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Abstract
We present a novel problem, called MetaEC, which aims to infer gene-species assignments in a
collection of gene trees with missing labels by minimizing the size of duplication episode clustering
(EC). This problem is particularly relevant in metagenomics, where incomplete data often poses a
challenge in the accurate reconstruction of gene histories. To solve MetaEC, we propose a polynomial
time dynamic programming (DP) formulation that verifies the existence of a set of duplication
episodes from a predefined set of episode candidates. We then demonstrate how to use DP to design
an algorithm that solves MetaEC. Although the algorithm is exponential in the worst case, we
introduce a heuristic modification of the algorithm that provides a solution with the knowledge that
it is exact. To evaluate our method, we perform two computational experiments on simulated and
empirical data containing whole genome duplication events, showing that our algorithm is able to
accurately infer the corresponding events.
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1 Introduction

In the field of computational biology, the use of gene families and the reconciliation model has
become increasingly popular for studying the evolution of diverse organisms. These tools have
facilitated the development of new algorithms and computational methods capable of handling
large and complex datasets and exploring various types of evolutionary events. These events
range from simple macroevolutionary processes such as gene duplications, gene losses, and
horizontal gene transfers to more complex ones such as genomic duplications, speciations, and
hybridizations. The reconciliation model has enabled researchers to reconstruct evolutionary
histories by reconciling gene trees with species trees, and identifying the evolutionary events
that have led to the observed patterns of gene evolution. In the context of metagenomics,
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the reconciliation model has also been used to detect missing gene-species assignments using
polynomial time algorithms. These developments have led to a better understanding of the
evolutionary processes.

A classical reconciliation model [10, 26] defines a mapping from every node from a gene
tree into a node in the species tree and determines if such a node is related to a speciation or
can be classified as a single gene duplication [19]. In result, an embedding of the set of gene
trees into a species tree can be interpreted as a joint evolutionary scenario [11]. The classical
least common ancestor (LCA) mapping minimizes the number of single gene duplications
and losses for one gene tree and the species tree [11].

The whole genome duplication (WGD) phenomenon incorporates additional copies of a
complete genome into the original genetic material, thus creating an opportunity to introduce
novel evolutionary traits [16, 25]. From a macro perspective, this phenomenon played a crucial
role in the divergence and formation of species and shaped the evolution of almost all major
lineages of life. In particular, many WGDs were uncovered in the evolutionary histories of
plants, especially crops. WDGs potentially enabled the successful domestication of plants [36]
and are important in the fight against famine [40]. Many traces and evidence of whole genome
duplications can be found in the genomes of yeast and other fungal species [16, 39]. From the
perspective of single cell evolution studies, WGDs are prevalent in cancer progression [18]
and can lead us to the prognosis of advanced cancer stages [3] or the creation of strategies
for targeted therapy [33].

Guigó et al. [13] proposed the first approach for detecting multiple gene duplication
episodes from a collection of rooted gene trees. They designed a heuristic that aggregates
single gene duplication events into a large gene duplication, given a collection of rooted gene
trees and a rooted species tree. This approach was formalized and improved by Page and
Cotton [27], who defined the problem of episode clustering (EC) as the task of identifying
the minimal number of locations in the species tree where all duplications from the input
gene trees can be placed. Fellows [8] applied this model in the context of the supertree
problem. Polynomial-time solutions for two types of multiple gene duplication problems
episode clustering and a more general variant of clustering called minimum episodes (ME)
were proposed in [1, 4]. Luo et al. [17] proposed linear time and space algorithms, partially
based on [22], for these problems. [29] introduced a unified approach by proposing a concept
of interval models with a linear time and space solution to a broad class of clustering problems
including EC and ME. Alternative approaches include generalization to unrooted gene trees;
however, such approaches are often computationally complex [28, 30]. Other approaches
include variants of clustering rules that depend on the maximal number of duplication
episodes placed in one path [15, 32]. A comprehensive analysis of various models is available
in [29]. Furthermore, [31] proposes an integer linear programming formulation that simplifies
the process of testing these models. Relevant computational complexity results on the ME
problem are presented in [6].

Metagenomic studies provide valuable information for analyzing entire communities of
organisms and revealing a complete picture of their functional and adaptive capacities crucial
for ecology [35] or human health [38]. Genetic material isolated in such studies can be used
to detect whole genome duplication events.

One of the steps in metagenomic analysis is called binning. The aim of this procedure is
to assign sequenced DNA fragments to the appropriate taxonomic groups. The assignment
of certain genes to species can be ambiguous due to the limitations of annotation methods.
A precise and comprehensive gene tree topology is essential for the accurate identification
of potential duplication sites. The absence or misplacement of duplications in gene trees
can, in turn, result in incorrect outcomes of methods aimed at determining whole genome
duplication events.
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To tackle the challenge of missing gene-species assignments in evolutionary studies,
previous research has introduced methods based on the reconciliation score using gene
duplication and loss events [2, 42]. In a related work, Mykowiecka et al. [24] extended this
model by including horizontal gene transfer to better analyze bacterial evolution and proposed
polynomial time algorithms for these models. These approaches utilize tree reconciliation
according to the classical scheme, in which the gene tree includes symbols representing
sequences with unclear species assignment in addition to the known gene labels. The
objective is to assign the unknown gene labels to their corresponding species by resolving
the missing labels in a gene tree while minimizing the total reconciliation score, which is
typically a weighted sum of evolutionary events such as gene duplication, gene loss, and
horizontal gene transfer.

