## On Hashing by (Random) Equations

## Martin Dietzfelbinger 🖂 🏠 💿

Technische Universität Ilmenau, Germany

## Abstract

The talk will consider aspects of the following setup: Assume for each (key) x from a set  $\mathcal{U}$  (the universe) a vector  $a_x = (a_{x,0}, \ldots, a_{x,m-1})$  has been chosen. Given a list  $Z = (z_i)_{i \in [m]}$  of vectors in  $\{0,1\}^r$  we obtain a mapping

$$\varphi_Z : \mathcal{U} \to \{0,1\}^r, x \mapsto \langle a_x, Z \rangle := \bigoplus_{i \in [m]} a_{x,i} \cdot z_i,$$

where  $\bigoplus$  is bitwise XOR. The simplest way for creating a data structure for calculating  $\varphi_Z$  is to store Z in an array Z[0..m-1] and answer a query for x by returning  $\langle a_x, Z \rangle$ . The length m of the array should be  $(1 + \varepsilon)n$  for some small  $\varepsilon$ , and calculating this inner product should be fast. In the focus of the talk is the case where for all or for most of the sets  $S \subseteq \mathcal{U}$  of a certain size nthe vectors  $a_x, x \in S$ , are linearly independent. Choosing Z at random will lead to hash families of various degrees of independence. We will be mostly interested in the case where  $a_x, x \in \mathcal{U}$  are chosen independently at random from  $\{0,1\}^m$ , according to some distribution  $\mathcal{D}$ . We wish to construct (static) retrieval data structures, which means that  $S \subset \mathcal{U}$  and some mapping  $f: S \to \{0, 1\}^r$  are given, and the task is to find Z such that the restriction of  $\varphi_Z$  to S is f. For creating such a data structure it is necessary to solve the linear system

$$(a_x)_{x\in S} \cdot Z = (f(x))_{x\in S}$$

for Z. Two problems are central: Under what conditions on m and  $\mathcal{D}$  can we expect the vectors  $a_x, x \in S$  to be linearly independent, and how can we arrange things so that in this case the system can be solved fast, in particular in time close to linear (in n, assuming a reasonable machine model)? Solutions to these problems, some classical and others that have emerged only in recent years, will be discussed.

2012 ACM Subject Classification Theory of computation  $\rightarrow$  Sorting and searching; Theory of computation  $\rightarrow$  Randomness, geometry and discrete structures

Keywords and phrases Hashing, Retrieval, Linear equations, Randomness

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.1

**Category** Invited Talk



© Martin Dietzfelbinger; licensed under Creative Commons License CC-BY 4.0 31st Annual European Symposium on Algorithms (ESA 2023). Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 1; pp. 1:1-1:1 Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany