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Abstract
Given a collection of m sets, each a subset of a universe {1, . . . , n}, maximum coverage is the problem
of choosing k sets whose union has the largest cardinality. A simple greedy algorithm achieves an
approximation factor of 1 − 1/e ≈ 0.632, which is the best possible polynomial-time approximation
unless P = NP.

In the streaming setting, information about the input is revealed gradually, in an online fashion.
In the set-streaming model, each set is listed contiguously in the stream. In the more general
edge-streaming model, the stream is composed of set-element pairs, denoting membership. The
overall goal in the streaming setting is to design algorithms that use sublinear space in the size of the
input. An interesting line of research is to design algorithms with space complexity polylogarithmic
in the size of the input (i.e., polylogarithmic in both n and m); we call such algorithms low-space.
In the set-streaming model, it is known that 1/2 is the best possible low-space approximation. In
the edge-streaming model, no low-space algorithm can achieve a nontrivial approximation factor.

We study the problem under the assumption that the order in which the stream arrives is chosen
uniformly at random. Our main results are as follows.

In the random-arrival set-streaming model, we give two new algorithms to show that low space is
sufficient to break the 1/2 barrier. The first achieves an approximation factor of 1/2 + c1 using
Õ(k2) space, where c1 > 0 is a small constant and Õ(·) notation suppresses polylogarithmic
factors; the second achieves a factor of 1 − 1/e − ε − o(1) using Õ(k2ε−3) space, where the o(1)
term is a function of k. This is essentially the optimal bound, as breaking the 1 − 1/e barrier is
known to require high space.
In the random-arrival edge-streaming model, we show for all fixed α > 0 and δ > 0, any algorithm
that α-approximates maximum coverage with probability at least 0.9 in the random-arrival
edge-streaming model requires Ω(m1−δ) space (i.e., high space), even for the special case of k = 1.
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1 Introduction

Maximum coverage is a classic NP-hard problem in computer science with a range of
applications, including facility allocation [16], information retrieval [2], and content re-
commendation [18]. We are given a collection of m sets, F , each a subset of a universe
[n] := {1, . . . , n}, and a positive integer, k. The goal is to choose k sets from F such that
the cardinality of the union of the chosen sets – known as their coverage – is maximised. A
standard greedy algorithm achieves a (1− 1/e)-approximation and unless P = NP, this is
the best approximation possible in polynomial time [7].
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The greedy algorithm performs well in practice, but requires access to the entire input
during its operation, which scales poorly for massive data sets. In the last 15 years, there
has been an increasing focus on streaming algorithms for maximum coverage [18, 15, 6, 11].
These algorithms process the input piece by piece and use substantially less space than would
be required to simply read the entire input into memory and run a classical algorithm, which
requires O(mn) space in general. In the set-streaming model, each set arrives contiguously in
the stream: all the elements in one set are listed, then all the elements in the next set, and
so on. In the more general edge-streaming model, each entity in the stream is a set-element
pair, so the full description of a set might be spread across the stream.

Most existing work on streaming algorithms for maximum coverage has focused on the
arbitrary-arrival model, in which the stream may arrive in any order. In particular, the stream
may arrive in a worst-case order, so any theoretical guarantees made about an algorithm
in this model must be made for all possible stream orderings. In practice, however, it is
often reasonable to assume that the data stream is randomly ordered;1 in the random-arrival
model, all possible stream orderings are considered equally likely, and theoretical guarantees
about an algorithm in this model need only be made as an average over these orderings. The
random-arrival model has been studied for many important problems, including quantile
estimation [10], maximum matching [13, 4], and submodular maximisation [17, 1], often
revealing improved space-accuracy trade-offs.

In this paper, we study maximum coverage in the random-arrival model. In the random-
arrival set-streaming model,2 the order in which the sets appear in the stream is uniformly
random, but we assume nothing about the order in which the elements in each set arrive.
By contrast, in the random-arrival edge-streaming model, the edges arrive in a uniformly
random order, so large sets are more likely to be represented early in the stream. For each
model, our goal is to determine whether the random-arrival assumption permits a better
approximation factor than is possible in the corresponding arbitrary-arrival model, when very
low space is available (i.e., polylogarithmic in both n and m). We answer this question in
the affirmative for random-arrival set-streaming: we present two low-space algorithms, each
achieving an approximation factor better than 1/2 (the best possible approximation in the
arbitrary-arrival model). For random-arrival edge-streaming, we demonstrate a near-tight
space lower bound, hence answering in the negative: nearly linear in m space is required to
achieve a nontrivial approximation.

1.1 Related work

Table 1 summarises relevant past work on streaming algorithms for maximum coverage. Note
that any algorithm that guarantees an approximation factor in the arbitrary-arrival model
trivially also guarantees this approximation factor in the random-arrival model.

The multi-pass variant of streaming maximum coverage has also been studied, in which a
small number of passes over the stream are allowed [15, 12]. In this paper, however, we focus
exclusively on single-pass algorithms.

Unless otherwise specified, the following results apply to the arbitrary-arrival model.

1 See Guha and McGregor [10] §1.1 for a discussion on justifications for this assumption.
2 Note that we consider both “random-arrival” and “set-streaming” to be part of the model specification.

When we talk about the random-arrival model, we mean both the random-arrival set-streaming and
random-arrival edge-streaming models.
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Set-streaming. Saha and Getoor [18], who introduced the set-streaming model, gave a 1/4-
approximation algorithm called sops,3 which uses Õ(nk) space and explicitly returns the k

chosen sets. Yu and Yuan [20] studied the problem under the more relaxed ID-reporting
output specification, in which only the IDs of the k chosen sets must be returned by the
algorithm.4 They gave an algorithm, gops, which achieves an approximation factor of
approximately 0.3 and uses Õ(n) space, where Õ(·) notation suppresses dependence on
polylogarithmic factors. Further progress came indirectly from Badanidiyuru et al. [5], who
gave a (1/2− ε)-approximation algorithm for the related submodular maximisation problem.
A careful adaptation to maximum coverage uses Õ(nε−1) space [15].

