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Abstract
We study the online graph exploration problem proposed by Kalyanasundaram and Pruhs (1994) and
prove a constant competitive ratio on minor-free graphs. This result encompasses and significantly
extends the graph classes that were previously known to admit a constant competitive ratio. The
main ingredient of our proof is that we find a connection between the performance of the particular
exploration algorithm Blocking and the existence of light spanners. Conversely, we exploit this
connection to construct light spanners of bounded genus graphs. In particular, we achieve a lightness
that improves on the best known upper bound for genus g ≥ 1 and recovers the known tight bound
for the planar case (g = 0).
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1 Introduction

We study a classic online graph exploration problem that was first proposed by Kalyanasun-
daram and Pruhs in 1994 [29]. In this setting, a single agent needs to systematically traverse
an initially unknown, undirected, connected graph with non-negative edge weights. Upon
visiting a new vertex, the agent learns the unique identifiers of all adjacent vertices and the
weights of the corresponding edges. The cost incurred when traversing an edge is simply its
weight. The objective in online graph exploration is to visit all vertices of the graph and
return to the starting vertex while minimizing the total cost.

The performance of a (deterministic) online algorithm Alg is measured in terms of
competitive analysis. That is, given a graph G and starting vertex v of G, we compare the
cost Alg(G, v) of the traversal it produces to the cost of an offline optimum traversal Opt(G).
Note that the optimum cost corresponds to the length of a shortest TSP tour of G and
does not depend on v. We say that Alg is (strictly) ρ-competitive for a class of graphs if
Alg(G, v) ≤ ρ ·Opt(G) for every graph G in the class and every vertex v of G. The (strict)
competitive ratio of an algorithm Alg is given by inf {ρ : Alg is ρ-competitive}.

Kalyanasundaram and Pruhs [29] posed the following question: Is there a deterministic
algorithm for online graph exploration with a constant competitive ratio? Several algorithms
were proposed with a competitive ratio of O(log(n)) [31, 36], where n is the number of vertices,
but better competitive ratios are only known for restricted classes of graphs [29, 31, 33].
The best known lower bound on the competitive ratio is 10/3 [5]. In particular, the original
question of Kalyanasundaram and Pruhs remains open.
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11:2 Exploration of Graphs with Excluded Minors

We formalize a connection between the performance of the particular exploration algorithm
Blocking and the existence of light spanners. Spanners were introduced in 1989 by Peleg
and Schäffer [35] and have been instrumental in the development of approximation algorithms,
particularly for TSP [3, 8, 9]. Here, a subgraph H = (V, EH) of a connected, undirected
graph G = (V, E) with edge weights w : E → R≥0 is called a (1 + ε)-spanner of G if
dH(u, v) ≤ (1 + ε) dG(u, v) for all u, v ∈ V , where dH and dG denote the shortest-path
distance in H and G, respectively. Then, H has stretch at most (1 + ε) and its lightness is
w(H)/w(MST), where w(H) :=

∑
e∈EH

w(e) and MST denotes a minimum spanning tree
of G.

We show that the online graph exploration algorithm Blocking has a constant com-
petitive ratio on every class of graphs that admits spanners of constant lightness for a
fixed stretch. Prominent graph classes with this property are the classes with a forbidden
minor [9]. We thus, in particular, obtain a constant competitive ratio for online graph
exploration on all graph classes excluding a minor. They encompass many other important
classes, such as graphs of bounded genus or bounded treewidth. Overall, this result subsumes
and significantly extends all previously known graph classes for which a competitive ratio
of o(log(n)) was known.

Regarding research for graph spanners, results typically revolve around the existence of
good, in particular light, spanners. For example, the Erdős girth conjecture [19] is equivalent
to a lower bound of Ω(n1/k) on the best lightness of a (2k− 1)-spanner in unweighted graphs.
While this conjecture remains unresolved, a nearly matching upper bound was proven by
Chechik and Wulff-Nilsen [11]. Various constant upper bounds on the lightness are known
for restricted classes of graphs [2, 9, 12, 24]. Our newly discovered connection to graph
exploration also allows us to contribute an improved upper bound for graphs of bounded
genus using the ideas given in [31].

Our results. We significantly expand the class of graphs on which the exploration problem
admits a constant-competitive algorithm.

▶ Theorem 1. For every graph H and constant δ > 0, there is a constant c (depending on H

and δ) such that Blockingδ is c-competitive on H-minor-free graphs.

The technical contribution of this work is a new-found connection between graph spanners
and the performance of the exploration algorithm Blockingδ (see Section 2.1) introduced
by Megow et al. [31] based on an algorithm of Kalyanasundaram and Pruhs [29]. This
connection will allow us to prove Theorem 1.

Prior to our work, the largest class of graphs which was known to admit a constant-
competitive algorithm was the class of bounded genus graphs [31]. As an aside, we obtain a
slightly stronger bound also for bounded genus graphs (cf. Corollary 13).

So far, Blockingδ was only studied for constant choices of the parameter δ, i.e., in-
dependent of the number of vertices n. It is known that its competitive ratio is at least
Ω(n1/(4+δ)) if δ is a constant [31]. This naturally raises the question of whether improvement
is possible if δ may depend on n. We obtain the following results.

▶ Theorem 2. Blockinglog(n) is O(log(n))-competitive.

This shows that Blockinglog(n) achieves the best previously known competitiveness. We
complement this with the following lower bounds.

▶ Theorem 3. The competitive ratio of Blockingδ, where δ = δ(n) > 0, is at least
a) Ω(log(n)/ log(log(n))),
b) Ω(log(n)) for δ ∈ o(log(n)/ log log(n)) as well as for δ ∈ Ω(log(n)).
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In particular, this shows that there is no δ such that Blockingδ is constant-competitive,
but it remains open, whether there is a choice of δ for which the algorithm is o(log(n))-
competitive.

Next, we exploit the connection between spanners and exploration in reverse to derive
the existence of good spanners in bounded genus graphs.

▶ Theorem 4. For every ε > 0, the greedy (1 + ε)-spanner of a graph of genus g has lightness
at most

(
1 + 2

ε

)(
1 + 2g

1+ε

)
.

Prior to our work, the best known bound was due to Grigni [24] who showed that every
graph of genus g ≥ 1 contains a (1 + ε)-spanner of lightness 1 + 12g−4

ε . Moreover, it is already
known that planar graphs, i.e., graphs of genus 0, contain (1 + ε)-spanners of lightness 1 + 2

ε

and that this is best possible [2]. This means that Theorem 4 gives a tight bound in the case
g = 0 and extrapolates this bound to graphs of larger genus.

Related work. Kalyanasundaram and Pruhs [29] introduced the online graph exploration
problem and gave a constant-competitive algorithm for planar graphs. Megow, Mehlhorn and
Schweitzer [31] revisited the algorithm, addressed some technical intricacies, and proposed
their reinterpretation Blockingδ, which we also consider in this paper. They expanded the
result by Kalyanasundaram and Pruhs and showed that the algorithm is constant-competitive
on bounded genus graphs. Moreover, they suggested a new algorithm hDFS and showed
that it is constant-competitive on graphs with a bounded number of different weights and
O(log(n))-competitive on general graphs.

Another very natural approach for exploration is the Nearest Neighbor algorithm, which,
in each step, explores the unvisited vertex nearest to the current location. This algorithm
has been studied extensively as a TSP heuristic. Rosenkrantz, Stearns and Lewis were able
to show that its competitive ratio is Θ(log(n)) [36]. It turned out that the lower bound of
Ω(log(n)) is already achieved on unweighted planar graphs [28] and on trees [23]. Eberle et
al. [18] revisited the algorithm with learning augmentation.

In addition to planar and bounded genus graphs, the exploration problem has been
studied on many more graph classes. For example, Miyazaki, Morimoto and Okabe were
able to show that the competitive ratio of the exploration problem is (1 +

√
3)/2 on cycles

and 2 on unweighted graphs. Other examples of such graph classes are tadpole graphs [10],
unicyclic graphs [23], and cactus graphs [23].

Currently, the best known lower bound for the graph exploration problem is 10/3 which
was shown by Birx, Disser, Hopp, and Karousatou [5]. Their construction builds on a
previously known lower bound of 2.5 shown by Dobrev, Královič, and Markou [17]. Since the
construction by Birx et al. is planar, the lower bound of 10/3 even holds when the problem
is restricted to planar graphs.

Several other settings of the exploration problem have been studied, such as exploration
on directed graphs [1, 13, 22, 21] or exploration with a team of agents [14, 15, 16]. Another
problem which is closely related to graph exploration is online TSP, where a single agent has
to serve requests appearing over time in a known graph [6, 7].

Through the connection with spanners, we are concerned with the existence of light
spanners for a given stretch. Examples of graph classes where the worst-case lightness does
not depend on the number of vertices include planar graphs [2], bounded genus graphs [24],
apex graphs [26], bounded pathwidth graphs [25], bounded treewidth graphs [12], and minor-
free graphs [9]. Our results rely on the existence of light spanners for minor-free graphs [9]
and improve on the lightness for bounded genus graphs. In particular, we study the lightness
of the so-called greedy spanner [2] for graphs of bounded genus. It was shown by Filtser and
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11:4 Exploration of Graphs with Excluded Minors

Solomon [20] that this spanner construction is existentially optimal for every class of graphs
closed under taking subgraphs, which means that the optimal lightness guarantee on any
such class is achieved by the greedy spanner.

Light and sparse spanners have applications in various fields. Most importantly, span-
ners were used to give polynomial-time approximation schemes (PTAS) for the travelling
salesperson problem for various graph classes [3, 8, 9]. Note that the difference between
approximations for TSP and online exploration is that, in our setting, the tour is computed
on-the-fly. Indeed, in comparison to our online setting, we desire a constant approximation for
an arbitrary constant, which in the TSP setting is easily obtained by traversing a minimum
spanning tree twice. On the other hand, in the online setting, we are not concerned with
efficiency of the algorithms which is crucial in the TSP setting. Other fields of application
of spanners include distributed systems [4], routing [38], or computational biology [37].