Here, we present a novel problem, called MetaEC, which aims to infer gene-species
assignments in a collection of gene trees with missing labels by minimizing the size of episode
clustering. This problem is particularly relevant in metagenomics, where incomplete data
often poses a challenge in the accurate reconstruction of gene histories. To solve MetaEC,
we propose a dynamic programming (DP) algorithm that verifies the existence of a set of
duplication episodes from a predefined set of episode candidates. We then demonstrate
how to use DP to design an algorithm that solves MetaEC. Although the algorithm is
exponential in the worst case, we introduce a heuristic modification of the algorithm that
provides a solution with the knowledge that it is exact. To evaluate our method, we perform
two computational experiments on simulated and empirical data containing WGD events,
showing that our algorithm is able to accurately infer the corresponding events.

2 Basic Definitions

2.1 Gene trees, species trees, and the duplication cost

We begin by recalling some basic definitions from graph theory. All trees in this article are
rooted and binary, therefore we refer to them as trees. For a tree T = (V (T ), E(T )), by
root(T ) we denote the root, and by L(T ) we denote the set of all leaves. Every non-leaf node
will be called internal. A species tree is a tree whose leaves are called species. A gene tree
over a species tree S is a tree with leaves labeled by the species from S. The set of all species
present in a species tree or a gene tree T is denoted by L(T ). Note that for a species tree S,
L(S) = L(S). Also, for a gene tree G over S, L(G) ⊆ L(S).

For nodes a and b, a ⪯ b means that a and b are on the same path from the root, with b

being closer to the root than a. We write a ≺ b if a ⪯ b and a ̸= b.

For a gene tree G over a species tree S, the least common ancestor (lca) mapping between
G and S is a function MG : V (G)→ V (S) defined as follows. If v is a leaf in G then MG(v)
is the label of v. When v is an internal node in T having two children a and b, then MG(v)
is the least common ancestor of MG(a) and MG(b) in S. An internal node g ∈ V (G) is called
a duplication if MG(g) = MG(a) for a child a of g. The duplication cost, denoted by D(G, S),
is the total number of duplications in G. Each non-duplication internal node of G we call
a speciation. In the latter part of the article, a duplication g is called an s-duplication if
MG(g) = s. Similarly, we use the notation for an s-speciation and an s-leaf. An example of
tree reconciliation and the lca-mapping is depicted in the leftmost part of Figure 1.

WABI 2023
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2.2 Episode Clustering Problems

Below we present a model of duplication episodes proposed in [29]. In short, this model
admits all evolutionary scenarios using duplication and loss events with a minimal number
of gene duplications.

Formally, the model of gene duplication episodes allows for relocating a gene duplication
from its lca-mapping node to one of its ancestors under some additional constraints required
to preserve the biological soundness of the scenario. For a gene tree G over S, a mapping
FG : V (G)→ V (S) is called valid if the following conditions are satisfied:

FG(a) ⪯ FG(b) if a ⪯ b (time consistency),
FG(a) = MG(a) for any speciation node a (fixed speciations),
FG(a) ⪰ MG(a) for any duplication node a (duplication can be raised),
FG(a) ≺ MG(b) for any speciation node b such that a ≺ b (fixed number of gene
duplications).

Note that the model of valid mappings described above is more comprehensive than the
model presented in [1].

Figure 1 provides an example of valid mappings that uniquely define an evolutionary
scenario that can be represented as a tree with an additional decoration of nodes. For more
information on the formal modeling of evolutionary scenarios, refer to [11].

We denote by DupT ⊂ V (T ), the set of all duplication nodes in T . Let G1, G2, . . . , Gn be a
collection of rooted gene trees over a species tree S. Assume that, for every i ∈ {1, 2, . . . , n}, Fi

is a valid mapping between Gi and S. Every element s ∈
⋃

i Fi[DupGi
] denotes the location

of multiple gene duplication events in S. We will refer to such locations as duplication
episodes or simply episodes. Later on, we may also use the term episode to refer to the set of
duplications that are mapped into it.

▶ Problem 1 (Episode Clustering, EC). Given a collection of rooted gene trees G1, G2, . . . , Gn

over a species tree S. Compute the minimal number of duplication episodes, denoted by
EC(G1, G2, . . . , Gn, S), in the set of all valid mappings F1, F2, . . . , Fn such that Fi : V (Gi)→
V (S).

This problem can be solved in linear time and space [17].
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Figure 1 From the left side: a gene tree G and a species tree S with the lca-mapping M shown
using arrows from the internal nodes of G to the nodes of S. There are 5 gene duplications, 2
speciation nodes in G (red bars), and 8 valid mappings depicted as embeddings of G into S [11], where
the blue lines in these embeddings correspond to the edges of G. ELCA is induced by the lca-mapping.
Here, EC(G, S) = 3 as indicated in the three rightmost scenarios with episode sets {a, b, abcd} for
E5 and {a, abc, abcd} for E6 and E7. The example trees are partially adopted from [32].
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2.3 Gene-species mappings
We present the main problem for joint reconstruction of gene-species mappings and minimizing
the set of episodes.