More recently, McGregor and Vu [15] developed the first set-streaming maximum coverage
algorithms that use sublinear-in-n space. Using subsampling, which effectively discards much
of the universe, [n], they substantially reduce the space consumption of their algorithms
with minimal loss in solution quality. Of the four new algorithms they developed, the fourth,
which we call mv-4 after the authors, is the most relevant to our work, as it is both low-space
and single-pass. mv-4 achieves an approximation factor of 1/2− ε using just Õ(kε−3) space.
The algorithm is explained in detail in Section 2.1. The other two mv algorithms that are
also single-pass are also included in Table 1 (although note that they are not low-space).

McGregor and Vu [15] also proved the first nontrivial space lower bound for set-streaming
maximum coverage. They showed that achieving an approximation factor better than 1−1/e

requires Ω(mk−2) space in the arbitrary-arrival model and Ω(mk−3) space in the random-
arrival model. Feldman et al. [8] extended this result to approximation factors better than 1/2
for the arbitrary-arrival model.5 Note that all lower bounds discussed in this work apply to
the problem of simply estimating the optimal coverage.

The results of McGregor and Vu [15] and Feldman et al. [8] imply that the best possible
approximation factor that can be achieved using low space in the arbitrary-arrival model
is 1/2, where by “low space” we mean space polylogarithmic in both n and m.6 In the random-
arrival model, however, there is a knowledge gap for approximation factors between 1/2
and 1− 1/e: can some low-space algorithm achieve an approximation factor in this range, or
is high space always required?

Edge-streaming. Bateni et al. [6] gave the first edge-streaming maximum coverage algorithm,
which achieves an approximation factor of 1−1/e− ε using Õε(m) space, where the subscript
suppresses dependence on ε (which was not analysed by the authors). Indyk and Vakilian [11]
improved this result by showing that the optimal space bound is Θ̃(α2m), where α > 0
is the approximation factor. This result implies that achieving a nontrivial (i.e., nonzero)
approximation factor using low space is impossible in the arbitrary-arrival edge-streaming
model.

3 The algorithm was given this name in a later work [20].
4 IDs appear explicitly in the edge-streaming model as part of the set-element pairs. In the set-streaming

model, we assume for convenience that the ID of each set is listed directly before the elements in the
set, but this is a largely unimportant implementation detail.

5 The authors actually studied the more general submodular maximisation problem. However, the
submodular function constructed for the hardness instance is also a coverage function, so the result
applies to maximum coverage as well.

6 Other reasonable definitions exist, but we choose to focus on n and m since these are the parameters
that can cause a maximum coverage problem instance to require a huge amount of space to store, which
is the motivation for using streaming algorithms in the first place.

ESA 2023
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Table 1 A summary of known results and our new results for the space complexity of single-pass
streaming approximation algorithms for maximum coverage. Each of the parameters α, δ, ε is positive,
and c1 is a small positive constant.

Stream Name Arrival Approximation Space Ref.

Set

sops Arbitrary 1/4 O(nk) [18]
gops Arbitrary ∼0.3 Õ(n) [20]
mcss Arbitrary 1/2 − ε Õ(nε−1) [5, 15]
mv-1 Arbitrary 1 − 1/e − ε Õ(mε−2) [15]
mv-3 Arbitrary 1 − ε Õ(mε−2 · min(k, ε−1)) [15]
mv-4 Arbitrary 1/2 − ε Õ(kε−3) [15]

– Arbitrary > 1 − 1/e Ω(mk−2) [15]
– Arbitrary > 1/2 Ω(mk−3) [8]
– Random > 1 − 1/e Ω(mk−3) [15]

gs-salsa Random 1/2 + c1 Õ(k2) Here
gs-smc+ Random 1 − 1/e − ε − o(1) Õ(k2ε−3) Here

Edge

– Arbitrary 1 − 1/e − ε Õε(m) [6]
– Arbitrary α > 0 Θ̃(α2m) [11]
– Random Any fixed α > 0 Ω(m1−δ) Here

1.2 Our contributions

The results of this paper are included in Table 1.

Set-streaming. In the arbitrary-arrival model, the best approximation factor that can be
achieved using low space is 1/2. We present two low-space algorithms that break the 1/2
barrier in the random-arrival model.

The first algorithm, gs-salsa, uses Õ(k2) space and achieves an approximation factor
of 1/2 + c1 in-expectation, where c1 > 0 is a small absolute constant.
The second algorithm, gs-smc+, uses Õ(k2ε−3) space and achieves an approximation
factor of 1− 1/e− ε− o(1) in-expectation, where the o(1) term is a function of k. For
large k, this is essentially the optimal low-space approximation.7

Both algorithms are based on existing state-of-the-art random-arrival algorithms for the
related submodular maximisation problem [17, 1]. Our main contribution is a generalisation
of the subsampling technique introduced by McGregor and Vu [15] in the design of mv-4,
which we apply to these existing submodular maximisation algorithms to achieve our results.

Edge-streaming. Indyk and Vakilian [11] showed that Θ̃(α2m) space is necessary and suffi-
cient for α-approximating maximum coverage in the arbitrary-arrival model. An immediate
corollary is that for all fixed α > 0, the problem requires Ω(m) space. We prove an almost
matching hardness result for the random-arrival case.