2 The online graph exploration problem on minor-free graphs

In this section, we prove new upper bounds for Blockingδ on H-minor-free graphs (The-
orem 1) and for general graphs (Theorem 2). To this end, we begin by introducing the
algorithm Blockingδ proposed by Megow et al. [31] based on the work of Kalyanasundaram
and Pruhs [29].

2.1 The algorithm Blocking
During the execution of an online graph exploration algorithm, a vertex is explored if it has
been visited by the agent. A neighbor of an explored vertex is a learned vertex. An edge is a
boundary edge if exactly one of its endpoints is explored. By convention, we denote boundary
edges e = (u, v) such that u is explored and v is unexplored. A path is internally explored
if each of its internal vertices is explored. Given two learned vertices x and y, we set the
distance d(x, y) to be the length of a shortest internally explored path linking x with y. In
particular, the distance may decrease during execution.

▶ Definition 5 (Kalyanasundaram and Pruhs [29]). Given some δ > 0, we say that a
boundary edge e = (u, v) is δ-blocked if there is another boundary edge e′ = (u′, v′) such
that w(e′) < w(e) and d(u, v′) ≤ (1 + δ)w(e).

The rough idea of Blocking is to perform a depth-first-traversal while ignoring all
blocked edges. Whenever a previously blocked edge turns unblocked, the agent moves to and
explores one such edge, and initiates a DFS-traversal from its new position. Blocking is
formally specified in Algorithm 1. It is executed on an undirected, weighted, connected, and
initially unexplored graph G = (V, E, w) and takes as input a vertex v of G, denoting the
current position of the agent. The algorithm follows a recursive DFS-like structure and the
input of the initial invocation is the start vertex.

Algorithm 1 Blockingδ(v) [29, 31].

1 while there is a boundary edge e = (y, x) that is not δ-blocked and such that y = v

or e was previously blocked by some edge (u, v) do
2 traverse a shortest internally explored path from v to y

3 traverse e

4 Blockingδ(x)
5 traverse a shortest internally explored path from x to v
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Observe that the algorithm is correct, i.e., every vertex is explored: Assume, for the
sake of contradiction, that some vertex remains unexplored when the algorithm terminates,
i.e., there are still boundary edges. Let e = (u, v) be a boundary edge of minimum weight.
Then, e is not δ-blocked. Therefore, either the exploration of u should have triggered the
exploration of v, or v should have been explored at the last point in time the edge turned
unblocked.

2.2 Key properties of Blocking
Throughout the remainder of Section 2, let G = (V, E, w) be a graph, n = |V | be its number
of vertices, v the given start vertex of G, and δ = δ(n) > 0. We analyze the performance of
Blockingδ on G, i.e., we estimate its total cost WBlocking(G, v, δ). For this, let B be the
set of boundary edges taken by Blockingδ, i.e., the edges traversed during the execution of
line 3.

Note that the total cost of the offline optimum is bounded from below by the weight
of a minimum spanning tree w(MST) and from above by 2w(MST). That is, to show that
Blockingδ is ρ-competitive, it suffices to show WBlocking(G, v, δ) ≤ ρ · w(MST).

▶ Observation 6 (Megow et al. [31]). We have WBlocking(G, v, δ) ≤ 2(δ + 2)w(B).

Proof. We charge all cost incurred in lines 2,3, and 5 to the corresponding boundary
edge e ∈ B. Note that the cost in line 2 is at most (1 + δ)w(e), because either we have y = v

such that dG(v, y) = 0, or e was blocked by an edge (u, v), which implies dG(y, v) ≤ (1+δ)w(e).
The cost in line 3 is w(e) and the cost in line 5 is at most the sum of the cost in lines 2 and 3.
Therefore, each edge e in B is charged at most 2(δ + 2)w(e). ◀

In our subsequent analysis, we will frequently use a minimum spanning tree with a
particular property. For this, in what follows, let MSTB be a minimum spanning tree of G

that maximizes the number of edges in MSTB∩B. As pointed out in [31], cycles in B∪MSTB

are long relative to the weight of the edges they contain. Specifically, the following holds.1

▶ Lemma 7. Let C be a cycle in B ∪MSTB and e be an edge of C. Then,

w(C \ {e}) > (1 + δ)w(e).