A partial gene tree is a rooted binary tree where each leaf is labeled by a species or has
no label. Let G be a partial gene tree over S. By ΛG : L(G)→ L(S) we denote the partial
leaf labelling function such that ΛG(g) is the label (species) of the leaf g in G if defined. Note
that any gene tree is a partial gene tree with the leaf labeling being a total function. If a
leaf in G has no label we write ΛG(g) = ⊥. We say that a gene tree G∗ over S extends a
partial gene tree G over S if G and G∗ are isomorphic as graphs (i.e., V (G) = V (G∗) and
E(G) = E(G∗)), and, ΛG∗ is a total function that extends ΛG.

2.4 Inferring labelings by minimizing episodes
Now, we present the problem of the simultaneous reconstruction of leaf labelings and
duplication episodes from collections of partial gene trees.

▶ Problem 2 (MetaEC). Given a collection of partial gene trees G1, G2, . . . , Gk over a species
tree S. Compute the minimum EC(G∗

1, G∗
2, . . . , G∗

k, S), denoted EC(G1, G2, . . . , Gk, S), in the
set of all collections of gene trees G∗

1, G∗
2, . . . , G∗

k such that G∗
i extends Gi, for each i.

For example, if (a, (⊥, (⊥,⊥))) is a single gene tree with three undefined labels and (a, (b, c))
is a species tree, then the problem is to replace all occurrences of ⊥ by a, b or c such that
the total number of duplication episodes is minimized. In this case, the optimal cost is 1,
since at least one duplication is needed when the gene tree has four leaves and there are only
three species.

3 Methods

We first solve a simpler problem in which we assume that the set of duplication episodes is
constrained to a given set of species tree nodes. Then, we show how to solve MetaEC for a
single gene tree. Section 3.3 presents the general solution.

3.1 Episode Feasibility Problem
We start with a related constrained problem. Given a partial gene tree, we are interested in
the question, of whether there is an extension of the partial gene tree such that the set of
corresponding duplication episodes is contained in a given fixed set of episode candidates.

▶ Problem 3 (Episode Feasibility). Given a partial gene tree G over a species tree S and
X ⊆ V (S). Does there exist a gene tree G∗ and a valid mapping FG∗ such that G∗ extends
G and FG∗(DupG∗) ⊆ X?

If a partial gene tree G satisfies the above property, we call G X-feasible with respect to a
species tree S. If the context is clear, we omit the reference to S.

The solution to Episode Feasibility is a dynamic programming (DP) formulation expressed
using Łukasiewicz’s Three-Valued Logic Ł3 [43] with three constants True, False, and Unknown
(representing uncertainty) and ordered linearly: False < Unknown < True. The logic has
binary operators ∨ (disjunction, max), ∧ (conjunction, min), and two unary operators L
(certainty) and M (possibility). See the interpretation in Figure 2.

WABI 2023
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∨ F U T

F F U T

U U U T

T T T T

∧ F U T

F F F F

U F U U

T F U T

L
F F

U F

T T

M
F F

U T

T T

Figure 2 Boolean operations in Three-Valued-Logic used in DP. Here F= False, U= Unknown,
and T= True.

For a node g of a gene tree G, by G|g we denote the subtree of G rooted at g. For
any non-leaf node t in a tree, by t′ and t′′, we denote the children of t. To simplify the
notation, we assume that the set X ⊆ V (S) is fixed. Then, we have the following dynamic
programming formulas that solve Episode Feasibility. Let g ∈ V (G) and s ∈ V (S).

δ(g, s) =


δ∗(g, s) g is internal and s ∈ X, (1)
δ∗(g, s) ∧ Unknown g is internal and s /∈ X, (2)
False otherwise, (3)

δ↓(g, s) =


ϵ(g, s) s is a leaf, (4)
ϵ(g, s) ∨ M δ↓(g, s′) ∨ M δ↓(g, s′′) s internal, and s ∈ X. (5)
ϵ(g, s) ∨ δ↓(g, s′) ∨ δ↓(g, s′′) otherwise, (6)

σ(g, s) =


L

(
δ↓(g′, s′) ∧ δ↓(g′′, s′′) ∨ δ↓(g′, s′′) ∧ δ↓(g′′, s′)

)
g and s are internal, (7)

True g ∈ L(G), ΛG(g) ∈ {s, ⊥}, (8)
False otherwise, (9)

where

ϵ(g, s) = σ(g, s) ∨ δ(g, s), (10)
δ∗(g, s) = ϵ(g′, s) ∧ δ↓(g′′, s) ∨ ϵ(g′′, s) ∧ δ↓(g′, s). (11)

In the next Lemma, we express properties satisfied by the above formulas.
For a partial gene tree G over S, and nodes g ∈ V (G) and s ∈ V (S), we say that a valid

mapping FT : V (G|g) → V (S|s) is feasible for (g, s, X), if and only if, T extends G|g and
FT (DupT ) ⊆ X. Feasible mappings represent episode scenarios that correspond to partial
solutions to the instance of Episode Feasibility that forces duplications from G|g to be present
in episodes from X ∩ V (S|s).

We say a duplication g in a gene tree T is upper if the path from g to the root of T

contains only duplications. The set of all upper duplications in a tree T we denote by UDupT .
We say that a valid mapping FT : V (G|g) → V (S|s) is weakly feasible for (g, s, X), if and
only if, there is no feasible mapping for (g, s, X), but there is T that extends G|g, T has at
least one upper duplication d such that FT (d) /∈ X and FT (DupT \UDupT ) ⊆ X. In contrast
to feasible mappings, in weakly feasible mappings we constrain only non-upper duplications
present in G|g. Here, the upper duplications are elements of episodes s /∈ X. This situation
is modeled by Unknown value returned from δ↓(g, s) and δ(g, s) calls, meaning that there
is at least one duplication that needs to be assigned later (if possible) to an episode from
X \ V (S|s), which eventually occurs at levels of recursion shallower than the level of (g, s).

Informally, the meaning of DP formulas can be understood as follows. Below, let T be
an extension of the subtree of G rooted at a node g. The value of δ(g, s) is True if there
exists T where g is an s-duplication and all duplications are assigned to the episodes from
X (where s ∈ X as well). Similarly, the value of σ(g, s) is True if there exists T , where g

represents an s-speciation or an s-leaf node. Next, δ(g, s) is Unknown if the condition for
δ(g, s) = True is not met. However, there still exists T , where g represents an s-duplication,
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and all non-upper duplications from T are assigned to the episodes from X, while the upper
duplications are assigned to episodes outside of X. It is important to note that in this case,
s is not an element of X. Note that σ(g, s) cannot be Unknown since speciation nodes are
fixed. Moving on, δ↓(g, s) is True if there exists T where all duplications are assigned to the
episodes from X. Lastly, δ↓(g, s) is Unknown if the condition for δ↓(g, s) = True is not met.
However, there still exists T , where all non-upper duplications from T are assigned to the
episodes from X, while the upper duplications are assigned to episodes outside of X.

While ϵ and δ∗ should be treated as “local” in the main formulas (i.e., they should not form
separate arrays in implementation), their properties can be formulated as follows. Generally,
if ϵ(g, s) is True, then there is a tree T , where g is mapped into s and all duplications are
assigned to the episodes from X. Since σ(g, s) cannot be Unknown, ϵ(g, s) is Unknown only
if σ(g, s) is False and δ(g, s) = Unknown. Again, here g is mapped to s. Now, δ∗(g, s) is True
only if there is T where g is an s-duplication, and all duplication nodes below g are assigned
to episodes from X. Importantly, at least one of the children of g must be mapped to s, which
is captured by ϵ. Furthermore, δ∗(g, s) resembles δ(g, s), but the condition that duplications
must be assigned to episodes from X only applies to the duplications (or upper-duplications)
below g if δ∗(g, s) is True (or Unknown, respectively).

The following Lemma formalizes the conditions described above.

▶ Lemma 1. Given a partial gene tree G over a species tree S and X ⊆ V (S). Let g ∈ V (G),
s ∈ V (S). Then,
P1 δ(g, s) = True if and only if there is a gene tree T and a feasible mapping FT for (g, s, X)

such that g is an s-duplication in T .
P2 δ(g, s) = Unknown if and only if there is a gene tree T and a weakly feasible mapping FT

for (g, s, X) such that g is an s-duplication in T .
P3 σ(g, s) = True if and only if there a gene tree T and a feasible mapping FT for (g, s, X)

such that and g is an s-speciation or an s-leaf in T .
P4 For any g and s, σ(g, s) ̸= Unknown.
P5 δ↓(g, s) is True if and only if there is a feasible mapping for (g, s, X).
P6 δ↓(g, s) is Unknown if and only if there is a weakly feasible mapping for (g, s, X).

To solve Episode Feasibility, we have to apply δ↓ on the roots of the input trees.

▶ Theorem 2 (Correctness). Given a partial gene tree G over a species tree S and X ⊆ V (S).
G is X-feasible if and only if δ↓

X(root(G), root(S)) is True.

Proof. The proof follows immediately from P5 of Lemma 1: δ↓
X(root(G), root(S)) is True

if and only if there is a feasible FT for (root(G), root(S), X)) such that T extends G and
FT (DupT ) ⊆ X. ◀

▶ Theorem 3 (Complexity). Given a partial gene tree G over a species tree S and X ⊆ V (S).
The time and space complexity of solving Episode Feasibility by the dynamic programming
algorithm is O(|V (G)||V (S)|).

Proof. We have three arrays δX , δ↓
X and σX (note that ϵ and δ∗ can be directly inserted in

their calls), each of size O(|V (G)||V (S)|) and every cell of an array can be computed in O(1)
time. ◀

An example of DP execution with a feasible solution is depicted in Figure 3.

