
(No) Quantum Space-Time Tradeoff for USTCON
Simon Apers #

CNRS, IRIF, Paris, France

Stacey Jeffery #

CWI & QuSoft, Amsterdam, The Netherlands

Galina Pass #

Korteweg-de Vries Institute for Mathematics & QuSoft, University of Amsterdam, The Netherlands
Faculty of Computer Science, Ruhr University Bochum, Germany

Michael Walter #

Faculty of Computer Science, Ruhr University Bochum, Germany

Abstract
Undirected st-connectivity is important both for its applications in network problems, and for its
theoretical connections with logspace complexity. Classically, a long line of work led to a time-space
tradeoff of T = Õ(n2/S) for any S such that S = Ω(log(n)) and S = O(n2/m). Surprisingly, we show
that quantumly there is no nontrivial time-space tradeoff: there is a quantum algorithm that achieves
both optimal time Õ(n) and space O(log(n)) simultaneously. This improves on previous results,
which required either O(log(n)) space and Õ(n1.5) time, or Õ(n) space and time. To complement
this, we show that there is a nontrivial time-space tradeoff when given a lower bound on the spectral
gap of a corresponding random walk.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Design and analysis of algorithms

Keywords and phrases Undirected st-connectivity, quantum walks, time-space tradeoff

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.10

Related Version Full Version: https://arxiv.org/abs/2212.00094

Funding Stacey Jeffery: Supported by ERC STG grant 101040624-ASC-Q, NWO Klein project
number OCENW.Klein.061, and ARO contract no W911NF2010327. SJ is a CIFAR Fellow in the
Quantum Information Science Program.
Galina Pass: Supported by the National Agenda for Quantum Technologies (NAQT), as part of the
Quantum Delta NL programme.
Michael Walter : Supported by the European Research Council (ERC) through ERC Starting Grant
101040907-SYMOPTIC, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, the Federal Ministry of
Education and Research (BMBF) through project Quantum Methods and Benchmarks for Resource
Allocation (QuBRA), and NWO grant OCENW.KLEIN.267.

Acknowledgements Part of this work was initiated at the 2022 QOPT (QuantERA ERA-NET
Cofund 2022-25) workshop hosted at Université Libre de Bruxelles.

1 Introduction

For an undirected graph G = (X,E) on n = |X| vertices and m = |E| edges, with s, t ∈ X,
st-connectivity or ustcon is the problem of deciding whether s and t are in the same
component. This problem has applications in many other graph and network problems,
and is of theoretical importance for its connection with space complexity (see e.g. [23]). In
particular, ustcon is complete for the class symmetric logspace, SL, which was shown to be
equal to logspace, L, by exhibiting a classical deterministic logspace algorithm for ustcon [22].
In this paper, we consider quantum algorithms for this problem.

© Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 10;
pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smgapers@gmail.com
mailto:jeffery@cwi.nl
mailto:g.pass@uva.nl
mailto:michael.walter@rub.de
https://orcid.org/0000-0002-3073-1408
https://doi.org/10.4230/LIPIcs.ESA.2023.10
https://arxiv.org/abs/2212.00094
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 (No) Quantum Space-Time Tradeoff for USTCON

There are different versions of the problem ustcon depending on how G is accessed.
If G is given as an adjacency matrix, we denote the problem ustconmat. If G is given as an
array of arrays, one for each vertex, enumerating the neighbours, we denote the problem
ustconarr. 1 If one only cares about space complexity, these problems are equivalent, but
the same is not true of time complexity: adjacency queries can simulate an array query, and
vice versa, in logspace, but there is a non-negligible time overhead.

A classical deterministic algorithm based on breadth-first search or depth-first search
can solve ustconarr in Õ(m) time, using Õ(n) space. Using a random walk, the space
complexity can be improved to O(log(n)), at the expense of Õ(nm) time complexity [2].
A series of works [11, 7, 14, 5, 16] culminated in a space-time tradeoff for ustconarr of
T = Õ(n2/S) queries for any space bound S = Ω(log(n)) and S = O(n2/m), due to
Kosowski [19]. While there is no matching time-space lower bound, it is unlikely that this
tradeoff can be significantly improved (see [19, Section 5.1 of arXiv v2] for a discussion).
Kosowski’s algorithm is based on using Metropolis-Hastings random walks to find connections
between S sampled vertices and s, t until it is becomes possible to conclude that s and t are
connected. For comparison, in the adjacency matrix model, the randomized query complexity
of ustconmat is Θ̃(n2) and there is no space-time tradeoff.

A quantum algorithm of Dürr, Heiligman, Høyer and Mhalla [13] for connectivity
can be adapted to solve ustconmat in Õ(n1.5) time and ustconarr in Õ(n) time, both of
which are optimal up to polylog factors. Both of these algorithms use Õ(n) space, of which
all but O(log(n)) can be classical space (assuming quantum RAM access). A subsequent
quantum algorithm for ustconmat due to Belovs and Reichardt uses Õ(n1.5) time, but only
O(log(n)) space [9], which is optimal in terms of both space and time. It is also possible
to solve ustconarr in O(log(n)) space and Õ(

√
nm) time, using a quantum walk (see for

example [8]). This quantum walk algorithm requires a quantum version of array access to
the input graph, which we refer to as ustconqw in the next section.

1.1 Summary of results

We describe new quantum walk algorithms for ustconarr. These algorithms consider a
quantum walk version of the adjacency array model, in which the input graph is accessed by
a quantum analogue of classical random walk steps. Recall that in the adjacency array model,
we assume that for any vertex u, we can query, for any i ∈ [du], the i-th neighbour of u, vi(u).
Then a random walk step can be performed from state u by sampling a uniform i ∈ [du],
and then computing vi(u), which becomes the current state. In the quantum walk access
model, we assume that for any vertex u, we can prepare a uniform superposition over the
neighbours of u. While these models are not identical, they are very similar, and in Section 3,
we formally define the models, and show that quantum walk access can be simulated in the
array model with polylogarithmic overhead under reasonable additional assumptions.

Letting ustconqw denote the st-connectivity problem in the quantum walk access model,
we present a one-sided error quantum algorithm that solves ustconqw in time Õ(n) and
space O(log(n)). Perhaps surprisingly, this means that ustconqw admits no nontrivial
tradeoff between space and time in the quantum setting – a single algorithm can solve this
problem optimally in terms of both time and space (see Theorem 15 for the formal result).

1 There are variations on the details of this model. For now, we allow ustconarr to stand in for multiple
variations of the array access model, but precise details of the variations can be found in Section 3.