Proof. It suffices to show the assertion for an edge of maximum weight in C. We first show
that this edge must be in B, i.e., argmax{w(e) : e ∈ C} ⊆ B:

Assume otherwise and let e = (u, v) ∈ argmax{w(e) : e ∈ C} ∩ (MSTB \B). Removing e

from MSTB separates MSTB into two connected components. In particular, u and v are
in different components. Start walking in C \ {e} from u to v and let e′ be the first edge
that leads from u’s connected component in MSTB \ {e} to v’s connected component. Then,
e′ ∈ B \MSTB and by maximality of e, we have w(e′) ≤ w(e). Therefore, replacing e by e′

in MSTB gives another spanning tree of weight at most w(MSTB). This new spanning
tree has one more edge in common with B than MSTB. This contradicts the choice of
MSTB, so that we can assume from now on argmax{w(e) : e ∈ C} ⊆ B, i.e., every edge in
argmax{w(e) : e ∈ C} is charged, i.e., the edge is traversed in some exectution of line 3 of
the algorithm.

1 The assertion of Lemma 7 implies Claim 1 in [31], which only concerns edges not in the minimum
spanning tree. However, there is a subtle flaw in the proof of Claim 1 in [31]. In fact, in that proof, it is
not clear that when we replace the edge e′ with an edge of the fixed MST, we again obtain a minimum
spanning tree. In any case, the argument above rectifies this.

ESA 2023



11:6 Exploration of Graphs with Excluded Minors

u v
e

u′ v′
e′

Figure 1 Illustration of Lemma 7: The black vertices are explored and the green vertices (v and v′)
are unexplored. The blue edges (e and e′) are boundary edges.

Let e = (u, v) be the edge in argmax{w(e) : e ∈ C} that is charged last. At the time e

is traversed, it is a boundary edge, so that u is explored but v is not yet explored. Start
walking in C \ {e} from u to v and let e′ = (u′, v′) be the first edge leading from an explored
vertex u′ to an unexplored vertex v′, i.e., e′ is another boundary edge in C (cf. Figure 1).

Next, we show that w(e′) < w(e): Assume otherwise. By maximality of e, this means
w(e′) = w(e) so that e′ ∈ argmax{w(e) : e ∈ C}. But then, we also have e′ ∈ B. This
contradicts the fact that e is the edge in argmax{w(e) : e ∈ C} that is charged last.

Summing up, we have shown the following facts: Upon exploration of e = (u, v), there
is another boundary edge e′ = (u′, v′) in C with w(e′) < w(e). Since e is not blocked, this
implies

w(C \ {e}) ≥ d(u, v′) > (1 + δ)w(e). ◀

2.3 Connection to spanners
Next, we investigate how the performance of Blockingδ is related to graph spanners. For
this, note that Lemma 7 can be reformulated as follows.

▶ Lemma 8. No proper subgraph of B ∪MSTB is a (1 + δ)-spanner of B ∪MSTB.

The lemma relates spanners to the behavior of Blockingδ. However, we need to take note
that the lemma applies to B ∪MSTB rather than the original graph G. A monotone graph
class is a class of graphs G closed under taking subgraphs, i.e., if G ∈ G and H is a subgraph
of G, then also H ∈ G. Given a graph G, we define OptSpanδ(G) as the minimum lightness
of a (1 + δ)-spanner of G. Moreover, we set OptSpanδ(G) := sup{OptSpanδ(G) : G ∈ G}
to be the supremum over all graphs in G.

▶ Theorem 9. For every monotone graph class G and every δ = δ(n) > 0, the algorithm
Blockingδ is (2(δ + 2) ·OptSpanδ(G))-competitive on G.

Proof. Let G ∈ G. We have

WBlocking(G, v, δ)
Obs 6
≤ 2(δ + 2)w(B) ≤ 2(δ + 2)w(B ∪MSTB). (1)

Since B ∪ MSTB is a subgraph of G, we have B ∪ MSTB ∈ G. By Lemma 8, the only
(1 + δ)-spanner of B ∪MSTB is B ∪MSTB itself. Therefore,

w(B ∪MSTB) ≤ OptSpanδ(B ∪MSTB) · w(MSTB) ≤ OptSpanδ(G) · w(MSTB). (2)

Combined, we obtain

WBlocking(G, v, δ)
(1)
≤ 2(δ + 2)w(B ∪MSTB)

(2)
≤ 2(δ + 2) ·OptSpanδ(G) · w(MSTB). ◀
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The theorem puts us in a position to leverage results on the lightness of spanners in order
to draw conclusions regarding the competitive ratio of Blockingδ. For example, it has been
shown that every planar graph contains a (1 + δ)-spanner of lightness at most 1 + 2

δ [2].
Feeding this into Theorem 9, we conclude that Blockingδ is 2(δ +2)(1+2/δ)-competitive on
planar graphs. This agrees with the bound proven in [29]. However, more generally, bounded
genus graphs have light spanners. In fact, in Section 3.3, we show that every graph of genus
at most g contains a (1 + δ)-spanner of lightness at most

(
1 + 2

δ

) (
1 + 2g

1+δ

)
(Theorem 4).

From this, we obtain the following.

▶ Corollary 10. Blockingδ is 2(δ + 2)
(
1 + 2

δ

)(
1 + 2g

1+δ

)
-competitive on graphs of genus at

most g.