WABI 2023
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Figure 3 An example of the dynamic programming algorithm (from Section 3.1) execution. The
partial gene tree is G = ((⊥, (b, ((⊥, ⊥), (⊥, ⊥)))), (d, (c, a))), which contains five missing labels.
The species tree, denoted as S, is represented as ((a, c), (b, d)). The marked nodes in S indicate
episode candidates from X: the root of S (abcd) and the leaf node a. By applying dynamic
programming, we obtain a feasible solution, depicted in the bottom-right corner. The resulting
extension of the partial gene tree G is G∗, where the valid mapping between G∗ and S is the lowest
common ancestor (LCA) mapping. In G∗, each duplication node is marked with a triangle or a
square denoting their corresponding episode in S. Each node in G is decorated with an array
that represents the values of DP formulas, where each row corresponds to a node in S, starting
from abcd, bd, and so on as indicated in the first column. The next columns have the values
of δ, δ↓, σ, and ϵ, respectively, for the gene tree node and the corresponding species tree node.
For example, considering the root of G and the root of S, the top row of the array contains the
following values: δ(root(G), root(S)) = δ↓(root(G), root(S)) = ϵ(root(G), root(S)) = True, while
σ(root(G), root(S)) = False.
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3.2 Solving MetaEC for a single partial gene tree
Here we describe the main algorithm to solve MetaEC for instances with a single gene tree.
First, we characterize an important property of episodes.

▶ Lemma 4 (Fixed Episodes). Given a partial gene tree G over a species tree S. Assume
that there are nodes g in G and s in S such that

if s is the root of S, then at least one proper subtree of G contains species (leaf-labels)
from both children of s.
otherwise, let p be the parent of s, then G|g is a gene tree, g is a p-speciation and a child
of g is an s-duplication.

Then, for any G∗ that extends G, s is an episode in every valid mapping between G∗ and S.

The nodes satisfying the above conditions we call fixed episodes (for G and S). For
example, for trees from Figure 1, there are two fixed episodes: the root of S and the leaf b,
where the duplications with fixed mappings are depicted using white marks in the exemplary
gene tree G. The set of all fixed episodes can be computed in linear time and space by
bottom-up traversal of the partial gene tree G and by using LCA-queries in the species tree
S as follows. For each node g from V (G), the algorithm computes a tuple (u, s, d), where

u ∈ {True, False} is True if and only if ⊥ is reachable from g,
s ∈ V (S) ∪ {None} is the least common ancestor of all non-⊥ labels reachable from g in
S and None if only ⊥’s are visible from g,
and d ∈ {True, False} is True if and only if u = False and g is a duplication node in a gene
tree G|g.

Then, for each g and its tuple (u, s, d), and for each child of g with a tuple (u′, s′, d′):
if s = s′ = root(S), then s (the root of S) is a fixed episode,
if u = d = False, d′ = True and the parent of s′ is s, then s′ is a fixed episode.

We omit correctness and complexity proofs for brevity. Note that the number of fixed
episodes is the lower bound of EC(G, S).

Algorithm 1 takes as input a partial gene tree G over a species tree S and outputs
EC(G, S). It first computes the set of fixed episodes F (see Lemma 4). The algorithm then
starts with an initial maximal episode number b equal to the number of nodes in S. In each
iteration of a while loop, the algorithm checks if there is a set C of size b− |F | − 1 from the
vertices of S that are not in F , such that the partial gene tree G is C ∪ F -feasible using the
dynamic programming algorithm. This step requires

(|V (S)|−|F |
b−|F |−1

)
calls of DP in the worst

case. If such a set C exists, the algorithm computes EC(G∗, S) by the linear time algorithm
from [29], where G∗ is the gene tree obtained by backtracking from the corresponding call of
DP, and updates b with the result. Note that b is not assigned the value of |C ∪ F |, since
the minimal set of episodes for G∗ and S is a subset of C ∪ F , and it is often significantly
smaller than C ∪ F in early steps of iteration. Updating b with EC(G∗, S) guarantees the
minimal number of episodes, where some elements of C may be unused. This is an important
optimization step. If such a set C does not exist, the algorithm terminates and returns the
current value of b.

The correctness of the algorithm follows from the fact that if there is no set X of size
b− 1 such that G is X-feasible, then there is no set of any size smaller than b that satisfies
the property. Since, b represents the number of episodes from some valid mapping, it is also
minimal in such a case. Therefore, when the algorithm terminates, b = EC(G, S), and the
algorithm returns the correct value.
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Algorithm 1 Solution to MetaEC with a single gene tree.

Data: A partial gene tree G over a species tree S

Result: EC(G, S)
F ← the set of all fixed episodes for G and S ; // See Lemma 4
b← |V (S)| ; // the initial maximal episode number
while there is C ⊆ V (S) \ F of the size b− |F | − 1 and G is (C ∪ F )-feasible do

G∗ ← the gene tree obtained from the DP from Section 3.1 by backtracking;
b← EC(G∗, S); // O(n)-time algorithm from [29]; EC(G∗, S) ≤ |C ∪ F |.

return b;

The algorithm’s worst-case time complexity is
∑n−f

k=f

(
n−f

k

)
nm = O(nm2n), where f is

the size of the set of fixed episodes (f = |F |), n denotes the number of vertices in S, and
m denotes the number of vertices in G. Despite the exponential time complexity, in our
experiments on both simulated and empirical data, we were able to compute exact solutions
after only a few executions of the main loop.