7 Throughout this work, we typically do not consider the approximation factor of an algorithm (or hardness
result) as a function of k, and instead consider the worst-case value of k (just as we take a worst-case
collection of sets F). We make an exception for gs-smc+ due to the quality of its approximation for
large values of k. Note that the hardness results of McGregor and Vu [15] and Feldman et al. [8] apply
as k approaches infinity, so the algorithm really is near-optimal for large k.
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▶ Theorem 1. For all fixed α > 0 and δ > 0, any algorithm that α-approximates max-
imum coverage with probability at least 0.9 in the random-arrival edge-streaming model
requires Ω(m1−δ) space, even for the special case of k = 1.

Our result implies that unlike set-streaming, edge-streaming maximum coverage is not
made easier by the random-arrival assumption, in the sense that the assumption does not
increase the best possible low-space approximation. Our proof of Theorem 1 is a careful
combination of ideas from the proof for the arbitrary-arrival case by Indyk and Vakilian [11]
with ideas from Andoni et al. [3], who proved a random-arrival space lower bound for the
frequency moment estimation problem.

2 Beating 1/2 for Set-Streaming

In this section, we show that the 1/2 barrier can be broken for random-arrival set-streaming
maximum coverage using low space. Our main contribution is a generalised version of the
subsampling technique introduced by McGregor and Vu [15], which allows us to replace the
core subroutine of mv-4 with any set-streaming maximum coverage algorithm. In particular,
replacing the subroutine with state-of-the-art streaming algorithms for the related submodular
maximisation problem yields two new maximum coverage algorithms with approximation
factors better than 1/2 in the random-arrival model. The first, gs-salsa, achieves an
approximation factor of 1/2 + c1 for a small constant c1 > 0. The second, gs-smc+, achieves
an approximation factor of 1− 1/e− ε− o(1), where the o(1) term is a function of k. For
large k, this is essentially the optimal bound.

2.1 Preliminaries: Design of MV-4
We start by providing a high-level overview of the mv-4 algorithm designed by McGregor
and Vu [15], which achieves an approximation factor of 1/2− ε using Õ(kε−3) space in the
arbitrary-arrival model, which is essentially the optimal low-space approximation.

At the heart of mv-4 is a subroutine, A, which achieves an approximation factor of 1/2−ε

using high space. This seeming contradiction is avoided by only providing a small sample
of the input to A; mv-4 is equipped with a binary hash function h : [n] → {0, 1}, and as
each element e arrives in the stream, it is passed to the subroutine A only if h(e) = 1. The
subroutine is therefore run on a subsampled problem instance I ′ over a smaller universe [n]′ =
{e ∈ [n] : h(e) = 1}, with subsampled sets S′

i = Si∩ [n]′ for each Si ∈ F . An optimal solution
to I ′ may not correspond to an optimal solution to I, but when the hash function is chosen
appropriately, a good solution to I ′ corresponds to a nearly-as-good solution to I with high
probability. The hash function h is chosen such that P[h(e) = 1] = p for all e ∈ [n]. When
the subsampling rate p is small, the space consumption of A is substantially reduced, and
the overall algorithm becomes low-space.

The subsampling rate p is set in terms of the optimal coverage, OPT. Of course, we do
not know OPT in advance! To get around this, mv-4 runs parallel instantiations of A, each
corresponding to a different guess v for OPT. Each instantiation Av therefore has its own
subsampling rate pv, hash function hv, and is run on a separate subsampled instance I ′

v.
This introduces two new problems. Firstly, at the end of the stream, how do we know which
instantiation corresponds to the correct guess? Rather than solve this problem directly, mv-4
maintains an F0-sketch8 of the set of elements covered (in the unsubsampled universe, [n])

8 Given a stream of items, an F0-sketch is a small data structure capable of closely estimating the number
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by the solution found by each instantiation. At the end of the stream, the solution with the
highest estimated coverage is taken. Jaud et al. [12] gave a simpler method, which uses the
subsampled coverage achieved by each instantiation to decide which solution to return.

The second problem introduced by the use of parallel instantiations concerns the space
consumption of instantiations corresponding to bad guesses for OPT. If a guess v is much
smaller than OPT, the subsampling rate pv is set too high, the subsampled universe is
too large, and so Av uses too much space. To address this, mv-4 keeps track of the space
consumption of each instantiation and terminates the instantiation if it uses too much space.

2.2 Generalised subsampling
In this section, we present a generalised version of McGregor and Vu’s [15] subsampling
technique. This allows the subroutine A to be replaced by any set-streaming maximum
coverage algorithm B. In Section 2.3, we apply our generalised subsampling technique
to maximum coverage algorithms derived from state-of-the-art algorithms for submodular
maximisation. The space consumption of these algorithms is proportional to d = maxSi∈F |Si|,
the maximum set size of the problem instance. Under this condition, generalised subsampling
substantially reduces the space consumption of B. Our main result is as follows.

▶ Theorem 2 (Generalised subsampling). Suppose B achieves an approximation factor of α

in-expectation9 for set-streaming maximum coverage using O(ds) space, where d is the
maximum set size. There exists an algorithm, called GS(B), which, given ε > 0, achieves an
approximation factor of α− ε in-expectation and uses Õ(kε−2s) space.

An important aspect of Theorem 2 is that no assumptions are made about the design
of B. This presents a challenge when we try to replace A with B in mv-4, as the operation
of mv-4 relies on an important property of A. In particular, A is threshold-based: as each
set arrives in the stream, the algorithm decides irrevocably whether to include the set in the
solution, and maintains a set C of the elements covered by the chosen sets. The decision
to include an incoming set is based on whether the additional coverage provided by the set
exceeds some threshold. This property is important to the design of mv-4 for two reasons.
Firstly, it allows mv-4 to maintain a sketch of the elements covered by each instantiation
of A in the unsubsampled universe, since after each set arrives, A can inform mv-4 as to
whether it chose the set.10 Secondly, the space consumption of A is directly proportional to
the size of C, so this value may be used to trigger the termination of instantiations that use
too much space.

We do not want to assume that B is threshold-based – indeed, we want to assume nothing
at all about the design B – so we use an alternative idea. We abandon guessing OPT,
and instead guess d, the maximum set size.11 Our approach requires that some guess w

satisfies d/2 ≤ w ≤ d, so we make guesses in powers of 2. The problem of choosing which

of distinct items in the stream. The details are unimportant for our purposes.
9 There is nothing special about in-expectation guarantees, and the theorem could just as easily be

proved for with-high-probability guarantees. We focus on in-expectation results since this is the type
of guarantee made about the state-of-the-art submodular maximisation algorithms that we apply our
results to in Section 2.3.

10 The alternative approach used by Jaud et al. [12] works quite differently, but also exploits the threshold-
based architecture of A by using the size of C for each instantiation to decide which solution to
return.

11 This is similar to an idea appearing in Badanidiyuru et al. [5], who studied streaming algorithms for
submodular maximisation. Their algorithm, sieve-streaming, runs parallel instantiations corresponding
to guesses for the maximum value of the given submodular function over any one item from the stream.
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Algorithm 1 The generalised subsampling algorithm GS(B).

1: W ← {2i : i ∈ N, 2i ≤ n} ▷ Guesses for d

2: λ← ⌊2k log(emε−1)⌋ ▷ Hash function independence parameter
3: for w ∈W do
4: Initialise Bw, an instantiation of B
5: pw ← min{1, 3kε−2 log(emε−1)w−1} ▷ Subsampling rate
6: Sample hw ∈ Hpw,λ uniformly at random ▷ Choose hash function
7: activew ← true ▷ Kill switch indicator
8: for i = 1, . . . , m do ▷ Iterate over each set in the stream
9: for e ∈ Si do ▷ Iterate over each element in the set

10: for w ∈W do
11: if d∗

w > 2pww(1 + ε) then
12: activew ← false ▷ Terminate Bw

13: if activew and hw(e) = 1 then
14: Supply e to the stream of Bw

15: Let Iw ⊂ [m] be the solution returned by Bw

16: wc ← min{w ∈W : d∗/2 ≤ w ≤ d∗} ▷ At this point, d∗ = d.
17: return Iwc

solution to return becomes trivial, since we can easily keep track of the maximum observed
set size and choose the appropriate instantiation at the end of the stream (Line 16). We also
keep track of the maximum observed set size for each subsampled problem instance, and use
this value to trigger the termination of bad instantiations (Line 11).

Our generalised subsampling algorithm GS(B) is formalised by Algorithm 1. The vari-
able d∗ keeps track of the running maximum set size observed so far in the stream. For
example, d∗ = 0 at the start of the stream, and d∗ = d at the end of the stream. Similarly, d∗

w

keeps track of the maximum set size observed for the subsampled problem instance I ′
w corres-

ponding to the guess w for d. We omit from Algorithm 1 the straightforward steps required
to keep track of these variables. The set Hpw,λ appearing on Line 6 represents a λ-wise
independent family of hash functions with the property that for all e ∈ [n], P[h(e) = 1] = pw.
A hash function h from this family may be sampled, stored, and evaluated using O(λ)
space [15]. In the remainder of this section, we show that GS(B) achieves the approximation
factor and space consumption guaranteed by Theorem 2.

Approximation factor. GS(B) returns the solution found by Bwc , where wc is the smallest
guess for d satisfying d/2 ≤ wc ≤ d (see Line 16), so we focus on this instantiation of B. In
particular, S′

i is taken to mean the version of Si subsampled using the hash function hwc
,

and the wc subscript is often suppressed (e.g., p = pwc
and I ′ = I ′

wc
).

Since each element e ∈ [n] is subsampled with probability p, we expect that for any given
choice of sets S1, . . . , Sl, the subsampled coverage of these sets will be approximately p times
their unsubsampled coverage. The following result formalises this intuition.

▶ Lemma 3. With probability at least 1− ε, for all collections of up to k sets S1, . . . , Sl ∈ F ,
|S′

1 ∪ · · · ∪ S′
l | = p · |S1 ∪ · · · ∪ Sl| ± pεd.

This result is similar to Lemma 8 from McGregor and Vu [15], with a few minor changes.
Most notably, the probability of success is changed from a term involving m to one involving ε,
which is important for the purpose of making an in-expectation guarantee.

ESA 2023
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Our proof more closely resembles the proof of Corollary 5 from Jaud et al. [12], who showed
that the independence factor λ can be decreased substantially from its original definition in
McGregor and Vu [15]. As in Jaud et al. [12], we require the following concentration bound
for our proof.

▶ Theorem 4 (Schmidt et al. [19]). Let X1, . . . , Xn be λ-wise independent binary random
variables. Let X =

∑n
i=1 Xi and µ = E[X]. If λ ≤ ⌊min(γ, γ2)µe−1/3⌋, then

P [|X − µ| ≥ γµ] ≤ e−⌊λ/2⌋.