Even more generally, it is known that H-minor-free graphs have light spanners [9].
Specifically, every H-minor-free graph contains a (1 + δ)-spanner of lightness O

(
σH

δ3 log
( 1

δ

))
where σH = |V (H)|

√
log |V (H)|. This yields a constant competitive ratio for Blockingδ

on H-minor-free graphs as follows.

▶ Corollary 11. Blockingδ is 2(δ + 2) ·O
(

σH

δ3 log
( 1

δ

))
-competitive on H-minor-free graphs

where σH = |V (H)|
√

log |V (H)|.

There are also strong bounds for general graphs. Given a graph G with n vertices and an
integer k ≥ 1 and ε ∈ (0, 1), G contains a (2k − 1)(1 + ε)-spanner of lightness Oε

(
n1/k

)
[11],

where the notation Oε indicates that the constant factor hidden in the O-notation depends
on ε. This gives us the following.

▶ Corollary 12. Given an integer k = k(n) ≥ 1 and ε ∈ (0, 1), Blocking(2k−1)(1+ε) is
2((2k − 1)(1 + ε) + 2) ·Oε

(
n1/k

)
-competitive on every graph.

In particular, by suitably choosing δ, we obtain the following.2

▶ Corollary 13.
a) Blocking2 is 16(1 + 2

3 g)-competitive on graphs of genus at most g.
b) For every constant δ > 0 and every graph H, Blockingδ is constant-competitive on

H-minor-free graphs.
c) Blockinglog(n) is O(log(n))-competitive on every graph.

For the case of planar graphs, part a) matches the best known bounds on planar
graphs [29, 31]. For general surfaces, it slightly improves on the best known bound of
16(1 + 2g) on bounded genus graphs [31]. Part b) is the first constant bound on minor-free
graphs, and part c) is the first O(log(n)) bound for Blocking.

2.4 Lower bounds for Blocking
Next, we investigate lower bounds for Blocking when δ is allowed to depend on the input
size. In [31], it was shown that the competitive ratio of Blockingδ on general graphs is at
least Ω(n1/(δ+4)) when δ is a constant. We begin by observing that this can be generalized
to non-constant δ that are not too large.

▶ Observation 14. Suppose δ = δ(n) > 0 such that δ2δ+8 = o(n). Then, the competitive
ratio of Blockingδ is at least Ω(δ · n1/(δ+4)).

2 All missing proofs are deferred to the full version.
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11:8 Exploration of Graphs with Excluded Minors

v
1 1 1 1 1 1 1 1 1

e1 e2 ek e′
1 e′

2 e′
k

Figure 2 Illustration of the lower bound construction for Blockingδ (Lemma 15). The light
edges (depicted in blue) are of weight 1 and the heavy edges (depicted in red) are of weight k+1

δ+1 .

Note that 2δ + 8 ≤ log(n)/ log(log(n)) implies that

δ2δ+8 ≤
(

log(n)
log(log(n))

) log(n)
log(log(n))

=
(

1
log(log(n))

) log(n)
log(log(n))

· elog(log(n)) log(n)
log(log(n))

=
(

1
log(log(n))

) log(n)
log(log(n))

· n = o(n),

i.e., the prerequisites of Observation 14 are fulfilled. Moreover, Ω(δn1/(δ+4)) ≥ Ω(log(n))
for every δ = δ(n). Therefore, Observation 14 shows that Blockingδ has competitive ratio
in Ω(log(n)) whenever δ = o(log(n)/ log log(n)). In particular, this shows the first part of
Theorem 3b.

Next, we give another lower bound which shows that the parameter δ cannot be chosen
too large either (the second part of Theorem 3b).

▶ Lemma 15. Suppose δ = δ(n) ∈ (0, n−4
4 ). The competitive ratio of Blockingδ is at

least Ω(δ), even on trees.

Proof sketch. It is not difficult to check that, on the graph illustrated in Figure 2, the cost
of Blocking is asymptotically δ times the cost of the offline optimum. A complete proof
can be found in the full version. ◀

To conclude our lower bound arguments for Blockingδ, observe that, for δ ≥ n−4
4 ,

the behavior of Blockingδ closely resembles the behavior of the algorithm hDFS [31].
In fact, it is not difficult to check that, on the lower bound construction for hDFS given
in [31, Theorem 5], after proceeding to edges of weight more than 16, Blockingδ takes the
exact same route as hDFS, if δ ≥ n−4

4 . Therefore, we obtain the following.

▶ Observation 16. For δ ≥ n−4
4 , the competitive ratio of Blockingδ is at least Ω(log(n)).

We can now combine the lower bound constructions from this section to prove Theorem 3.