3.2.1 Extensions
To identify the optimal solution within the main loop, enumerating all possible combinations
of size b−f −1 from the set of episode candidates V (S)\F may be time-consuming for larger
instances. To address this issue, we propose a heuristic approach that randomly samples
combinations of size b−f −1 if

(
n−f

b−f−1
)

is large (e.g., > 1000), and adds a stopping condition
based on the number of dynamic programming (DP) calls without improvement (e.g., after
100 calls). This approach not only speeds up the algorithm but also provides additional
information on whether the returned value is exact or an upper bound obtained by switching
to a heuristic mode. See Figure 6 in Section 4 for more details.

Furthermore, based on our experiments, we have observed that the solution is often close
to the set of fixed episodes. To leverage this observation, we propose a bottom-up algorithm
that explores candidate sets starting from sizes 0, 1, 2, and so on until a feasible solution is
found. In this case, the internal search has a time complexity of O(

(
n−f

i

)
), starting from

i = 0. This algorithm can be combined with the heuristic variant described earlier to improve
its effectiveness. However, the experimental evaluation did not show significant improvement
compared to the top-down method in Algorithm 1.

3.3 MetaEC in the general case
Here we show that MetaEC in a general case, can be solved using a single partial gene tree
under an additional assumption. Given a collection of partial gene trees G1, G2, . . . , Gk

over a species tree S, let ω be a new species, called outgroup, not present in S. We first
add the outgroup to every input tree. Let Sω be species tree (S, ω), Gω

1 = (G1, ω) and
Gω

i = ((Gi, ω), Gω
i−1), for i > 1. Then, by ω-MetaEC we define the problem MetaEC with a

single partial gene tree, where the extension of a partial labeling cannot introduce ω, i.e., if
ΛG1(v) = ⊥ then ΛG∗

1
(v) ̸= ω. See Figure 4 for illustration.

We have the following property.

▶ Lemma 5. Given a collection of at least two partial gene trees G1, G2, . . . , Gk over a
species tree S such that ω /∈ L(S). X ⊆ V (S) is the set of episodes that yields the solution of
MetaEC for G1, G2, . . . , Gk and S if and only if X ∪ {root(Sω)} is the set of episodes that
yields the solution to the instance Gω

k and Sω of ω-MetaEC.
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G1 G2 G3

...

Gn S

→

G1
ω

G2
ω

G3
ω

Gn
ω

Gω

S
ω

Sω

Figure 4 Converting a multiple gene tree instance to a single gene tree instance using an outgroup
ω. Red bars in Gω denote speciation nodes mapped to the root of Sω. Green squares represent new
duplications clustered at a new duplication episode in the root of Sω.

Note that the algorithms provided in the previous sections can be easily modified to solve
ω-MetaEC, by replacing case (8) with:

σ(g, s) = True if g ∈ L(G) and (ΛG(g) = s or (ΛG(g) = ⊥ and s ̸= ω)).

Then, DP will exclude extensions of ⊥ by ω.

4 Experiments

In this Section we present two computational studies based on simulated and empirical data.

4.1 Simulated Trees
Our algorithm was evaluated on five datasets consisting of simulated gene trees and a species
tree, each with one or two whole duplication events (as reported in [31]). We generated these
datasets and subsequently modified the gene trees to account for the uncertainty commonly
associated with metagenomic data.

To begin, we describe how the datasets were generated. Then, we explain the modifications
made to the gene trees to account for the uncertainty of metagenomic data. Finally, we
present the results provided by our algorithms, specifically in regard to their ability to infer
whole genome duplication events.

4.1.1 Dataset preparation
First, we briefly summarize the simulation procedure from [31]. The simulated dataset was
generated by SimPhy [20] with parameter settings used in a simulated study [23] that was
based on an empirical dataset of 16 Fungi species [34]. The species tree S of 20 taxa was
generated by SimPhy with the speciation rate parameter equal to 1.8× 10−9 and the tree
height parameter set to 1.8× 109. To simulate a whole genome duplication (WGD), a node
v in the species tree S was chosen as the location of the event. Subsequently, a modified
species tree, denoted as S′, was constructed by substituting a subtree S|v with a duplicated
version of itself. This duplication involved creating a new root connected to the original root
of S|v and the root of its copy.

For every Si one hundred gene trees were then generated from locus trees produced by
SimPhy using the modified species tree S′, with a duplication and loss rate parameter set to
2−10 events per generation per lineage. To minimize the effect of incomplete lineage sorting,
the population size parameter was set to 10. In summary, the simulated data from [31]
was partitioned into five datasets of gene trees denoted Gi = {Gi

1, Gi
2, . . . , Gi

100}, where each
dataset comprises 100 gene trees generated using the same species tree S but with a different
WGD scenario. The WGD variants used in the simulations are illustrated in Figure 5, where
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S1 represents a single recent WGD Γ, S2 represents a single ancient WGD Θ, S3 represents
two WGDs Λ and ∆, with ∆ occurring after Λ, S4 represents two close WGDs Π and Π′ at
the same branch, and S5 represents two recent independent WGDs Ψ and Φ.