Proof of Lemma 3. Fix any collection of sets S1, . . . , Sl ∈ F with 1 ≤ l ≤ k. Let D =
|S1 ∪ · · · ∪ Sl| be the unsubsampled coverage of the collection and let D′ = |S′

1 ∪ · · · ∪ S′
l |

be the subsampled coverage. Let Xe = 1 if e ∈ S1 ∪ · · · ∪ Sl and h(e) = 1, and let Xe = 0
otherwise. Then D′ =

∑n
i=1 Xi and µ := E[D′] = pD. The Xi are λ-wise independent by

the choice of h, where λ = ⌊2k log(emε−1)⌋. Define γ = εd/D so that γµ = pεd. Before
applying Theorem 4, we verify the necessary condition on the independence factor:⌊

min(γ, γ2)µe−1/3
⌋

=
⌊
min(1, γ)γµe−1/3

⌋
≥

⌊
ε · pεd · 2

3

⌋
=

⌊
ε2 · 3kε−2 log(emε−1)w−1 · d · 2

3

⌋
≥

⌊
2k log(emε−1)

⌋
= λ,

where we make use of the fact that γ ≥ ε (since d ≥ D), e−1/3 ≥ 2/3, and w ≤ d. Therefore,
we have

P [|D′ − µ| ≥ pεd] = P [|D′ − µ| ≥ γµ] ≤ exp
(
−

⌊
⌊2k log(emε−1)⌋

2

⌋)
≤ exp

(
−

⌊
k log(emε−1)

⌋)
≤ exp

(
−k log(emε−1) + 1

)
≤ (emε−1)−k · e = e−k+1m−kεk ≤ m−kε.

The total number of collections is
∑k

i=1
(

m
i

)
≤

∑k
i=1

mk

k = mk, so taking a union bound, the
probability that |D′ − µ| ≥ pεd for some collection is at most mkm−kε = ε. ◀

Using Lemma 3, we can show that a good solution to the subsampled instance I ′

corresponds to a nearly-as-good solution to I. This result is analogous to Corollary 9 from
McGregor and Vu [15].

▶ Corollary 5. Let OPT′ be the optimal coverage for the subsampled problem instance I ′.
If a choice of k sets S1, . . . , Sk satisfies |S′

1 ∪ · · · ∪ S′
k| ≥ β ·OPT′, then with probability at

least 1− ε, |S1 ∪ · · · ∪ Sk| ≥ (β − 2ε) ·OPT.

Proof. Let O1, . . . , Ok be an optimal solution to the unsubsampled problem instance I. We
have

OPT′ ≥ |O′
1 ∪ · · · ∪O′

k| ≥ p · |O1 ∪ · · · ∪Ok| − pεd ≥ p(1− ε) ·OPT,

where the second inequality follows from Lemma 3. Now let S1, . . . , Sk be a collection of sets
satisfying |S′

1 ∪ · · · ∪ S′
k| ≥ β ·OPT. Applying Lemma 3 once again, we have

|S1 ∪ . . . ∪ Sk| ≥
1
p
· |S′

1 ∪ . . . ∪ S′
k| − εd ≥ 1

p
· β ·OPT′ − ε ·OPT

≥ β

p
· p(1− ε) ·OPT− ε ·OPT ≥ (β − 2ε) ·OPT. ◀
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Now B achieves an approximation factor of α in-expectation on the subsampled instance I ′.
Therefore, by Corollary 5, with probability at least 1− ε, B achieves an approximation factor
of α− 2ε in-expectation. The unconditional expected approximation factor is therefore at
least (1− ε)(α− 2ε) ≥ (α− 3ε). Dividing ε by 3 at the start (omitted from Algorithm 1 for
brevity) corrects this to α− ε without changing the asymptotic space complexity.

Of course, the above reasoning is only valid if, in the at-least-(1− ε)-probability event
that all the approximations in Lemma 3 hold, the instantiation Bwc

is not terminated.12

Let i′
max = arg maxi |S′

i| be the index of the largest set in the subsampled instance. We have

d∗
wc
≤ dwc =

∣∣∣S′
i′

max

∣∣∣ ∗
≤ pwc

∣∣Si′
max

∣∣ + pwcεd ≤ pwcd(1 + ε) ≤ 2pwcwc(1 + ε),

where the starred inequality follows from an application of Lemma 3 on the singleton collection
containing only Si′

max
. Therefore, the instantiation Bwc

is not terminated.

Space consumption. We now consider an arbitrary instantiation Bw, where w is not
necessarily the correct guess for d. Unlike n, m, and k, we do not assume that a maximum
coverage streaming algorithm is provided with the maximum set size d at the start of the
stream. Furthermore, at any point during the stream, it could be that the largest set has
already been observed (i.e., d∗ = d). Therefore, since Bw uses O(dws) space, it must also
use O(d∗

ws) space. Now as long as Bw is not terminated, by Line 11, we have d∗
w ≤ 2pww(1+ε),

so the space consumption of Bw is

O(d∗
ws) = O(pww(1 + ε)s) = O(kε−2 log(emε−1)w−1ws) = Õ(kε−2s).

Each instantiation also requires the storage of the hash function hw, but this takes just O(λ) =
Õ(k) space. There are |W | = O(log n) instantiations, so the total space complexity of GS(B)
is Õ(kε−2s). This completes the proof of Theorem 2.

2.3 Beating 1/2 via submodular maximisation
Submodular maximisation is a heavily studied problem in combinatorial optimisation that
may be viewed as a generalisation of maximum coverage. A function f : 2V → R over a
ground set V is said to be submodular if we have

f (e | X) ≥ f (e | Y ) for all X ⊆ Y ⊆ V and e ∈ V \ Y ,

where f (e | X) = f (X ∪ {e}) − f(X) is the marginal gain of e given X. Submodular
maximisation is the problem of choosing A ⊆ V such that f(A) is maximised. We consider a
popular variant of the problem in which a cardinality constraint |A| ≤ k is applied and f is
assumed to be non-negative and monotone.

Submodular maximisation has received a lot of attention in the streaming model [5, 17, 1].
In this model, the items of V arrive one at a time in the stream, and we assume access to an
oracle for f , which may be queried in O(1) time. In the arbitrary-arrival model, it is known
that Ω(mk−3) space is required to achieve an approximation factor above 1/2, where m = |V |
is the length of the stream [8].13 In the random-arrival model, however, the 1/2 barrier has
been broken. This was first achieved by Norouzi-Fard et al. [17], who gave a Õ(k)-space

12 Note that the inequality in Corollary 5 always holds in this event.
13 This is the same result that states that Ω(mk−3) space is required to achieve approximation factors

better than 1/2 for arbitrary-arrival set-streaming maximum coverage (cf. Table 1).
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algorithm, called salsa, which achieves an approximation factor of 1/2 + c0 in-expectation
for a very small constant c0 > 0. More recently, Agrawal et al. [1] gave an algorithm which
achieves an approximation factor of 1− 1/e− ε− o(1) in-expectation, where the o(1) term is
a function of k. The algorithm, which we call smc after its authors, uses Õε(k) space, where
a complicated exponential dependence on ε is suppressed. Liu et al. [14] improved the space
complexity to Õ(kε−1) while maintaining the approximation factor; we call this improved
algorithm smc+.

Submodular maximisation generalises maximum coverage: given a maximum coverage
instance I = (F , k), we simply set V = F and define f to be the coverage function
f(X) = |∪Si∈XSi|. It is not hard to see that f is non-negative, monotone, and submodular.
In the study of maximum coverage, however, we do not assume oracle access for evaluating
coverage, so it must be evaluated explicitly. Therefore, if we use a submodular maximisation
streaming algorithm for set-streaming maximum coverage, entire sets must be retained in
memory, leading to an increase in space consumption proportional to d, the size of the largest
set. Applying Theorem 2, however, we have the following key result.

▶ Corollary 6. Suppose B achieves an approximation factor of α in-expectation for streaming
submodular maximisation using O(s) space. There exists an algorithm for set-streaming
maximum coverage which, given ε > 0, achieves an approximation factor of α−ε in-expectation
and uses Õ(kε−2s) space.

Applying this result to salsa with ε = c1 := c0/2 yields gs-salsa, which achieves an
approximation factor of 1/2 + c0 − ε = 1/2 + c1 in-expectation using Õ(kε−2 · kε−1) = Õ(k2)
space (note that ε in this case is constant). Applying the result to smc+ yields gs-smc+,
which uses Õ(k2ε−3) space and achieves an approximation factor of 1− 1/e− ε− o(1)− ε

in-expectation. Dividing ε by 2 returns the approximation factor to 1−1/e−ε−o(1) with no
change to the space complexity. Recall that achieving an approximation factor above 1− 1/e

requires high space [15], so for large k, this is essentially the optimal approximation. The o(1)
term decreases quite slowly, however, so for small k, gs-salsa may be preferable.

3 Hardness Result for Edge-Streaming

In this section, we prove Theorem 1, which essentially says that no low-space algorithm can
achieve a nontrivial approximation in the random-arrival edge-streaming model.

Our proof is a reduction from the heavily studied t-party set disjointness problem, DISJt.
In this problem, t players are each given a set Si ⊆ [N ], where the ith player knows only Si.
Either all sets are pairwise disjoint (a YES instance), or are pairwise disjoint except for
an element that is common to all t sets (a NO instance). Gronemeier [9] showed that any
protocol that solves this problem with probability 2/3 requires Ω(N/t) bits of communication,
even if the players may use public randomness. The hardness instance for this problem is such
that we may assume that |S1| = . . . = |St| = cN/t for an arbitrarily small constant c > 0.

Our proof combines ideas from two existing approaches, both of which are also reductions
from DISJt. The first is a result due to Andoni et al. [3], who proved a near-tight space
lower bound for the problem of frequency moment estimation on random-arrival streams.
Given a stream ⟨a1, . . . , al⟩, where each ai ∈ [n], the kth frequency moment is defined
as Fk :=

∑
i∈[n] fk

i , where fi = |{j : aj = i}| is the number of times i appears in the stream.
Andoni et al. [3] studied the problem of 0.5-estimating this quantity, which is known to
require Θ̃(n1−2/k) space in the arbitrary-arrival model. They showed that Ω(n1−2.5/k/ log n)
space is necessary in the random-arrival model, almost matching the upper bound. In their
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proof, a stream of integers is constructed such that we have Fk = l for a YES instance
and Fk ≥ 2l for a NO instance. Our proof is very similar, but we include all the details for
completeness. The main difference in our proof is that we need to construct a stream of edges,
rather than a stream of integers. We use an idea from Indyk and Vakilian [11], who proved
that Ω(α2m) space is required to α-approximate maximum coverage in the arbitrary-arrival
edge-streaming model. Their proof involves the construction of a stream of edges such that
the maximum coverage is 1 for a YES instance and 1/α for a NO instance. We make a small
change to this construction to ensure that the stream is in random order.

We start with two slightly reparameterised preliminary results from Andoni et al. [3].
Throughout this section, we assume that α and δ have been fixed.

▶ Lemma 7. Let W = {I1, . . . , It} be t = l2δ/5 random intervals from

Cyclel,w := {[i− 1 (mod l) + 1, . . . , w + i− 2 (mod l) + 1] : i ∈ [l]} ,

where w = c1l1−3δ/5 and c1 > 0 is a sufficiently small absolute constant. With probability at
least 0.99,
1. Ii1 ∩ Ii2 ∩ Ii3 = ∅ for any i1 < i2 < i3.
2. |{(i1, i2) : i1 < i2, Ii1 ∩ Ii2 ̸= ∅}| ≤

√
t.

The set Cyclel,w is simply the set of size-w intervals from [l], including those that “wrap
around” from l to 1. For example, Cycle4,3 = {[1, 2, 3], [2, 3, 4], [3, 4, 1], [4, 1, 2]}.

▶ Lemma 8. Consider a uniformly random subset S ⊆ [l] of size t = l2δ/5. For some
sufficiently small absolute constant c2 > 0, with probability at least 0.99, for each j1, j2 ∈ S,
|j2 − j1| ≥ c2l1−4δ/5.

We also require the following result.

▶ Lemma 9. Let X be the number of unique values produced by ⌈t/4⌉ independent, uniformly
random draws from [t] (with replacement). For sufficiently large t, P(X ≥ t/6) ≥ 0.99.

Proof. Let Xi = 1(i is drawn at least once), then X =
∑t

i=1 Xi. We have

µ := E[X] = tE[X1] = t
(

1− (1− 1/t)⌈t/4⌉
)
≥ t

(
1− e−1/4

)
≥ t/5.

By a Chernoff bound for negatively correlated Boolean random variables where we set β = 6/5,
we have

P
(

X <
t

6

)
= P

(
X <

t/5
β

)
≤ P

(
X <

µ

β

)
≤

(
e1/β−1

ββ

)µ

= cµ
3 ≤ c

t/5
3 ,

where c3 is an absolute constant less than 1. By setting t ≥ 5 logc3(0.01) ≈ 11.9, we
get P(X < t/6) ≤ 0.01 and the result follows. ◀

We are now ready to prove Theorem 1. Let S = {S1, . . . , St} be an instance of DISJt

where t = l2δ/5, N = l1−δ/5, and for all i ∈ [t], we have |Si| = c1N/t = c1l1−3δ/5 =: w,

where c1 is as in Lemma 7. Any protocol that solves S with probability at least 2/3
requires Ω(N/t) = Ω(l1−3δ/5) bits of communication.

Let A be an s-space algorithm for random-arrival edge-streaming maximum coverage that
achieves an approximation factor of α with probability at least 0.9 on streams containing l

edges. We describe a protocol that uses A to solve S using O(ts) bits of communication, and
therefore deduce that s = Ω(l1−3δ/5/t) = Ω(l1−δ) = Ω(m1−δ) (note that m ≤ l, since l edges
cannot possibly specify the contents of more than m non-empty sets).
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Using public randomness, the players pick:
1. Intervals W = {I1 = [a1, b1], . . . , It = [at, bt]} from Cyclel,w, ordered such that bi ≤ bj

if i ≤ j. The intervals are chosen independently with replacement.
2. A permutation σ of [2l].
3. A binary string r of length t2/c2, where c2 is as in Lemma 8.

Each interval in W has size |Ii| = w. If b1 < w, then at least one set “wraps around”
from l to 1. In this case, terminate with failure. Each interval has probability (w − 1)/l of
wrapping around, so by a simple union bound, P[b1 < w] ≤ t(w − 1)/l ≤ c1l−δ/5. For large
enough l, this value is at most 0.01. Also, if any j ∈ [n] appears in three or more distinct
intervals in W, or if more than

√
t pairs of intervals intersect, the protocol terminates with

failure. By Lemma 7, this too occurs with probability at most 0.01.
The players construct, as described below, a length-l stream U = ⟨u1, . . . , ul⟩ representing

a maximum coverage problem instance I = (F = {H1, . . . , Hm}, k = 1) in the edge-streaming
model, where each Hi ⊆ [t]. Each edge is a set-element pair uj = (yj , ej) indicating
that ej ∈ Hyj

. The players take turns generating edges and feeding them to the stream of the
algorithm A. When it is no longer a player’s turn to generate the next edge, the player sends
the entire state of A to the appropriate player, which requires O(s) bits of communication.

Constructing the stream. The construction is very similar to the one presented by Andoni
et al. [3]. First, each player i randomly orders their set Si to produce a string si of length w.
Now consider uj , the jth element in the stream U . The player chosen to construct uj depends
on the number of intervals in W that contain j.
0. If j appears in none of the intervals, uj is determined by player i, where Ii = [ai, bi] is

the interval with the smallest ai such that ai > j. If no such interval exists (which may
occur towards the end of the stream) then uj is determined by player t.

1. If j appears in just one interval Ii, uj is determined by player i.
2. If j appears in two intervals Ii and Ii+1, we have a “clash” between players i and i+1. We

partition [l] into t2/c2 equally sized intervals, which we call zones. We say that zone u is
a 0-zone if ru = 0, and a 1-zone otherwise. If j is in a 0-zone, uj is determined by player i.
Otherwise, uj is determined by player i + 1. Each zone has length w2 := c2l1−4δ/5.

Note that j never appears in more than two intervals, since this results in termination of the
protocol. Figure 1 shows an example of how players might be chosen to construct the stream.

At the end of their interval, each player sends the state of A to the next player. Also,
when two players’ intervals overlap, they may need to send the state of A back and forth
several times (e.g., in Figure 1, players 2 and 3 need to pass the state to each other three
times). Assuming the protocol does not terminate, there are at most

√
t clashes, and each

clash results in at most w/w2 = O(
√

t) messages being sent. The total number of messages
is O(t +

√
t ·
√

t) = O(t), so the communication complexity of the protocol is O(ts).
Now suppose player i has been chosen to construct the edge uj = (yj , ej). The set ID yj

is chosen in exactly the same way as the integer aj in Andoni et al. [3]: set yj = σ(xj), where
the definition of xj differs for each of the three cases.
0. Set xj = l + j to be a padding value.
1. Set xj = si

q to be a standard value with probability 1/2, where j is the qth element of Ii.
Otherwise, set xj = l + j to be a padding value.

