 13]. Overall, judging from these experiments, ding-cf
looks promising as a distance measure for phylogenetic analyses.

However, we want to draw the reader’s attention to one possible pitfall of our method as
a phylogenetic tool, namely that the fragmentation of the genome itself appears as a signal in
the distance data. To emphasize this, let us pose a hypothetical extreme example: Consider
a comparison between two assemblies A,B with n markers each, with a matching between
all markers of A and B. Suppose A is fully assembled into one chromosome and B fragments
into n contigs of one marker. No matter the actual structure of the underlying (true) genome
of B, the DCJ distance between the assemblies A and B is always n − 1. The size of this
effect for practical levels of fragmentation needs to be investigated, particularly whether
these problems could be exacerbated by biases in the assembly method used to arrive at the
studied pair of genomes, such as might be the case for comparative assembly strategies.

Detecting Synteny. We extracted the matchings from the ILP solutions calculated by
gurobi and plotted them with Circos [14]. We show the matching between D. virilis and
D. mojavensis in Figure 14 as compared to just the marker matches identified by OrthoFinder.
The plots for all other pairs can be found in Supplement S.4.2. We see that even though
there are some big rearrangements, such as inversions and transpositions as indicated by the
arcs as well as an abundance of duplicates, the calculated matching identifies large syntenic
blocks, sometimes even matching the majority of markers of whole contigs to each other.

Moreover, for many of the smaller contigs all markers are matched to markers of exactly
one large contig of the other species. Matchings like this could therefore possibly be used to
aid in improving very fragmented assemblies, given a sufficiently closely related and resolved
reference genome.
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Figure 14 Circos plots for Contigs of D. virilis (red segments) and D. mojavensis (blue segments).
Blue arcs show common markers with the same direction, purple arcs show common markers with
different directions. On the left: before matching. On the right: after matching with ding-cf.

6 Conclusion

We presented a new, simpler distance formula for the DCJ-indel model. Using this distance
formula, we were able to explain the previously unclear relationship between the BWS- and
Compeau-conceptualizations of the DCJ-indel model. Furthermore, our formula is easily
generalizeable to a performant ILP solution that enables the distance computation even for
genomes fragmented into thousands of contigs. We have shown that a DCJ-indel analysis can
be meaningful even with relatively fragmented genomes by applying the ILP to 11 Drosophila
assemblies. From this we obtained a well resolved phylogeny with little noise in the distance
data, indicating that our method could be well suited for distance based phylogenetic analyses
provided the effect size of genome fragmentation in the particular use case can be bounded.
We also showed that the ILP can be used to disambiguate orthologous and paralogous regions,
which has potential use cases in orthology assignment and the finalization of fragmented
assemblies.

Furthermore, we are confident that using this new formula, capping-free versions of other
existing algorithms, such as for the family-free distance problem as in [16, 15] and parsimony
problems as in [9] can be devised.
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22:18 A Capping-Free Solution to the Natural Distance Problem
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