In our evaluation study, for each dataset Gi from [31], we generated a set of partial
gene trees G̃k,p

i by randomly removing each leaf label from every gene tree Gi
j in Gi with

probability p. We considered values of p from 0.1 to 0.6 in increments of 0.1, and generated
10 instances of G̃k,p

i for each p value and k = 1, 2, . . . , 10. This resulted in a total of 300
instances (G̃k,p

i , S) of MetaEC, where S is the species tree used to generate Gi. In addition
to these instances, we also included the result for p = 0, which corresponds to no removal of
leaf labels.

Γ Θ Λ Δ

ΠΠ' Φ

Ψ

S1

10043.8

31.2

S2

46.4 35

96
367.9

S3

190

28.2

177.3367.7
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271

630.4
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Figure 5 This figure presents a summary of the inferred gene-species mappings and duplication
episodes based on the simulated dataset from [31]. Locations of simulated whole-genome duplication
(WGD) events are denoted by Greek letters. For clarity, all leaf labels have been removed from the
visualization of species trees (see [31] for details). Each bar in the histograms shows the average
episode size obtained from the set of partial gene trees G̃k,p

i , where the average is computed over
10 instances of partial gene trees for fixed p and i (if p > 0). For p = 0, the bars represent the
results for the set of simulated gene trees Gi (with no ⊥’s). The key to the diagrams is present
at the bottom-right corner. The number above a single bar represents the maximum height of
a bar in its histogram. Bars with an average below 25 duplications were omitted as they were
deemed insignificant. Additionally, histograms for the root have been moved to Figure 6 (bottom
left diagram).

4.1.2 Results
The results of our algorithm on the simulated partial gene trees are depicted in Figure 5,
where we summarize the episode sizes in the form of histograms. Also, additional data is
provided in Figure 6. The evaluation took about 5 hours of a computing server with 64 cores.
In general, we observed that the runtime and the number of DP calls grow linearly with
the value of parameter p on average as indicated in the bottom-right diagram of Figure 6.
We used the heuristic variant of the algorithm, where random sampling was applied if the
number of combinations exceeded 100 trees, and with the stopping criterion equal to 50.
Out of 300 instances, 240 were completed with the exact solution (see the top-left diagram
of Figure 6). The resulting costs without exact guarantee, were more often obtained for
larger values of p. Additionally, we observed that the lower bound given by the number
of fixed episodes was a tight approximation of the inferred cost (see the top-right diagram
of Figure 6). As p increased, the number of fixed episodes decreased. Note that for p = 1
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(not included in our analysis), the solution to MetaEC is 1. In such a case the leaf labelings
are constant functions and all internal nodes of each gene tree are duplications. Then there
is just one episode, which can be placed at the root of the species tree.

Now, we briefly summarize the outcome of WGD detection. First, we present the analysis
for the root episodes in a separate diagram in the bottom-left diagram of Figure 6 since the
model overestimates the size of the root episode. This is partly due to the property that
the last node to which a duplication can be assigned via a valid mapping is the root. In
more detail, since the number of fixed episodes is a tight lower bound of the EC cost, the
algorithm more likely assigns a duplication at the nearest fixed episode and at the root in
the case where such an episode is not present.

The results for S1 in Figure 5 show that Γ WGD is supported when p ≤ .4. When p > .4,
the duplications are relocated to more ancient locations. In S2, Θ is supported only for
p ≤ .2, while for p > .2 large episodes are present at the parent of the WGD location. In S3,
∆ is well supported when p ≤ .4. The case of Λ is more complicated, since for p ≤ .2, p = .4
and p = .6 we see good support, while for the remaining values, the parent location is more
supported. The ancient double WGDs in S4 have perhaps the worst support in our study.
Here, we observe generally low supports at the WGDs node. Most of the duplications were
shifted to more ancient nodes of S4, i.e., to the root or to the parent location. In S5, the
support is for smaller values of p.
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Figure 6 Summary of simulated dataset experiments. All diagrams, except for the top-left,
display mean values with 95% confidence intervals. The top-left diagram shows histograms of exact
and heuristic solutions returned by Algorithm 1. The top-right diagram presents the EC cost and
the number of fixed episodes. The bottom-left diagram displays the sizes of root episodes in all
five WGD scenarios. The bottom-right diagram shows the runtime in seconds and the number of
executed DP calls.

4.2 Empirical evaluation
To ensure that our algorithm was properly tested, we required a dataset that would capture
the characteristics of the metagenomic data as closely as possible, while allowing us to assess
the quality and accuracy of the results obtained. For this reason, we decided to prepare
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a dataset consisting of gene trees for species identified during metagenomic analysis. To
simulate potentially missing gene-species assignments, we artificially removed some of the
gene labels from the gene trees and retained information about their taxonomic origin for
further analysis of the results. Another important issue was the presence of a previously
described whole-genome duplication event that occurred in the evolutionary tree of selected
species. Given the above requirements, we decided to use proteomes belonging to yeast
species identified during metagenomic analysis of kefir [41].

4.2.1 Data preparation
The eight selected species are: Kazachstania Africana, Kazachstania naganishii, Naumo-
vozyma dairenensis, Tetrapisispora blatte, Tetrapisispora phaffi, Torulaspora delbrueckii,
Zygosaccharomyces rouxii and Saccharomyces cerevisiae. A species tree containing the listed
species, consistent with the NCBI taxonomy and many papers on yeast evolution, is shown
in Figure 7. It also shows the location of the whole-genome duplication event confirmed by
previous studies [9, 21].

The proteomes used to infer gene trees were sourced from the UniProt database [5].
Protein families were created by dividing the proteins into groups using the mcl program [37]
with parameters I = 2 and I = 5. However, since the differences between the obtained sets
were minimal, we used the set obtained for I = 2 in subsequent steps. The protein sequences
in each group were aligned with the MUSCLE algorithm [7], and unrooted gene trees were
inferred using the phyml program [14] with the default parameter setting. Rooting of the
gene trees was performed by URec program [12] using the minimal duplication-loss cost as
the rooting criterion.

We removed trees containing fewer than 3 leaves or 3 species, as well as trees with edges
of length 0 from the final set of trees. This resulted in 3430 rooted gene trees. Similar to
the first experiment, we created 10 datasets for each p ∈ {0.1, 0.2, . . . , 0.6} by randomly
removing each leaf label with the probability p. This resulted in 60 datasets plus the original
dataset representing p = 0.

4.2.2 Results
Figure 7 depicts histograms showing the results obtained for the described dataset. The
evaluation was performed on the same computing server as before and took approximately
one hour. For this evaluation, we set the sampling threshold and stopping criterion to 50,
which yielded exact solutions for all cases. The number of fixed episodes was consistent
across datasets with p < .6, at 12 (note that the number of leaves in a tree was 15). For
p = 0.6, the number of fixed episodes fell within the range of 9 to 12. The number of DP
calls ranged from 2 to 3 for p < .6 and between 2 and 11 for p = .6.

The results obtained by the algorithm for the yeast dataset are consistent with our
knowledge of the whole-genome duplication localization. For the dataset with all leaf labels
present and for p = .1, we have the highest support for the WGD event. The number of
supporting single duplications decreases gradually for successive p′s. For values of p ≥ .5,
the correct WGD localization is still supported by a significantly large number of single
duplications. It is worth noting that even for the p = .6, the right location is supported by
three times as many duplications as the second most supported location, which is in the root.
Additionally, we observed an increase in duplications at the leaves of the species tree as p

increased. Since most of the leaves are fixed episodes, the algorithm often assigned labels to
create duplications at the leaves, resulting in larger sizes of episodes at leaves.
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Figure 7 Summary of gene-species mappings and duplication episodes inference for the yeast
dataset consisting of 3430 gene trees. WGD denotes the whole genome duplication event postulated
in [9, 21]. For the description of symbols refer to Figure 5.

4.3 Software

The software package, which is partially based on the embretnet repository, has been written
in Python and is available with all datasets at https://bitbucket.org/pgor17/metaEC.

5 Conclusions and Future Outlook

In this article, we presented a novel problem that integrates gene-species mapping inference
and genomic duplication detection. We proposed efficient algorithms to solve the problem
exactly in the majority of instances, along with a heuristic modification for cases where exact
solutions are not feasible. To demonstrate the effectiveness and accuracy of our proposed
algorithm, we conducted computational experiments on both simulated and empirical data.
The results showed that our algorithm was able to accurately infer the corresponding events
when the number of missing labels was relatively small for simulated data. Moreover,
the algorithm performed even better on empirical data, demonstrating its robustness and
applicability to real-world scenarios.

However, to maximize topological similarities between a gene tree and its species tree,
speciation nodes should more frequently appear in the resulting extensions of input partial
gene trees. We observe that the optimization model tends to reconstruct leaf labels in a way
that prioritizes duplication events assigned to the nearest fixed episodes or the root, in the
absence of such episodes. This is confirmed by the property that fixed episodes are tight
approximations of the EC cost, leading to a reduction in the number of speciation events in
the final gene tree extensions. As a consequence, the model’s effectiveness may be limited in
some cases when the number of missing labels in partial gene trees is significant.

In the future, we plan to extend the analyzed model to address the importance of
speciation nodes in the EC cost formulation. Alternatively, one may limit the distance
between the lca-mapping of a gene duplication and its destination mapping in the final
scenario similarly to [31]. Additionally, there are models of genomic duplications providing a
higher level of detail than EC, such as minimum episodes (ME) [29] and RMP [15], which
can be adapted in a similar way to infer gene-species mappings and minimize the number
of duplication episodes simultaneously. These models can be further combined with more
general models of valid mappings, which allow the introduction of more duplication events
than the minimum obtained by the lca-mapping [11]. The combination of these models can
provide a more comprehensive approach to inferring gene-species mappings and identifying
the minimum number of duplication episodes.
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