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Abstract
A Lyndon word is a string that is lexicographically smaller than all of its non-trivial suffixes. For
example, airbus is a Lyndon word, but amtrak is not a Lyndon word due to its suffix ak. The
Lyndon array stores the length of the longest Lyndon prefix of each suffix of a string. For a length-n
string over a general ordered alphabet, the array can be computed in O(n) time (Bille et al., ICALP
2020). However, on a word-RAM of word-width w ≥ log2 n, linear time is not optimal if the string
is over integer alphabet {0, . . . , σ} with σ ≪ n. In this case, the string can be stored in O(n log σ)
bits (or O(n/ logσ n) words) of memory, and reading it takes only O(n/ logσ n) time. We show that
O(n/ logσ n) time and words of space suffice to compute the succinct 2n-bit version of the Lyndon
array. The time is optimal for w = O(log n). The algorithm uses precomputed lookup tables to
perform significant parts of the computation in constant time. This is possible due to properties of
periodic substrings, which we carefully analyze to achieve the desired result. We envision that the
algorithm has applications in the computation of runs (maximal periodic substrings), where the
Lyndon array plays a central role in both theoretically and practically fast algorithms.
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1 Introduction

A Lyndon word is a string that is lexicographically smaller than all of its non-trivial suffixes.
For example, airbus is a Lyndon word, but amtrak is not a Lyndon word due to its suffix
ak. The Lyndon array stores the length of the longest Lyndon prefix of each suffix of a string
(a precise definition follows later). In this article, we propose a new algorithm that computes
the (succinct version of) the Lyndon array of a length-n string over alphabet {0, . . . , σ} in
O(n/ logσ n) time and words of space on a word-RAM of word-width w ≥ log2 n.

Background and Applications. Since their introduction in the field of combinatorics on
words almost 70 years ago [32], Lyndon words have proven to be useful for designing efficient
algorithms. The Lyndon factorization of a string uniquely decomposes it into lexicographically
non-increasing Lyndon words [9, 15]. It can easily be obtained from the Lyndon array, and
it has recently been used to capture overlaps between reads for next generation DNA
sequencing [7, 8]. The closely related standard factorization T = RS of a Lyndon word
T is uniquely defined by S, which is the longest proper Lyndon suffix, or equivalently the
lexicographically smallest proper suffix of T . It is guaranteed that R is also a Lyndon word
[9]. By recursively factorizing R and S in the same manner until all segments are single
symbols, we obtain the binary Lyndon tree. This tree can also be defined for a non-Lyndon
word T , since prepending an infinitely small symbol makes any word Lyndon. The Lyndon
tree encodes the same information as the Lyndon array (see, e.g., [13, 2]).
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Hohlweg and Reutenauer [24] showed that the Lyndon factorization encodes the list of
left-to-right suffix (lexicographical) minima of a string. Crochemore and Russo [13] showed
that the Lyndon array (respectively the Lyndon tree) of a string encodes the left-to-right
minima tree (respectively the Cartesian tree) of its inverse suffix array (the array that stores
for each suffix its lexicographical rank among all the suffixes). This shows the close relation
between the Lyndon array and the suffix array [33], one of the major data structures in string
algorithmics, with countless applications in compression and indexing. Lyndon words and
the Lyndon array have been used to efficiently compute the suffix array (e.g., [3, 5, 38]) and
vice versa (e.g., [21, 31]). The Lyndon array can be computed from the suffix array in O(n)
time; however, this requires a linearly-sortable alphabet (e.g., Σ = {0, . . . , nO(1)}) due to the
information-theoretic lower bound on comparison sorting. For general ordered alphabets,
there is an O(n) time algorithm that computes the Lyndon array without the suffix array by
exploiting combinatorial properties of Lyndon words [6] (see [16] for a simplified description).
This algorithm can also be used to output a succinct 2n-bit encoding of the Lyndon array,
which is based on a balanced parentheses sequence of the tree structure of the Lyndon array.

The perhaps most important application of the Lyndon array is the computation of runs
(maximal periodic substrings). Kolpakov and Kucherov showed that there are O(n) runs in
a length-n string, and conjectured that this upper bound can be improved to n [29]. A series
of results gradually improved the best known bound [40, 10, 11, 39]. Ultimately, the Lyndon
array and its rich combinatorial properties were used to prove the conjecture [4], which
also resulted in a remarkably simple proof. The Lyndon array is also one of the two main
ingredients of a simple O(n) time algorithm for computing all the runs (see, e.g., [4, 13]).
The second ingredient is a data structure for longest common extensions (LCEs), which
answers queries of the type “Given i, j, what is the longest shared prefix between T [i..n] and
T [j..n]?”. For linearly-sortable alphabets, an LCE data structure with constant query time
can be constructed in O(n) time (e.g., [20]), which results in an O(n) time runs algorithm.
It was conjectured that the same time can be achieved for general ordered alphabets [30],
which resulted in a series of new LCE data structures aimed at these alphabets [30, 22, 12].
The first algorithm that achieves linear time [17] and hence proves the conjecture does not
use an LCE data structure at all. Instead, it relies on the combinatorial structure of the
Lyndon array to explicitly compute all the LCEs in overall linear time.

The existing O(n) time algorithms for the Lyndon array are optimal if the string is over
a general ordered alphabet. However, they are not optimal on a word-RAM of word-width
w ≥ log2 n if the alphabet is {0, . . . , σ} with σ ≪ n. In this case, ⌊logσ n⌋ symbols can
be packed in a single word of memory, and hence they can be processed simultaneously.
Word packing has lead to faster algorithms for many problems in string algorithmics. For
example, O(n log σ/

√
log n) time suffices to construct any of the following data structures

for a packed string: compressed suffix arrays and trees with O(logϵ n) time operations [27];
an index that counts occurrences of a length-m query pattern in O(m/ logσ n + logϵ n) time
[27]; the Burrows–Wheeler transform [26]; the wavelet tree [1, 35] with a fast practical
implementation [25]. A novel LCE data structure by Kempa and Kociumaka can be
constructed in even faster O(n/ logσ n) time and answers queries in O(1) time [26].

Our Contributions. We show that the succinct 2n bit representation of the Lyndon array
can be computed in O(n/ logσ n) time and words of space on a word RAM of word-width
w ≥ log2 n. The time bound is optimal under the common assumption that the input size
scales with the word-width, i.e., w = O(log n). The algorithm uses the same ideas as previous
O(n) time algorithms, but processes the string one word (rather than one position) at a time.



H. Bannai and J. Ellert 14:3

We accelerate the computation with lookup tables and the LCE data structure by Kempa
and Kociumaka [26]. By carefully analyzing properties of periodic substrings, we are able to
design the lookup tables in a way that minimizes the number of required LCE queries. The
new algorithm will hopefully lead to a sublinear time algorithm for the computation of runs.

The remainder of the paper is structured as follows. In Section 2, we introduce basic
definitions and notation, as well as a simple linear time algorithm for the succinct Lyndon
array. This algorithm is the starting point of our new sublinear time algorithm, which we
present in Section 3. It uses some auxiliary data structures, which we first use as a black
box. In Sections 4 and 5, we show how to implement these data structures.

2 Preliminaries

Strings and Computational Model. For i, j ∈ N, we write [i, j] = (i− 1, j] = [i, j + 1) =
(i − 1, j + 1) to denote the integer interval {i, i + 1, . . . , j} (or the empty set if i > j). A
string T ∈ Σn is a sequence of |T | = n symbols from some alphabet Σ. The empty string
of length 0 is denoted by ε. For i, j ∈ [1, n], we denote the ith symbol of the sequence by
T [i]. The substring T [i..j] = T (i − 1..j] = T [i..j + 1) = T (i − 1..j + 1) is the sequence of
length j − i + 1 that starts with the ith and ends with the jth symbol. For j < i we define
T [i..j] = ε. If i ≤ j, then the longest common extension (LCE) at positions i and j is defined
as lce(i, j) = lce(j, i) = max({ℓ ∈ [0, n − j + 1] | T [i..i + ℓ) = T [j..j + ℓ)}). Substrings
T [1..i] and T [i..n] are respectively called prefix and suffix of T . A substring T [i..j] is proper
if T [i..j] ̸= T , and non-trivial if it is proper and T [i..j] ̸= ε. If the alphabet Σ is totally
ordered, then it induces a lexicographical order as follows. For strings S ∈ Σm and T ∈ Σn,
it holds S ≺ T (and we say that S is lexicographically smaller than T ) if and only if either S

is a prefix of T , or there is some ℓ ∈ [1, min(m, n)] such that S[1..ℓ) = T [1..ℓ) and S[ℓ] < T [ℓ].
We write S ⪯ T to denote that T is not lexicographically smaller than S. A string T [1..n]
has period p ∈ [1, n] if T [1..n− p] = T [1 + p..n]. We then call T [1..n− p] a border of T . The
concatenation of two string S and T is denoted by ST . For k ∈ N0, the k-times concatenation
(or k-power) of T is denoted by T k (with T 0 = ε).

We work on a word RAM (see, e.g., [23]) with words of width w ≥ log2 n bits (where n is
the length of the input string). A string T ∈ [0, σ)n can be stored in packed representation,
i.e., the binary representation of each symbol is stored in ⌈log2 σ⌉ bits, and the entire string
occupies n ⌈log2 σ⌉ consecutive bits or O(n/ logσ n) words of memory. (The number of
bits can be improved to ⌈n log2 σ⌉+O(log2 n) while retaining fast access [14, Theorem 1].)
Primitive bitwise operations suffice to extract any substring of length O(logσ n) in constant
time because such a substring fits in a constant number of words. Since a (sub-)string S is a
bit string of length |S| · ⌈log2 σ⌉, it can be interpreted as an integer in range [1, 2|S|·⌈log2 σ⌉]
(by reading the bit string as a binary number and adding one). We write int(S) to denote
the integer value associated with S (we also use this notations for bitvectors, as they are
merely strings with σ = 2). In this model of computation, a data structure by Kempa and
Kociumaka can be constructed in sublinear time and answers LCE queries (i.e., outputs the
LCE of any two positions) in constant time.

▶ Lemma 1 ([26, Theorem 5.4]). Given a string T ∈ [0, σ)n in packed representation, LCE
queries can be answered in O(1) time after an O(n/ logσ n) time preprocessing.

We do not use uninitialized memory or similar techniques, and hence the words of space
used by the algorithm is upper bounded by the time spent (this includes Lemma 1). Therefore,
we will not discuss any space complexities in the remainder of the paper, and instead only
show the O(n/ logσ n) time bound, which implies that O(n/ logσ n) words of space suffice.
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Figure 1 Data structures for the string ryanairairbus. Edges point to previous smaller suffixes.

Lyndon Arrays. A Lyndon word is a non-empty string T [1..n] over a totally ordered alphabet
that is lexicographically smaller than its non-trivial suffixes, i.e., ∀i ∈ [2, n] : T ≺ T [i..n].

▶ Definition 2. Let T [1..n] be a string over a totally ordered alphabet. The Lyndon array
λ[1..n] and the previous smaller suffix (PSS) array pss[1..n] are defined ∀i ∈ [1, n] by

λ[i] = max({ℓ ∈ [1, n− i + 1] | T [i..i + ℓ) is a Lyndon word }), and
pss[i] = max({j ∈ [1, i) | T [j..n] ≺ T [i..n]} ∪ {0}).

An example is provided in Figure 1a. We may interpret the PSS array as a rooted tree.
The root is an artificial node with label 0. Every text position is a node, and for any position
i, there is an edge from i to its parent pss[i]. Each position is a child of a smaller position or
the artificial root node, and hence it is easy to see that this indeed yields a tree with root 0.
An example of this so-called previous smaller suffix tree (PSS tree) is provided in Figure 1b.

A balanced parentheses sequence (BPS) encodes the tree in 2n + 2 bits (see, e.g., [36]),
which can be described in the following constructive way. We write the sequence in an
append-only manner. We perform a depth-first traversal of the tree, during which we visit
the children of each node in increasing order. Whenever we walk down an edge from pss[i] to
i, we append the opening parenthesis of node i. Whenever we walk up an edge from i to
pss[i], we write the closing parenthesis of node i. An example is provided in Figure 1b. If
we assign preorder-numbers during this traversal, then node i has preorder-number i (see
[19, Lemma 1] and [6]). Hence the ith opening parenthesis belongs to node i. In practice,
the parentheses sequence is a bitvector, where 1-bits are opening parentheses, and 0-bits are
closing ones. Bille et al. [6] showed that the PSS tree inherently encodes the Lyndon array
because λ[i] is exactly the size of the subtree rooted in node i. Hence we need to augment
the parentheses sequence such that subtree-size(i) can be answered in constant time. There
are multiple support data structures that achieve this with o(n) bits of additional space (see,
e.g., [37]), but their current construction algorithms do not achieve sublinear time. However,
we only require a small and simple subset of operations supported by these data structures
(namely rank, select, and find-close). We plan to cover the efficient construction of support
data structures for these operations in a future full version of the paper.

Simple Construction Algorithm for the PSS Tree. A simple algorithm computes the PSS
tree in O(n) time, which will be the starting point for the O(n/ logσ n) time algorithm in
Section 3. Suppose that we have already computed the subtree induced by nodes [0, i).
Attaching node i requires finding pss[i]. A strategy for this follows from the property that
(a) pss[i] is one of the nodes on the already computed path from i− 1 to the root 0, and
(b) on this path, pss[i] is the deepest node j such that either j = 0 or T [j..n] ≺ T [i..n].
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This observation has been used by previous results, and it has been proven, e.g., in [16,
Lemma 6]. It implies an algorithm in which the positions are inserted into the tree one by
one in left-to-right order. This is also the approach of Algorithm 1, which directly computes
the BPS of the tree (see [6, Algorithm 1] for a more abstract version of this algorithm).