Proof of Theorem 3. We begin with proving part b). In Observation 14, we have seen
that the competitive ratio of Blockingδ is at least Ω(log(n)) if δ ∈ o(log(n)/ log log(n)).
By Lemma 15, we obtain the same lower bound for every δ in the range from Ω(log(n))
to (n − 4)/4, and by Observation 16, we obtain the lower bound for δ at least (n − 4)/4.
Therefore, this proves the assertion of Theorem 3b. For part a), note that part b) implies that
a competitive ratio of o(log(n)) is only possible for δ in the range from Ω(log(n)/ log log(n))
to o(log(n)). Using Observation 14 in this range implies the assertion of Theorem 3a. ◀

3 Graph spanners in bounded genus graphs

In this section, we prove Theorem 4 about the existence of light spanners in bounded genus
graphs. For this, we begin by introducing the greedy spanner.
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3.1 The greedy spanner
The greedy (1 + ε)-spanner was suggested by Althöfer et al. [2] and is formally defined as the
output of Algorithm 2. After ordering the edges by weight, it iteratively adds edges if they
are short in comparison to the distance of their endpoints in the graph constructed so far.

Algorithm 2 GreedySpanner(G = (V, E, w), ε).

1 sort E = {e1, . . . , em} such that w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
2 H ← (V, ∅)
3 for i← 1, . . . , m do
4 if dH(ui, vi) > (1 + ε)w(ei), where ei = (ui, vi) then
5 H ← H ∪ {ei}

6 return H

Note that the resulting graph H is indeed a (1 + ε)-spanner of G. The output of the
algorithm actually depends on the chosen order of the edges. In particular, when edge weights
appear multiple times, there may be several possible outputs. However, this will not be
important in our context. When we refer to the greedy spanner, we mean that we arbitrarily
fix some output of the algorithm.

The greedy spanner fulfills the following two key properties: First, the algorithm implicitly
executes Kruskal’s algorithm for finding a minimum spanning tree, i.e., it adds all edges
to H that Kruskal’s algorithm adds. With this, we obtain the following.

▶ Observation 17. The greedy spanner contains all edges of some minimum spanning tree
of the input graph.

The second key property, in fact, resembles the property of Blockingδ in Lemma 7.

▶ Observation 18 (Althöfer et al. [2]). For every cycle C in the greedy spanner H and every
edge e of C, we have w(C \ {e}) > (1 + ε)w(e). In other words, no proper subgraph of H is
a (1 + ε)-spanner of H.

Proof. Let C be a cycle in the greedy spanner. Let e = (u, v) be the edge in C that is added
last. At the time it is added, we have (1 + ε)w(e) < dH(u, v) ≤ w(C \ {e}) by definition of
the algorithm. Since all other edges in C have lower or equal weight than e, the property is
fulfilled for them as well. ◀

3.2 Spanners in planar graphs
Before investigating spanners in bounded genus graphs, we illustrate the technique for the
special case of planar graphs, giving an alternate proof of the following result.

▶ Theorem 19 (Althöfer et al. [2]). For every planar graph G and ε > 0, the greedy
(1 + ε)-spanner of G has lightness at most 1 + 2

ε .

Our proof uses similar ideas as in [31, Theorem 1] and is based on the following main
idea: Fix an embedding of the greedy spanner in the plane and, in a suitable way, partition
the greedy spanner into facial cycles, i.e., cycles that form the boundary of a face. Then use
the fact that none of these cycles are short (cf. Observation 18).
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▶ Lemma 20. Let G be a planar graph, H be the greedy (1 + ε)-spanner of G and MST be a
minimum spanning tree of H. Fix an embedding of H in the plane. Then, we can associate
with every edge e ∈ H \MST a facial cycle Ce containing e, so that Ce ̸= Ce′ for e ̸= e′.

Next, we illustrate how this can be combined with the fact that the greedy spanner does
not contain short cycles (cf. Observation 18).

▶ Lemma 21. Let G be a graph and H be the greedy (1+ε)-spanner of G. Let D be a subgraph
of G such that we can associate with every edge e ∈ H \D a cycle Ce of H containing e,
with the property that

∑
e∈H\D w(Ce) ≤ 2w(H). Then, w(H) ≤

(
1 + 2

ε

)
w(D).

Next, we show how this implies Theorem 19.

Proof of Theorem 19. Let G be a planar graph, let H be the greedy (1 + ε)-spanner of G,
and let MST denote a minimum spanning tree of H. By Observation 17, MST is also a
minimum spanning tree of G, so that it suffices to show w(H) ≤

(
1 + 2

ε

)
w(MST). Since G

is planar, its subgraph H is planar as well. Let us fix an embedding of H on the plane such
that no two edges cross. By Lemma 20, there is a facial cycle Ce for every edge e ∈ H \MST
such that Ce ̸= Ce′ for e ̸= e′. As every edge of H is contained in at most two facial cycles,
we have

∑
e∈H\MST w(Ce) ≤ 2w(H). Therefore, we can apply Lemma 21 with D = MST

and obtain w(H) ≤
(
1 + 2

ε

)
w(MST). ◀

3.3 Generalization to bounded genus graphs
The genus of a graph G is the smallest integer g such that G can be embedded on an
orientable surface of genus g. In this subsection, we study light spanners for the class of
bounded genus graphs and prove Theorem 4. We begin by recalling the theorem.

▶ Theorem 4 (restated). For every ε > 0, the greedy (1 + ε)-spanner of a graph of genus g

has lightness at most
(
1 + 2

ε

)(
1 + 2g

1+ε

)
.

Our proof is based on similar arguments as in [31, Theorem 2] and the main idea is
roughly as follows: Given an embedding of the greedy spanner on a surface of genus g, first
cut the surface along several edges such that we obtain a disk. Then, we can proceed along
similar lines as for Theorem 19. In this work, we estimate more carefully the weight of the
edges along which we cut so that we obtain a slightly improved bound than in [31]. We will
use the following topological lemma for the first step.

▶ Lemma 22. Let G be an unweighted connected graph of genus (exactly) g ≥ 1. Fix an
embedding of G on an orientable surface of genus g and let T be a spanning tree of G. Then,
there is a subgraph D of G with T ⊆ D and |E(D) \ E(T )| ≤ 2g such that, in the inherited
embedding of D, there is only a single face and the edges in D bound a topological disk.3

Proof. It is a standard fact from topology that, on a surface of genus g, one can embed
precisely 2g closed curves that are non-separating, i.e., it is possible to draw 2g cycles on the
surface such that cutting along all of them does not disconnect the surface. Every collection
of 2g curves that are non-separating bounds a topological disk (see Figure 3).4

3 A topological disk is a surface homeomorphic to a 2-dimensional disk. Intuitively, a topological disk is a
continuous deformation of a 2-dimensional disk.

4 This can be proven as follows: The Euler characteristic of a surface of genus g is 2 − 2g [27, Section 2.2]
and cutting along a non-separating closed curve increases the Euler characteristic by 1.
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Figure 3 surface of genus 2 with 4 non-separating cycles bounding a topological disk.

We construct the set D greedily as follows (see Figure 4): Initially, let D := T . Ignoring
all edges in G \D, we have only a single face. Note that every edge in G \D closes a cycle
with D. If we find an edge which only closes non-separating cycles, i.e, does not separate the
surface into two faces, we add it to D. After this, the edges of D still only bound a single
face. We repeat this step until we cannot find further edges whose addition would separate
the surface into multiple faces.

Since there are at most 2g cycles on a surface of genus g that are non-separating, we have
|E(D) \ E(T )| ≤ 2g. It is left to show that D bounds a disk. By maximality of D, every
edge e ∈ G \D is separating when added to D, i.e., in the inherited embedding of D ∪ {e},
the edge e is incident to two faces. In particular, e is incident to two faces in the inherited
embedding of every supergraph of D.

Consider again the embedding of the entire graph G. It is known from topological graph
theory that a minimal genus embedding of a connected graph is cellular, i.e., every face of
the embedding of G is a topological disk [39] (see [34, Proposition 3.4.1]). Since every edge
e ∈ G \D is incident to two distinct faces, its removal merges the two corresponding disks
along a connected part of their common boundary, which yields another disk. Iteratively
removing all edges in G \D in this way, we thus obtain a cellular embedding of D. Since, by
construction, D induces only a single face, we obtain that D bounds a topological disk.

For an illustration of the construction, consider Figure 4. In the example in the left
column, the two green edges enclose non-separating cycles, whereas all blue edges close
separating cycles. In the example in the right column, the half-dotted green edge in D could
be replaced by the blue edge between u and v. ◀

Now, we have all the prerequisites in place to prove Theorem 4. The main idea is to give
a similar construction as in Lemma 20 to partition the greedy spanner into facial cycles.
Before delving into the proof, let us briefly comment on why Lemma 22 is not a reduction to
the planar case, i.e., we cannot use the same construction as in Lemma 20.

Recall that the key ingredient of Lemma 20 was to define a partial order in which an
edge e′ precedes another edge e if e′ is embedded on the inside of the cycle that e closes with
MST. In the bounded genus case, if the cycle closed by e is non-separating, there is no such
thing as “the inside” of the cycle. For example, consider the edge (u, v) in the right column
of Figure 4 and the cycle it closes with MST. This cycle does not have an “inside” and
cannot be decomposed into multiple faces. In particular, the cycle disappears after cutting
the surface along D. However, it separates the disk bounded by D into two parts. Therefore,
we have to consider cycles that include edges of D \MST.

Proof of Theorem 4. Let G be some graph of genus g. Let H be the greedy (1 + ε)-
spanner of G and let MST denote a minimum spanning tree of H. By Observation 17,
we know that MST is also a minimum spanning tree of G, so that it suffices to show
w(H) ≤

(
1 + 2

ε

)(
1 + 2g

1+ε

)
w(MST).
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Figure 4 The two columns show the construction of D for the same graph with two different
embeddings. The black edges belong to T , the green edges to D \ T , and the blue edges to G \ D.
In each column, the first subfigure shows the embedding on the torus. The second subfigure shows a
different representation: The torus is obtained by gluing together the opposite sides of the rectangle.
The last subfigure shows the disk obtained by cutting the surface along D. Note that it contains
every edge of D twice and therefore, every vertex up to 4 times. However, note that the embedding
specifies between which copies of the vertices the blue edges have to be drawn. The capital letters
A, B, C, D denote areas of the torus and are included for better orientation: Leaving area A to the
left leads to area D, leaving A to the top leads to B and so on.