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:3

Table 1 A summary of classical (randomized) and quantum time and space complexities for
ustcon in the adjacency matrix and adjacency array models. The classical results for ustconmat

follow from (1) the log(n)-space result for ustconarr with an n/d overhead for finding neighbours of
the current vertex in a d-regular graph; and (2) BFS.

ustconmat

Time TS-tradeoffs

Classical Θ̃(n2) S = O(log(n)), T = Õ(n3/d)

S = Õ(n), T = Õ(n2)

Quantum Θ̃(n1.5) S = O(log(n)), T = Õ(n1.5) [9]

ustconarr

Time TS-tradeoffs

Classical Θ̃(m) T = Õ(max{n2/S, m})

Quantum Θ̃(n) S = O(log(n)), T = Õ(n1.5)

S = T = Õ(n) [13]

This work: S = O(log(n)), T = Õ(n)

▶ Theorem 1 (Informal). There is a O(log(n))-space quantum algorithm that decides
ustconqw with one-sided error in Õ(n) time.

In this paper, when we say time, we are counting: (1) quantum gates (unitaries that act
on at most a constant number of qubits); (2) quantum walk queries to G; and (3) (quantum)
random access (QCRAM) operations (QCRAM is used in our second algorithm only, see
below). Inspired by [19], our algorithm is based on a quantum walk search for t starting
from s using a random walk that can be interpreted as a Metropolis-Hastings random walk.

Because of the close relationship between ustcon and classical logspace, we can consider
what this means for logspace problems in general. It does not mean that more space does
not reduce the quantum time complexity of any problem, but it is interesting to consider:
in what settings do we get a non-trivial time-space tradeoff? We consider one such setting:
when we are given a promise on the spectral gap or mixing time of the random walk on
G (see Section 2.2). In that case, we prove the following theorem (see Theorem 17 for the
formal result).

▶ Theorem 2 (Informal). Suppose whenever s and t are connected, the random walk spectral
gap is at least δ > 0. For any S ∈ Ω(log(n)), there is a quantum algorithm that decides
ustconqw with bounded error in O(S) space and T = Õ

(
S
δ +

√
n

δS

)
time.

The time bound decreases monotonically for S ∈ Ω(logn) until S ∈ O((nδ)1/3), at which
point it reaches time complexity T = Õ(n1/3/δ2/3). We leave it as an open problem to prove
a matching lower bound (at least for some values of δ), which would prove that in certain
regimes, it is not possible to achieve optimal time and space simultaneously.

Our algorithm takes inspiration from [3]. In fact, with some imagination, one can derive a
similar (but incomparable) time-space tradeoff for ustconqw from that work: for 1 ≤ S ≤ m,
the algorithm in [3] can be adapted to use space Õ(S) and time T ∈ Õ(S +

√
m/(δS)),

with δ the random walk spectral gap.

ESA 2023

10:4 (No) Quantum Space-Time Tradeoff for USTCON

In the space bound S of both algorithms in Theorems 1 and 2, only O(log(n)) memory
needs to be actual quantum workspace (i.e., qubits). The remaining O(S) memory can be
classical RAM in the first algorithm and QCRAM in the second algorithm, that is, classical
RAM that is queryable at a quantum superposition of addresses. We discuss the latter in
Section 2.4.

We summarize our results in Figure 1. For S = log(n), the algorithm of Theorem 2 has a
worse time complexity than the algorithm of Theorem 1, whenever δ < 1

n . We leave it as an
open problem to give a single algorithm that is optimal for all δ.

Figure 1 Quantum space-time tradeoffs for USTCON, with axes representing the time complexity
and spectral gap promise (up to polylog-factors). The grey area represents the regime in which a non-
trivial tradeoff is achieved. Theorem 1 (upper line) corresponds to the regime with space S = O(log n)
and time T = Õ(n). Theorem 2 (grey area) corresponds to the regime with a promise on δ, and
interpolates between S = O(log n) and T = Õ(n), and S = O((nδ)1/3) and T = Õ(n1/3/δ2/3).

Organization

The remainder of this paper is organized as follows. We describe preliminaries in Section 2
and Section 3. In Section 4, we prove Theorem 1 by exhibiting a quantum algorithm for
ustconqw that is optimal in both time and space. For completeness, we also include a proof
of a corresponding lower bound in Section 4.1. In Section 5, we prove Theorem 2 exhibiting
a quantum time-space tradeoff when given a promise on the spectral gap.

2 Preliminaries

We first give some general notation. For a positive integer k, we let [k] = {1, . . . , k}.
Throughout this work, n denotes the number of vertices and m the number of edges of the
input graph. For any function f , we let Õ(f(n)) = f(n) · polylog(n).

2.1 Probability theory
A (probability) distribution on a finite set X is a non-negative function σ : X → R≥0 such
that

∑
v∈X σ(v) = 1. Its support is defined as supp(σ) := {v ∈ X : σ(v) > 0}. We will

implicitly identify such σ with row vectors, as is customary in the random walk literature.
To any distribution σ, we also associate a quantum state |σ⟩ :=

∑
v∈X

√
σ(v) |v⟩. Measuring

|σ⟩ in the standard basis returns a sample from σ.

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:5

For any distribution σ on X, and any subset M ⊆ X, we will let σ(M) =
∑

u∈M σ(u).
We let σM denote the normalized restriction of σ to M , defined by σM (u) = σ(u)/σ(M) for
all u ∈ M and σM (u) = 0 elsewhere.

Finally, the total variation distance between two distributions σ and τ on X is defined as

∥σ − τ∥TV := 1
2
∑
u∈X

|σ(u) − τ(u)| = max
A⊆X

|σ(A) − τ(A)|.

2.2 Random walks
Fix an undirected graph G = (X,E) with n = |X| vertices and m = |E| edges. We take
E ⊆

(
X
2
)
, that is, edges e ∈ E are subsets e = {u, v} = {v, u} of pairs of vertices. We will let

N(u) := {v ∈ X : {u, v} ∈ E}

denote the neighbourhood of u ∈ X, and du = |N(u)| the degree of u. For convenience we
assume that all vertices have positive degree.

Fix edge weights given by a symmetric matrix W ∈ RX×X
≥0 such that Wu,v = Wv,u for

all u, v ∈ X, and Wu,v > 0 if and only if {u, v} ∈ E. Then G = (X,E,W) defines a weighted
graph. When no W is given, the graph is unweighted and we let Wu,v = 1 for all {u, v} ∈ E.
For u ∈ X, define wu =

∑
v∈X Wu,v. The corresponding (weighted) random walk is the

reversible Markov chain on X with transition matrix P ∈ RX×X
≥0 given by

Pu,v =
{

Wu,v

wu
if {u, v} ∈ E

0 otherwise
∀u, v ∈ X. (1)

This means that the probability of moving from the vertex u along an edge to a neighbouring
vertex v is proportional to the edge’s weight. In the unweighted case, this is called the simple
random walk; in each step it simply moves to a neighbouring vertex chosen uniformly at
random.