2. Set xj = si
q to be a standard value, where j is the qth element of Ii.
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Output stream
Intervals W I1 I2 I3

Zones 0-zone1-zone1-zone etc...
Player determining

output stream: 1 2 3 2 3

Figure 1 An example allocation of stream construction responsibility for a simple DISJ3 instance
in which there is a single overlap between two intervals (I2 and I3). Note that this is a non-
terminating instance.

Table 2 A portion of an example reduction for a DISJt NO instance with multiply occurring
element 3. Column j denotes the index of the stream, while the strings s2 and s3 (which contain
the contents of the sets S2 and S3) have been positioned in place of the intervals I2 = {11, . . . , 14}
and I3 = {13, . . . , 16} for clarity. The “Player” column denotes the player who determines the
edge uj = (σ(xj), pj). In Case 1 (e.g., j = 11), there are two different equally likely values for xj ;
both values are shown. We assume that l = 20.

j s2 s3 Zone Player Case xj

...
...

...
...

...
10 0 2 0 l + j = 30
11 4 0 2 1 s2

1 = 4 or l + j = 31
12 5 1 2 1 s2

2 = 5 or l + j = 32
13 3 8 1 3 2 s3

1 = 8
14 1 2 0 2 2 s2

4 = 1
15 3 0 3 1 s3

3 = 3 or l + j = 35
16 6 0 3 1 s3

4 = 6 or l + j = 36
17 0 4 0 l + j = 37
...

...
...

...
...

Table 2 shows an example of how the xj are defined for a portion of the stream that
includes two overlapping intervals. Observe that each occurrence of an element e in a set Si

has probability 1/2 of appearing as a standard value xj = e for some j.14

It remains to choose the element ej . In their proof for the arbitrary-arrival case, Indyk
and Vakilian [11] set ej = i and insert the edge (xj , ej) into the stream, where xj is always
a standard value (the intervals are contiguous sections of the stream). The result is that
each He ∈ F contains the IDs of the players holding the element e, so the maximum coverage
is either 1 (in a YES instance) or t (in a NO instance). This idea does not work for our
purposes, since if we set ej = i, consecutive edges inserted by the same player will always
have the same ej . Instead, we set ej = pj , where pj ∈ [t] is a randomly sampled player ID.

By the same argument given by Andoni et al. [3], the stream is in (nearly15) random
order. The only difference is the presence of pj in each of our edges. However, as the pj are
randomly and independently sampled from [t], they have no effect on whether the stream is
randomly ordered.

14 In Case 1, this probability comes from the random choice between a standard value and a padding value.
In Case 2, this probability comes from the random choice of zone due to the binary string r.

15 Certain orderings are impossible due to the termination with failure conditions. Since termination
happens with probability at most 0.02, however, the biggest detrimental effect that this can possibly
have on the performance of A is a decrease of 0.02 in the probability of successfully achieving the
approximation factor.

ESA 2023



102:14 Maximum Coverage in Random-Arrival Streams

Using the output of A. What does the output of A tell us about the DISJt instance S?
The following claims are made assuming that the protocol does not terminate with failure.

▷ Claim 10. If S is a YES instance, the optimal coverage of I is 1.

Proof. First, observe that the xj are all distinct, since all padding values are distinct from
each other, all standard values are distinct from each other (as S is a YES instance), and no
standard value can ever equal a padding value, as si

q ≤ N < l < l + j. Therefore, since σ is
a permutation, the yj are also all distinct, so each edge in the stream specifies a different
set ID. Every set is therefore singleton, so the optimal coverage is 1. ◁

▷ Claim 11. If S is a NO instance, then with probability at least 0.97, the optimal coverage
of I is at least t/6.

Proof. There is some e ∈ [N ] such that e ∈ Si for all i ∈ [t]. For each occurrence of e in
a set Si, there is some position in the stream where e appears as an edge (σ(e), pj) with
probability 1/2. Let V be this set of positions (e.g., in Table 2, the multiply occurring element
is e = 3, and the set V includes 13 and 15). Since the intervals W are chosen randomly and
the strings si are randomly ordered, V is a uniformly random subset of [l], so by Lemma 8,
with probability at least 0.99, no two elements of V fall within c2l1−4δ/5 of each other. This
is precisely w2, the size of each zone, so no two elements fall within the same zone. Each
occurrence of e therefore appears in the stream with probability 1/2 independently, so the
number of occurrences that appear has a Binomial distribution q ∼ B(t, 1/2). When t is
sufficiently large,16 q ≥ t/4 with probability at least 0.99.

Now consider these q appearances, (σ(e), p1), . . . , (σ(e), pq). Assuming that we indeed
have q ≥ t/4, by Lemma 9, the number of distinct values among p1, . . . , pq is at least t/6,
so choosing Hσ(e) yields a coverage of at least t/6. By a union bound on the three sources
of error (Lemma 8, variation in the Binomial distribution, and Lemma 9), this occurs with
probability at least 0.97. ◁

By taking l large enough, we can ensure that t/6 ≥ 1/α, in which caseA is powerful enough
to distinguish between YES and NO instances. Tallying up the various sources of error, A
succeeds with probability at least 0.9, we avoid early termination with probability at least 0.98,
and (in the case of a NO instance) Claim 11 holds with probability at least 0.97. Thus, by a
union bound, the protocol succeeds with probability at least 1−0.1−0.02−0.03 = 0.85 ≥ 2/3.
This completes the proof of Theorem 1.
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