Let g′ be the genus of H. If g′ = 0, the assertion follows directly by Theorem 19.
Therefore, we assume from now on g′ ≥ 1. Note that g′ ≤ g because H is a subgraph of G.
Fix an embedding of H on an orientable closed surface of genus g′ such that no two edges
cross. By Lemma 22, there is a subgraph D of H with MST ⊆ D such that

|E(D) \ E(MST)| ≤ 2g′ ≤ 2g (3)

and such that the edges of D induce only one face and bound a topological disk. Next,
observe that, for every edge e in H \MST, we have w(e) ≤ w(MST)/(1 + ε): Every edge e in
H \MST closes a cycle C together with the edges of MST. Using Observation 18, we obtain

w(e) <
w(C \ {e})

1 + ε
≤ w(MST)

1 + ε
.

In particular, this is fulfilled for edges in D \MST. Combining this with (3), we obtain

w(D) ≤
(

1 + 2g

1 + ε

)
w(MST). (4)

The next step is to bound the weight of H by (1 + 2/ε)w(D). For this, we use a similar
construction as in Lemma 20 and show that it is possible to iteratively choose an edge e

in H \D which, together with the edges of D and the edges chosen in previous iterations,
closes a facial cycle Ce in the embedding of H.
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In each iteration, we find a suitable edge as follows: Pick an arbitrary edge e of H \D.
If it defines a facial cycle together with D and edges chosen in previous iterations, we can
simply choose e. Assume this is not the case. Note that e cuts the disk bounded by D in two
parts and both contain edges in H \D to which no cycles have been assigned yet (otherwise e

would close a suitable facial cycle). Pick the part whose boundary with D contains fewer
edges (breaking ties arbitrarily) and pick a new edge e′ in H \D which lies inside this half
and has not yet been chosen in a previous iteration. Note that e′ again cuts the disk in
two parts and the boundary of the smaller part contains fewer edges of D than in the step
before. Therefore, by repeating the steps above, we will end up with a suitable edge after
finitely many steps. For example, on the left side of Figure 4, if we pick e = (x, z), we will
set e′ = (x, y) and this edge is suitable. After this, we can assign a facial cycle to (x, z) and
then to (u, v). In the instance on the right, we can assign the cycles to the blue edges in any
order.

Note that, in this construction, no two edges are assigned the same facial cycle. As every
edge is contained in at most two facial cycles, we have∑

e∈H\D

w(Ce) ≤ 2w(H). (5)

Therefore, we can now apply Lemma 21 and obtain

w(H)
Lem 21
≤

(
1 + 2

ε

)
w(D)

(4)
≤

(
1 + 2

ε

) (
1 + 2g

1 + ε

)
w(MST). ◀

Recall that Grigni showed that every graph of genus g ≥ 1 contains a (1 + ε)-spanner of
lightness at most 1 + (12g − 4)/ε [24]. Let us briefly comment on how our bound compares
to Grigni’s bound. For this, note that, for g ≥ 1,(

1 + 2
ε

) (
1 + 2g

1 + ε

)
= 1 + 2

ε
+ 2g

1 + ε
+ 4g

ε(1 + ε) < 1 + 2g

ε
+ 2g

ε
+ 4g

ε
= 1 + 8g

ε
.

Therefore, our bound is stronger than Grigni’s bound for every g ≥ 1. Moreover, in
the planar case (i.e., g = 0), we obtain a lightness of 1 + 2

ε . It was shown by
Althöfer et al. [2, Theorem 5] that this is best possible, i.e., our bound is tight for planar
graphs. Note that the worst-case lightness for spanners of graphs of genus g has to in-
crease in g, since not every graph admits a light spanner. For example, for every k ≥ 3
and almost all n, there is a graph on n vertices with girth at least k and at least 1

4 n1+ 1
k

edges [32, Theorem 6.6].

4 Open problems

The key question in online graph exploration is whether the problem admits a constant-
competitive algorithm [29]. While this problem remains open, our results suggest steps that
might be needed towards a resolution of this question. Firstly, we have shown that the online
graph exploration problem allows for a constant-competitive algorithm on graphs admitting a
light spanner, in particular, minor-free graphs. This suggests that, for proving a non-constant
general lower bound on the competitive ratio, one might require dense high-girth graphs
or expanders [30]. Not even a competitive ratio of o(log(n)) has yet been attained, and
our results eliminate Blockingδ, for most values of δ, as a candidate for achieving this. It
remains to close the gap between δ ∈ o(log(n)/ log log(n)) and δ ∈ Ω(log(n)).

Regarding spanners, we gave an improved upper bound on the lightness of spanners in
bounded genus graphs. It is a natural question whether our bound is already tight for g ≥ 1
or can further be improved. In particular, it is unclear whether the worst-case lightness for a
fixed stretch must depend linearly on g.
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