Let π ∈ RX
>0 be the distribution defined by

π(u) = wu

W(G) ∀u ∈ X,

where W(G) =
∑

u∈X wu =
∑

u,v∈X Wu,v. In the unweighted case, π is proportional to the
degree. The distribution π is a stationary distribution of the random walk, i.e., πP = π (it
is a left eigenvector of P with eigenvalue 1).

In fact, when the graph G is connected, π is also the unique stationary distribution of P .
If in addition the graph is not bipartite, then all other eigenvalues have absolute value strictly
less than one. That is, if 1 = λ1 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of P then the (absolute)
spectral gap γ⋆ = γ⋆(G) := min{1 − |λj | : j = 2, . . . , n} = min{1 − λ2, 1 + λn} is strictly
positive. Importantly, the inverse of the spectral gap bounds the random walk’s mixing time,
that is, the time required for convergence to the stationary distribution:

▶ Theorem 3 ([21, Thm. 12.4]). Assume G is connected and not bipartite. Let ε > 0 and

t ≥ 1
γ⋆

log
(

1
επmin

)
,

where πmin = minu∈X π(x). Then ∥σP t − π∥TV ≤ ε for any distribution σ on X.

ESA 2023

10:6 (No) Quantum Space-Time Tradeoff for USTCON

Conversely, it is known that t ≥ (1
γ⋆

− 1) log
(1

2ε

)
is necessary to ensure mixing from

an arbitrary initial distribution [21, Thm. 12.5]. In the unweighted case, we have πmin ≥
dmin

n dmax
≥ 1

n2 , so the former shows that Theorem 3 is tight up to log(n) factors in that case.
Finally, for any s, t ∈ X we let Hs,t denote the hitting time from s to t, which is the

expected number of steps needed to reach t in a random walk starting from s. We let
Cs,t = Hs,t + Ht,s denote the commute time between s and t – the expected number of steps
needed to reach t and then return to s in a random walk starting from s. These quantities
are finite if and only if s and t are in the same component of G. More generally, the commute
time Cs,M from s to a subset M ⊆ X is the expected number of steps needed to reach any
vertex in M and then return to s in a random walk starting from s.

2.3 Quantum walk search algorithms
Quantum walk search refers to the use of quantum walks to find certain “marked” elements
on a graph. We will use quantum walk search to search for a vertex connected to t in the
connected component of S. Specifically, we will use the following special case of [4, Thm. 13].2

▶ Theorem 4. Let P be a random walk on a weighted graph with vertex set X, M ⊆ X a
subset of “marked” vertices, and s ∈ X. Let C be the (quantum) time complexity to check for
a given u ∈ X whether u ∈ M , let U be the time complexity of implementing the weighted
quantum walk oracle

|u⟩ |0⟩ 7→
∑

v∈N(u)

√
Pu,v |u⟩ |v⟩ .

in space O(log(n)). Let C be a known upper bound on the commute time Cs,M in the case
where s and M are connected (and in particular M ≠ ∅). Then there is a quantum algorithm
that, if M ̸= ∅ and s is connected to M , finds an element of M with probability at least 2/3.
If M = ∅ or s is not connected to M , then the algorithm outputs a vertex not in M . The
algorithm has time complexity O(

√
log(C) log(n) +

√
C log(C) log(log(C))(C + U)) and space

complexity O(log(n)).

2.4 Quantum RAM
Our algorithm will exploit the given space by saving sets of vertices which will be either
connected to s or to t. For our quantum algorithm to access this space, we assume access to
a so-called quantum-classical random access memory or QCRAM. This refers to a memory
that only stores classical information, but can be queried at a superposition of addresses.
More specifically, an R-bit QCRAM stores a string of bits q ∈ {0, 1}R so that the following
operations are supported in time polylog(R):
1. UPDATE(i, x): store x ∈ {0, 1} in the i-th bit (i.e., set qi = x).
2. QUERY: for any superposition

∑
i αi |i⟩ |si⟩, it maps∑

i

αi |i⟩ |si⟩ 7→
∑

i

αi |i⟩ |si ⊕ qi⟩ .

As was first described by Kerenidis and Prakash [18], using such a QCRAM we can set
up a data structure to generate quantum superpositions over elements in the QCRAM. We
will use the following formulation based on [3].

2 To see that this follows from [4, Thm. 13], note that when |σ⟩ = |s⟩, the cost to set up |σ⟩ is log(n) and
the value Cσ,M from [4] is exactly the commute time from s to M [4, Thm. 4].

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:7

▶ Lemma 5. Fix integer parameters ℓ and k. Using an O(kℓ log(ℓ))-bit QCRAM, there is a
data structure, D, that stores up to ℓ elements x ∈ {0, 1}k with associated integer weights, cx,
of bounded absolute value for some poly(ℓ) bound, and supports the following operations in
time O(k · polylog(kℓ)) per operation:
1. insertion or deletion of a pair (x, cx),
2. quantum queries of the form “Is x ∈ D?”,
3. preparation of the quantum state 1√∑

x∈D
cx

∑
x∈D

√
cx |x⟩.

3 USTCON and the Quantum Walk model

In this section we define the undirected st-connectivity problem (ustcon). The input to
this problem is an undirected graph G = (X,E). Classically, there are various ways this
input may be given, which may change the complexity of the problem. For example, in the
adjacency array model (defined below), it is possible to randomly sample a neighbour of any
vertex u in O(1) queries to G (assuming access to the vertex degrees), facilitating a random
walk on G, whereas if G is given as an adjacency matrix, a random walk step is not so simple.

We will work in a quantum walk analogue of the adjacency array model. We assume
that G can be accessed via the quantum walk oracle that for every u ∈ X outputs a uniform
superposition over its neighbours:3

OW : |u⟩ |0⟩ 7→ 1√
du

∑
v∈N(u)

|u⟩ |v⟩ . (2)

Formally, we describe ustconqw in terms of the input and output.

▶ Problem 6 (ustconqw). Given access to an undirected graph G = (X,E) via the quantum
walk oracle OW , and two vertices s, t ∈ X, decide whether s and t are in the same connected
component of G.

To compare our work with classical results on ustconarr, we describe an implementation
of the quantum walk oracle defined above based on adjacency array access to a graph. Let
u ∈ X and i ∈ [du]. We assume that for each vertex u there is a fixed numbering of its
neighbours from 1 to du. In the adjacency array model, two types of queries are allowed:

Degree query OD : |0⟩ |u⟩ 7→ |du⟩ |u⟩
Neighbour query ON : |u⟩ |i⟩ |0⟩ 7→ |u⟩ |i⟩ |vi(u)⟩

In the sorted adjacency array model we additionally assume that for every vertex u ∈ X

its neighbours are sorted: for any i, j ∈ [du], if i < j then vi(u) < vj(u). In particular, this
allows us to check with O(log(n)) queries whether a given pair of vertices u, v are adjacent.
We define the ustcon-problem in this model as follows.

▶ Problem 7 (ustcons-arr). Given access to an undirected graph G = (X,E) via the sorted
adjacency array model and two vertices s, t ∈ X, decide whether s and t are in the same
connected component of G.

The question that we consider is how many sorted adjacency array queries to the graph
it takes to implement the quantum walk oracle OW .

3 Note that this is exactly the quantum walk oracle defined in Theorem 4, specialized to unweighted
graphs.

ESA 2023

10:8 (No) Quantum Space-Time Tradeoff for USTCON

s

v′
0

x0

x0

x̄0

x̄0

v1

v′
1

x1

x1

x̄1

x̄1

v2

v′
2

x2

x2

x̄2

x̄2

. . .

x̄n−2

x̄n−2

xn−1

xn−1

x̄n−1

x̄n−1

vn

t

Figure 2 The parity graph. We include an edge labelled by “xi” (in red) if and only if xi = 1,
and an edge labelled “x̄i” (in blue) if and only if xi = 0, meaning that for each vertex we include
exactly one of the two incoming edges, and exactly one of the two outgoing edges. The resulting
graph has s and t connected if and only if parity(x) = 1.

▶ Lemma 8. The quantum walk oracle OW for an unweighted graph G (Equation (2)) with
maximum degree dmax can be implemented with O(log(dmax)) queries in the sorted adjacency
array model, and Õ(1) other elementary operations and space.

The proof of this lemma is deferred to the appendix.
It follows that any quantum algorithm solving ustconqw in T time and S = Ω(log(n))

space can solve ustcons-arr in Õ(T) time and O(S) space.

4 Time- and space-optimal quantum algorithm

In Section 4.2 and Section 4.3, we give an algorithm for ustconqw that is optimal in both
time and space. For completeness, we first give a time lower bound in Section 4.1.

4.1 Lower bound
The proof of the following lower bound follows the lines of the proof of an analogous lower
bound for the strong connectivity problem described in [13]. The proof is via a reduction
from parity.

▶ Problem 9 (parity). Given oracle access to a string x ∈ {0, 1}n via Ox : |i⟩ |b⟩ 7→
|i⟩ |b⊕ xi⟩, return

⊕n−1
i=0 xi.

▶ Lemma 10 ([6, 15]). The bounded error quantum query complexity of parity is Ω(n).

We use Lemma 10 and a reduction from parity, using the parity graph illustrated in Figure 2,
to show the following result. The detailed proof can be found in the appendix.

▶ Theorem 11. The bounded error quantum query complexity of ustcons-arr and ustconqw
is Ω(n).

4.2 Metropolis-Hastings walk
In this section, we consider an unweighted simple graph G. The algorithm that we propose
involves a quantum walk on a modified weighted version of G that we call G′ = (X ′, E′,W).
We start by describing the construction of G′ that was introduced in [19, arXiv v2].

▶ Definition 12 (Metropolis-Hastings walk). For any graph G = (X,E), the corresponding
Metropolis-Hastings walk is the random walk on the weighted graph G′ = (X ′, E′,W) defined
as follows. For every u ∈ X, we include a corresponding vertex xu in X ′. In addition, for
every edge {u, v} ∈ E, we add a new vertex xu,v that splits the edge into two new edges.
Formally:

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:9

X ′ = {xu : u ∈ X} ∪ {xu,v : {u, v} ∈ E, u < v}
E′ = {{xu, xu,v} : {u, v} ∈ E}.

For every edge {xu, xu,v} ∈ E′, we define the edge weight Wxu,xu,v
= 1

du
. These weights

define transition probabilities for the random walk on G′.

The above has been called the cautious walk in [19, arXiv v2], while Metropolis-Hastings-
type walks are walks in which neighbours are sampled and accepted with some probability.
Our terminology is motivated by the following observation. If we start with a vertex u ∈ X

and take two steps of the walk of Definition 12, then we arrive at another vertex v ∈ X,
which is either the same or a neighbour of u in G. The walk on G defined this way has
the following alternative description: sample a uniformly random neighbour and accept it
with probability 1/dv

1/du+1/dv
= 1

1+dv/du
. This is precisely a random walk that falls into the

Metropolis-Hastings framework, justifying our terminology. The precise choice of acceptance
probabilities is sometimes called the Glauber choice in the literature (e.g., [20]). We note that
a later version of [19] uses another choice of Metropolis-Hastings walk, but of our purposes
we find it convenient to stick to the walk as defined above.

While the hitting time of a random walk between two vertices in G may be as high as
O(n3), in G′ it is at most O(n2) [19, Lemma 2 of arXiv v2]:

▶ Lemma 13 ([19]). Let G = (X,E) be any unweighted graph, and G′ the corresponding
(weighted) Metropolis-Hastings graph as in Definition 12. For any u, v ∈ X connected by a
path, Hu,v(G′) ≤ 18n2.

In order to apply Theorem 4 to G′, we need to upper bound U, the cost of implementing
the weighted quantum walk oracle. For u ∈ X ′ the oracle is defined as

U : |x⟩ |0⟩ 7→
∑

y∈N(x)

√
P ′

xy |x⟩ |y⟩ , ∀x ∈ X ′

where P ′
xy is the probability of walking from x to y defined by the edge weights.

▶ Lemma 14. The weighted quantum walk oracle U for the Metropolis-Hastings walk G′

can be implemented with Õ(1) degree queries OD, Õ(1) applications of the quantum walk
operator OW on the graph G, and Õ(1) additional gates.

Therefore, U can be implemented with Õ(1) queries to G in the sorted adjacency array
model, and Õ(1) additional gates.

Proof. Note that the first statement implies the second one due to Lemma 8. Therefore, we
will only prove the first statement. Consider the following encoding of the vertices of G′.

X ′ = {(u, 0) : u ∈ X} ∪ {(u, v) : {u, v} ∈ E, u < v} ⊆ X ×
(
X ∪ {0}

)
,

where 0 is a null symbol not contained in X. The first set of this union corresponds to
original vertices of G and the second one corresponds to the added ones.

To implement U on |x⟩ |0⟩, we first compute a bit in an ancilla register A that is |0⟩A if
x = (u, 0) for some u, and |1⟩A otherwise. We will condition on this value.

First, conditioned on |0⟩A, our implementation proceeds as follows, for u ∈ X:

|xu⟩ |0⟩ = |u, 0⟩ |0⟩ JOW7→ 1√
du

∑
v∈N(u)

|u⟩ |v⟩ |u, v⟩

J′

7→ 1√
du

∑
v∈N(u)

|u, 0⟩ |u, v⟩ = 1√
du

∑
v∈N(u)

|xu⟩ |xu,v⟩ = U |xu⟩ |0⟩

ESA 2023

10:10 (No) Quantum Space-Time Tradeoff for USTCON

where J is a unitary that acts as |u, v⟩ |0⟩ 7→ |u, v⟩ |u, v⟩, and J ′ as |u, v⟩ |u, v⟩ 7→ |u, 0⟩ |u, v⟩,
each of which can be implemented with O(log(n)) controlled-NOT gates (since every vertex
is described by O(log(n)) bits).

Next, conditioned on |1⟩A, our implementation proceeds as follows, for {u, v} ∈ E with
u < v, and |0⟩A′ a fresh ancilla:

|0⟩A′ |xu,v⟩ |0⟩ = |0⟩A′ |u, v⟩ |0⟩

17→

(√
1/du

1/du + 1/dv
|0⟩ +

√
1/dv

1/du + 1/dv
|1⟩

)
A′

|u, v⟩ |0⟩

27→

√
1/du

1/du + 1/dv
|0⟩A′ |u, v⟩ |u⟩ +

√
1/dv

1/du + 1/dv
|1⟩A′ |u, v⟩ |v⟩

37→ |0⟩A′

(√
1/du

1/du + 1/dv
|u, v⟩ |u⟩ +

√
1/dv

1/du + 1/dv
|u, v⟩ |v⟩

)

= |0⟩A′

(√
Wxu,v,xu

w(xu,v) |xu,v⟩ |xu⟩ +

√
Wxu,v,xv

w(xu,v) |xu,v⟩ |xv⟩

)
= |0⟩A′ U |xu,v⟩ |0⟩ ,

where we use the following mappings:
1: Query degrees for u and v into a new ancilla register, perform the rotation controlled on

the degrees (cf. [17]), and then uncompute the degrees (O(1) degree queries to G).
2: Controlled on the first register, select one of the two vertices to copy into the last register

(O(log(n)) Toffoli gates).
3: Flip the bit in A′ if the second vertex of |u, v⟩ is the same as the one written in the third

register (O(log(n)) elementary gates).
To complete the proof, note that we can uncompute the bit in ancilla A, because the register
containing |x⟩ has not been changed. ◀

4.3 The algorithm
We can solve ustconqw(G) using Algorithm 1. This leads to our main theorem of this
section.

Algorithm 1 Quantum algorithm for ustconqw with optimal time and space.

Apply the algorithm from Theorem 4 to the Metropolis-Hastings walk P ′ with
M = {t}, using Lemma 14 to implement the quantum walk oracle for G′. If the
algorithm returns t, output “connected”, and otherwise output “disconnected”.

▶ Theorem 15. There exists a O(log(n))-space quantum algorithm that decides ustconqw
and ustcons−arr with bounded one-sided error in Õ(n) gates and queries.

Proof. Let Xs ⊆ X denote the connected component of s. If t ∈ Xs, the algorithm will
output t with probability at least 2/3, in which case our algorithm will output the correct
answer, “connected”. If t ̸∈ Xs, then the algorithm will output an element of Xs with
probability 1, in which case, our algorithm will output the correct answer “disconnected”.
This establishes correctness of Algorithm 1 with one-sided error.

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:11

To analyze the complexity, note that by Lemma 14 we have U = Õ(1). For any u ∈ Xs,
we can check if u ∈ M by checking if u = t in complexity C = O(log(n)) = Õ(1). To
complete the analysis, we need only upper bound the commute time between s and t when
t ∈ Xs. Since Cs,t = Hs,t + Ht,s, by Lemma 13, we have Cs,t ≤ 36n2 =: C. Thus, referring to
Theorem 4, the complexity of our algorithm is:

Õ
(√

C log(C) log(log(C))(C + U)
)

= Õ(n). ◀

5 Time-space tradeoff for bounded spectral gap

In this section we revisit the problem of undirected st-connectivity in the setting where one
is given a lower bound on the spectral gap of the random walk. As discussed in Section 2.2,
such a bound is tightly related to the mixing time of the walk. We will give a quantum
algorithm that exhibits a nontrivial time-space tradeoff in this setting.

Our discussion will be general and apply to random walks on weighted graphs as defined
in Equation (1). This is useful since the spectral gaps and mixing times of random walks
on G with different edge weights are in general not comparable. E.g., on the lollipop graph
(an n-vertex clique connected to an O(n)-vertex path) the mixing time of the unweighted
random walk is Θ(n3) [10], while it is O(n2) for the Metropolis-Hastings walk.4 On the other
hand, on an n-vertex star graph the unweighted random walk has mixing time O(1) while
the Metropolis-Hastings walk has mixing time Θ(n). Thus, while the specific edge weights
do not affect whether s and t are connected, they do impact the algorithm. Throughout this
section, we assume some fixed edge weights are given, and we do not try to optimize for
“good” edge weights. More specifically, we assume access to a weighted quantum walk oracle
that for every vertex outputs a superposition of its neighbours, with squared amplitudes
proportional to the edge weights:

OW : |u⟩ |0⟩ 7→
∑

v∈N(u)

√
Wu,v

wu
|u⟩ |v⟩ =

∑
v∈N(u)

√
Pu,v |u⟩ |v⟩ ∀u ∈ X

Moreover, we assume access to the weighted vertex degrees wu and that these degrees
are of bounded absolute value for some poly(n) bound. This will allow us to generate the
state |πX′⟩ for any subset X ′ ⊆ X stored in QCRAM.

▶ Problem 16 (ustconqw,δ). Given access to an undirected weighted graph via the quantum
walk oracle OW , two vertices s, t ∈ X, and the promise that either s and t are disconnected
or the spectral gap of the transition matrix of the walk is at least some δ > 0, decide which is
the case.

Our main result of this section is the following:

▶ Theorem 17. Fix δ ≥ 0. Let Gn be a family of undirected weighted graphs G = (X,E,W)
with n = |X|, such that γ⋆(G) ≥ δ whenever s and t are connected. Then for any S =
Ω(log(n)), there is a quantum algorithm that decides ustconqw,δ on Gn with bounded error
in O(S) space – of which O(log(n/δ)) is quantum memory, and the remainder is QCRAM –
and T = Õ(S

δ log
(

1
πmin

)
+
√

n
δS) queries to OW , elementary gates, and QCRAM queries.

4 This follows from the O(n2) upper bound on the maximum hitting time of the Metropolis-Hastings walk
(Lemma 13), and the fact that the maximum hitting time upper bounds the mixing time [21, Lemma
10.2].

ESA 2023

10:12 (No) Quantum Space-Time Tradeoff for USTCON

Note that we can assume δ ≥ 1/n. If δ < 1/n then T ≈ S/δ. There is no time-space
tradeoff, and it is always faster to run the Metropolis-Hastings algorithm (Algorithm 1).

The algorithm is stated below as Algorithm 2. It consists of three stages. We fix some
parameter p, which denotes the number of “pebbles”, or vertices the algorithm will keep
track of (so S = O(p log(n))). First, we run O(p) classical random walks starting from s,
each of length ℓ = O

(
1
δ log

(
n

pπmin

))
. This allows us to sample a set L of O(p) points from

Xs, the connected component of s (the big-O notation suppresses a universal constant that
is given in the proof). Since ℓ is at least the mixing time of G (see Theorem 3), assuming s
and t are connected, each point is sampled (approximately) from π. We do the same from t

to get a random subset M ⊆ Xt connected to t.
Next, we use L and M to prepare (up to some error) the states |πXs⟩ and |πXt⟩, using

inverse quantum walk search, which we describe in more detail in Section 5.2. If s and t

are in the same connected component, then |πXs⟩ = |πXt⟩, and otherwise, the states are
orthogonal. The final step is to distinguish these two cases using a SWAP test [1, Claim 1].
This roughly follows an earlier approach in [3], the main difference being that we sample the
sets L and M using a random walk (which allows us to exploit the gap promise), while in [3]
the sets are constructed using a breadth-first search.

Algorithm 2 Quantum algorithm for ustconqw with a tradeoff.

Seed set: Run O(p) classical random walks from s and O(p) classical random
walks from t, each for O(1

δ log
(

n
pπmin

)
) steps. Let L and M denote the respective

sets of endpoints, without duplicates. If L ∩M ̸= ∅, return “connected”.5
State preparation: Run inverse quantum walk search from |πL⟩ and |πM ⟩ for
time Õ

(√
n
δp

)
to prepare |πXs⟩ and |πXt⟩, respectively, to precision 1/8.

SWAP test: Do a SWAP test on the resulting states. If the test returns “0”, return
“connected”, otherwise return “disconnected”.

If we specialize Theorem 17 to the unweighted graph case, we get the following corollary.

▶ Corollary 18. For any S > 0, there is a quantum algorithm that solves ustcons-arr with a
promise δ > 0 on the random walk spectral gap using space S and time T ∈ Õ(S/δ+

√
n/(δS)).

An analogous result holds for the Metropolis-Hastings walk described in Section 4.2 given
a promise on its spectral gap, since we showed that the corresponding quantum walk oracle
can also be efficiently implemented.

In the remainder of this section we will analyze each stage of Algorithm 2.

5.1 Analysis of step 1: Seed set

Recall that the first stage results in random sets L = {x1, . . . , xcp} and M = {y1, . . . , ycp},
where x1, . . . , ycp are the endpoints of independent random walks starting at s or t, respect-
ively, and c > 0 is some universal constant that we will choose later. Since we run those
random walks for O(1

δ log
(

n
pπmin

)
) steps, by Theorem 3 it follows that the xj are independent

5 We use the following strategy to check whether L ∩ M ≠ ∅: Sort L and M and check for every element
of L if it is present in M . This takes Õ(p) time and space.

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:13

samples drawn from a distribution π̃ such that

∥π̃ − π∥TV ≤ p

8n,

where π is the stationary distribution on Xs. If s and t are connected then Xs = Xt and the
samples yj are similarly drawn from a distribution that is p/(8n)-close to π. Here we prove
that this implies lower bounds on the stationary measure of the sets L and M .

▶ Proposition 19. There exists a universal constant c > 0 such that the following holds.
Let p ∈ [n] and assume L ⊆ X is a random set obtained by sampling cp independent
elements from a distribution π̃ such that ∥π̃ − π∥TV ≤ p

8n (and removing duplicates). Then,
Pr(π(L) ≥ p

8n) ≥ 9
10 .

The proof of the proposition uses the following lemma, which formalizes the intuition
that adding a random element to a low-probability subset should increase the probability.

▶ Lemma 20. Let X be a set of cardinality n, A ⊆ X an arbitrary fixed subset, and let b be
drawn at random from an arbitrary distribution σ on X. Then:

Pr
(
σ(A ∪ {b}) > σ(A) + 1 − σ(A)

2n

)
≥ 1 − σ(A)

2 .

Proof. Say b is bad if b ∈ A or σ(b) ≤ 1−σ(A)
2n , and good otherwise. Then

Pr
(
σ(A ∪ {b}) > σ(A) + 1 − σ(A)

2n

)
= Pr(b is good) = 1 − Pr(b is bad).

We can compute:

Pr(b is bad) = σ

(
A ∪

{
x ∈ X : σ(x) ≤ 1 − σ(A)

2n

})
≤ σ(A) + n · 1 − σ(A)

2n = 1 + σ(A)
2 ,

from which the claim follows. ◀

Proof of Proposition 19. Let x1, x2, . . . denote samples drawn independently at random
from π̃. For any integer T ≥ 1, define LT := {x1, . . . , xT } as the set consisting of the first T
samples (with duplicates removed), as well as L0 := ∅. We say that the T -th sample is a
success if

π̃(LT −1) ≥ 1
2 or π̃(LT) ≥ π̃(LT −1) + 1

4n,

and a failure otherwise. Let Tj denote the index of the j-th success, with T0 := 0. Then,
clearly,

π̃(LTp
) ≥ min

{
1
2 ,

p

4n

}
= p

4n and hence π(LTp
) ≥ π̃(LTp

) − p

8n ≥ p

8n.

On the other hand, note that by Lemma 20, the T -th sample is a success with probability
at least 1

4 , even if we condition on all prior samples. In particular, the probability that there
are k failures in a row is at most (3

4)k. Therefore,

E[Tj − Tj−1] =
∞∑

k=1
kPr(Tj = Tj−1 + k) ≤

∞∑
k=1

k

(
3
4

)k

= 12

ESA 2023

10:14 (No) Quantum Space-Time Tradeoff for USTCON

and hence, by Markov’s inequality,

Pr(Tp > cp) ≤ 1
cp

E[Tp] = 1
cp

p∑
j=1

E[Tj − Tj−1] ≤ 12p
cp

= 1
10

provided we choose c := 120. Since the random set L in the statement of the lemma is
defined by taking cp many samples, we obtain that

Pr
(
π(L) ≥ p

8n

)
≥ Pr(Tp ≤ cp) ≥ 1 − 1

10 = 9
10 . ◀

5.2 Analysis of step 2: State preparation
Now we turn to the analysis of the quantum walk search routine in step 2 of the algorithm.
We rely on the following proposition from [3], which formalizes the idea of “inverse quantum
walk search”.6

▶ Proposition 21 ([3, Proposition 1]). Consider a subset A ⊆ X of a (connected) graph G,
and let δ be a lower bound on the spectral gap of a random walk P on G with stationary
distribution π. From |πA⟩, we can generate a state |π̃⟩ = |π⟩ + |Γ⟩ with ∥ |Γ⟩ ∥2 ≤ ϵ using an
expected number of calls to the weighted quantum walk oracle

O

(
1√
π(A)δ

log
(

1
π(A)ϵ

))
,

and O(1/
√
π(A)δ) reflections around |πA⟩. The algorithm uses space logarithmic in n, 1/δ,

1/π(A) and 1/ϵ.

The proposition implies the following.

▷ Claim 22. Step 2 of Algorithm 2 prepares 1/8-approximations of |πXs
⟩ and |πXt

⟩ with
probability at least 9/10 in time complexity O

(√
n
pδ log

(
n
p

))
.

5.3 Analysis of step 3: SWAP test
In the last step of our algorithm, we wish to decide whether |πXs

⟩ = |πXt
⟩ or whether they

are orthogonal. For this we use the SWAP test.

▷ Claim 23. Step 3 of Algorithm 2 decides whether |πXs
⟩ = |πXt

⟩ or whether they are
orthogonal with constant probability in time Õ(1).

Proof. Using a single copy of two states |ψ⟩ and |ψ′⟩, and O(log(n)) additional gates,
the SWAP test returns “0” with probability (1 + |⟨ψ|ψ′⟩|2)/2 and “1” with probability
(1 − |⟨ψ|ψ′⟩|2)/2 [1, Claim 1].

By Claim 22, in step 2 we prepared states |π̃Xs
⟩ = |πXs

⟩ + |ΓL⟩ and |π̃Xt
⟩ = |πXt

⟩ + |ΓM ⟩
such that ∥ |ΓL⟩ ∥2, ∥ |ΓM ⟩ ∥2 ≤ 1/8 with probability 9/10. By a triangle inequality, this
implies that∣∣∣|⟨π̃Xs

|π̃Xt
⟩| − |⟨πXs

|πXt
⟩|
∣∣∣ < 1/3,

and so |⟨π̃Xs
|π̃Xt

⟩| > 2/3 if s and t are connected, but |⟨π̃Xs
|π̃Xt

⟩| < 1/3 otherwise. The
SWAP test distinguishes these cases with constant probability. ◁

6 [3, Proposition 1] only proves the proposition for simple random walks, however it trivially extends to
random walks on weighted graphs.

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:15

5.4 Proof of Theorem 17
In this section, we prove Theorem 17, which we restate here for convenience.

▶ Theorem 17. Fix δ ≥ 0. Let Gn be a family of undirected weighted graphs G = (X,E,W)
with n = |X|, such that γ⋆(G) ≥ δ whenever s and t are connected. Then for any S =
Ω(log(n)), there is a quantum algorithm that decides ustconqw,δ on Gn with bounded error
in O(S) space – of which O(log(n/δ)) is quantum memory, and the remainder is QCRAM –
and T = Õ(S

δ log
(

1
πmin

)
+
√

n
δS) queries to OW , elementary gates, and QCRAM queries.

Proof. We first analyze the space complexity of Algorithm 2. Step 1 is purely classical, and
uses O(p log(n)) space to store the O(p) vertices in L and M , with each random walk using
O(log(n)) space. We can implement step 2 using the algorithm referred to in Proposition 21
using O(log(n)) qubits of space, but this requires that the O(p log(n)) classical space used
to store L and M in step 1 is QCRAM. Finally, step 3 just uses O(log(n)) quantum space.
Thus, the claimed space complexity follows if we set S = p log(n).

Next, we analyze the time complexity. Every random walk of step 1 addsO
(

1
δ log

(
n

pπmin

))
to the time complexity. The total number of walks is O(p). Checking whether L ∩M = ∅ is
O(p) as this is the total number of samples. Hence, the overall complexity of the first step
is Õ

(
p
δ log

(
1

πmin

))
. By Claim 22, the complexity of step 2 is O

(√
n
pδ log

(
n
p

))
. Finally,

the SWAP test in step 3 uses only O(log(n)) gates, since the states being compared are
O(log(n))-qubit states. Hence, the total time complexity of Algorithm 2 is

T = Õ

(
p

δ
log
(

1
πmin

)
+
√

n

δp

)
= Õ

(
S

δ
log
(

1
πmin

)
+
√

n

δS

)
,

since S = Õ(p).
Finally, for the correctness of the algorithm, by Claim 23, Algorithm 2 distinguishes

between the case where |πXs⟩ and |πXt⟩ are equal and the case where they are orthogonal
with bounded error. If Xs = Xt (i.e. s and t are connected) then the states are equal, and if
Xs ∩Xt = ∅ (i.e. s and t are not connected) then they are orthogonal. ◀

References
1 Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero

knowledge. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 20–29, 2003.

2 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In
Proceedings of the 20th IEEE Symposium on Foundations of Computer Science (FOCS), pages
218–223, 1979. doi:10.1109/SFCS.1979.34.

3 Simon Apers. Quantum walk sampling by growing seed sets. In Proceedings of the 27th Annual
European Symposium on Algorithms (ESA), volume 144, pages 9:1–9:12. Springer, 2019.

4 Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search.
In Proceedings of the 38th Symposium on Theoretical Aspects of Computer Science (STACS),
pages 6:1–6:13, 2020. arXiv:1912.04233 doi:10.4230/LIPIcs.STACS.2021.6.

5 Greg Barnes and Uriel Feige. Short random walks on graphs. In Proceedings of the 1993 ACM
Symposium on the Theory of Computing (STOC), pages 728–737, 1993.

6 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in
FOCS’98. arXiv:quant-ph/9802049 doi:10.1145/502090.502097.

ESA 2023

https://doi.org/10.1109/SFCS.1979.34
https://arxiv.org/abs/1912.04233
https://doi.org/10.4230/LIPIcs.STACS.2021.6
https://arxiv.org/abs/quant-ph/9802049
https://doi.org/10.1145/502090.502097

10:16 (No) Quantum Space-Time Tradeoff for USTCON

7 Paul Beame, Allan Borodin, Prabhakar Raghavan, Walter L Ruzzo, and Martin Tompa. Time-
space tradeoffs for undirected graph traversal. In Proceedings of the 1990 IEEE Symposium
on Foundations of Computer Science (FOCS), pages 429–438. IEEE, 1990.

8 Aleksandrs Belovs. Quantum walks and electric networks. arXiv:1302.3143, 2013.
9 Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum algorithms for st-

connectivity and claw detection. In Proceedings of the 20th Annual European Symposium on
Algorithms (ESA), pages 193–204, 2012. doi:10.1007/978-3-642-33090-2_18.

10 Graham Brightwell and Peter Winkler. Maximum hitting time for random walks on graphs.
Random Structures & Algorithms, 1(3):263–276, 1990.

11 Andrei Z Broder, Anna R Karlin, Prabhakar Raghavan, and Eli Upfal. Trading space for time
in undirected st-connectivity. In Proceedings of the 1989 ACM Symposium on the Theory of
Computing (STOC), pages 543–549, 1989.

12 Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms
revisited. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1969):339–354, 1998.

13 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. Earlier version
in ICALP’04. arXiv:quant-ph/0401091 doi:10.1137/050644719.

14 Jeff Edmonds. Time-space trade-offs for undirected st-connectivity on a JAG. In Proceedings
of the 1993 ACM Symposium on the Theory of Computing (STOC), pages 718–727, 1993.

15 Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on the speed
of quantum computation in determining parity. Physical Review Letters, 81(24):5442, 1998.
arXiv:quant-ph/9802045 doi:10.1103/PhysRevLett.81.5442.

16 Uriel Feige. A randomized time-space tradeoff of Õ(mR̂) for USTCON. In Proceedings of the
1993 IEEE Symposium on Foundations of Computer Science (FOCS), pages 238–246. IEEE,
1993.

17 Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. arXiv preprint quant-ph/0208112, 2002.

18 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Proceedings
of the 8th Innovations in Theoretical Computer Science Conference (ITCS), pages 49:1–49:21.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

19 Adrian Kosowski. Faster walks in graphs: A Õ(n2) time-space trade-off for undirected s-t
connectivity. In Proceedings of the 2013 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1873–1883, 2013. arXiv:1204.1136v2 doi:10.1137/1.9781611973105.133.

20 Jessica Lemieux, Bettina Heim, David Poulin, Krysta Svore, and Matthias Troyer. Efficient
quantum walk circuits for metropolis-hastings algorithm. Quantum, 4:287, 2020.

21 David A Levin, Yuval Peres, and Elizabeth L Wilmer. Markov chains and mixing times.
American Mathematical Society, 2017. second edition.

22 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
doi:10.1145/1391289.1391291.

23 Avi Wigderson. The complexity of graph connectivity. In International Symposium on
Mathematical Foundations of Computer Science, pages 112–132. Springer, 1992.

A Appendix

Proof of Lemma 8. Assume first that there is an additional type of query allowed, namely:

Index query: OI : |u⟩ |v⟩ |0⟩ 7→ |u⟩ |v⟩ |i⟩ (3)

for u, v ∈ X and i ∈ [du] such that vi(u) = v. Then OW can be implemented using OI , OD,
and ON as follows. Let Fd denote the Fourier transform over Zd, and let F =

∑n
d=1 |d⟩ ⟨d|⊗Fd,

which can be implemented (to any inverse polynomial precision) in O(log(n)) gates [12].
Then for any u ∈ X, we implement:

https://arxiv.org/abs/1302.3143
https://doi.org/10.1007/978-3-642-33090-2_18
https://arxiv.org/abs/quant-ph/0401091
https://doi.org/10.1137/050644719
https://arxiv.org/abs/quant-ph/9802045
https://doi.org/10.1103/PhysRevLett.81.5442
https://arxiv.org/abs/1204.1136v2
https://doi.org/10.1137/1.9781611973105.133
https://doi.org/10.1145/1391289.1391291

S. Apers, S. Jeffery, G. Pass, and M. Walter 10:17

|0⟩ |u⟩ |0⟩ |0⟩ OD7→ |du⟩ |u⟩ |0⟩ |0⟩ F7→ 1√
du

|du⟩
du∑

i=1
|u⟩ |i⟩ |0⟩

ON7→ 1√
du

|du⟩
du∑

i=1
|u⟩ |i⟩ |vi(u)⟩

O†
I

O†
D7→ 1√

du

du∑
i=1

|u⟩ |vi(u)⟩ = OW |u⟩ |0⟩ .

To complete the proof, note that the index query operator OI only requires O(log(du)) sorted
adjacency array queries, since the neighbours are sorted and this makes it possible to perform
binary search for i such that vi(u) = v. ◀

Proof of Theorem 11. We will reduce the parity problem to ustcons-arr. Since parity
requires Ω(n) queries by Lemma 10, and the quantum walk oracle OW can be implemented
using Õ(1) sorted array queries by Lemma 8, this reduction will prove the statement of the
theorem.

Let x ∈ {0, 1}n be an input of parity. The corresponding output would be
⊕n−1

i=0 xi.
Given this, we need to build a ustcons-arr input that can be queried with a constant number
of queries to x. Consider an undirected graph G = (X,E) defined as follows (see also
Figure 2):

X = {s = v0, v
′
0, v1, v

′
1, . . . , vn−1, v

′
n−1, vn, t = v′

n}
E = {{vi, v

′
i+1}, {v′

i, vi+1} : i ∈ {0, . . . , n− 1}, xi = 1}
∪ {{vi, vi+1}, {v′

i, v
′
i+1} : i ∈ {0, . . . , n− 1}, xi = 0}.

In this setting,
⊕n−1

i=0 xi = 1 if and only if s and t are connected in the graph G.
Next, we describe how to implement queries OD and ON to G as required by the

ustcons-arr problem, using queries to Ox. Consider the following encoding of vertices of G.
For i ∈ {0, . . . , n}, we let vi = (i, 0), and v′

i = (i, 1). That is, for a vertex (i, b), i ∈ {0, . . . , n}
encodes the “column” and b ∈ {0, 1} encodes the “row”. Assume that the vertices are ordered
lexicographically, i.e.

(i, bi) < (j, bj) ⇐⇒ i < j or i = j, bi < bj .

Queries to G are described according to this ordering.
1. Degree queries, OD, are trivial in this case as dv0 = dv′

0
= dvn = dv′

n
= 1, and all other

degrees are 2.
2. Since every vertex has degree at most 2, we explicitly describe neighbour queries, ON for

indices 1 and 2 such that the ordering assumption holds:
ON : |i⟩ |b⟩ |1⟩ |0⟩ |0⟩ 7→ |i⟩ |b⟩ |1⟩ |i− 1⟩ |b⟩ Ox7→ |i⟩ |b⟩ |1⟩ |i− 1⟩ |b⊕ xi−1⟩, ∀ 0 < i ≤ n,
ON : |i⟩ |b⟩ |2⟩ |0⟩ |0⟩ 7→ |i⟩ |b⟩ |2⟩ |i+ 1⟩ |b⟩ Ox7→ |i⟩ |b⟩ |2⟩ |i+ 1⟩ |b⊕ xi⟩, ∀ 0 ≤ i < n.

It can be seen from the formulas that queries to G can be implemented with a constant
number of queries to the parity input x. This implies the Ω(n) lower bound in ustcons-arr.

For ustconqw, note that the graph has bounded degree, and so by Lemma 8 we can
simulate a query in this model using O(1) queries in the sorted adjacency array model. This
implies a similar Ω(n) lower bound for this model. ◀

ESA 2023

	1 Introduction
	1.1 Summary of results

	2 Preliminaries
	2.1 Probability theory
	2.2 Random walks
	2.3 Quantum walk search algorithms
	2.4 Quantum RAM

	3 USTCON and the Quantum Walk model
	4 Time- and space-optimal quantum algorithm
	4.1 Lower bound
	4.2 Metropolis-Hastings walk
	4.3 The algorithm

	5 Time-space tradeoff for bounded spectral gap
	5.1 Analysis of step 1: Seed set
	5.2 Analysis of step 2: State preparation
	5.3 Analysis of step 3: SWAP test
	5.4 Proof of Theorem 17

	A Appendix