Algorithm 1 Linear time construction of the PSS tree.
Require: Packed string T ∈ [0, σ)n.
Ensure: BPS B of the PSS tree of T .

1: B ← ( ▷ opening parenthesis of node 0
2: Q ← stack that contains only 0
3: for i = 1 to n do
4: j ← Q.top()
5: while j > 0 and T [i..n]≺T [j..n] do ▷ evaluate with LCE data structure
6: append ) to B ▷ closing parenthesis of node j

7: Q.pop()
8: j ← Q.top()
9: append ( to B ▷ opening parenthesis of node i

10: Q.push(i)
11: append |Q| times ) to B ▷ closing parentheses of nodes on path from n to 0

At the time at which the algorithm starts processing position i, the sequence B contains
the prefix of the BPS that ends with the opening parenthesis of node i− 1, and the stack
Q contains exactly the nodes on the path from i− 1 (topmost stack element) to the root 0
(bottommost stack element). A loop is used to find the topmost element j on the stack that
satisfies j = 0 or T [j..n] ≺ T [i..n] (lines 4–8). By properties (a) and (b), the final value of j

is the previous smaller suffix of i, which means that node i will be attached as a child of j.
Hence we pop the nodes on the path from i− 1 to j (but excluding j) from the stack, and
then push i on the stack (lines 7 and 10). As explained earlier, the BPS encodes a depth-first
traversal of this tree. In terms of this traversal, we just moved from node i− 1 up to node j,
and then down to node i. Thus, we write one closing parenthesis for each step up (line 6),
and then one opening parenthesis for moving down to node i (line 9). After processing
position n, we write the closing parentheses of the nodes on the path from n to 0 (line 11).

The correctness follows from properties (a) and (b). Each line takes constant time, except
for the lexicographical suffix comparison in line 5. It holds T [i..n] ≺ T [j..n] if and only if
either lce(i, j) = n−i+1 or T [i+lce(i, j)] < T [j +lce(i, j)]. Thus, the LCE data structure
from Lemma 1 suffices to lexicographically compare suffixes in constant time (we use this
technique repeatedly throughout the paper). The number of inner loop iterations is less than
the number of closing parentheses, and hence the total time needed by the algorithm is O(n).

3 A Blockwise Algorithm for the PSS Tree

In this section, we modify Algorithm 1 such that instead of processing a single index at a time,
it processes blocks of indices in each step. The block size k =

⌊
log2 n

8⌈log2 σ⌉

⌋
is approximately

one eighth of the number of symbols that fit into one word of memory, and hence there are
N =

⌈
n
k

⌉
= Θ(n/ logσ n) blocks. Let B1, . . . , BN with ∀x ∈ [1, N ] : Bx = (xk − k, xk] be the

sequence of blocks (where without loss of generality we assume that k divides n).

ESA 2023
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In the PSS tree, each block Bx induces a forest that contains exactly the nodes that
are members of the block. For any node j ∈ Bx, if pss[j] ∈ Bx, then pss[j] is the parent
of j in the forest induced by Bx. Otherwise, j is the root of a tree in the forest. We
call these trees small trees, and their roots small roots. The small roots are exactly the
left-to-right lexicographical minima of suffixes starting in Bx, i.e., i ∈ Bx is a root if and
only if ∀i′ ∈ Bx : i′ < i =⇒ T [i′..n] ≻ T [i..n]. Just like in the PSS tree, we arrange the
children of each node in increasing order. The BPS of the forest is the concatenation of the
BPSs of its small trees in left-to-right order.

High-Level Description of the Blockwise Algorithm. We process the blocks one at a time
in left-to-right order. At the time at which we process block Bx, we have already computed
the partial PSS tree induced by all previous blocks, i.e., by [0, xk − k]. For Bx, we first
obtain its induced PSS forest. Our goal is to attach the small roots (including their small
trees) to the respective previous smaller suffixes, which lie on the path from xk − k to 0 in
the partial PSS tree. This is schematically shown in Figure 2a. Note that small roots further
to the right will be attached further up in the path. This is because suffixes on the path are
lexicographically decreasing towards the root, while the suffixes corresponding to small roots
are lexicographically decreasing from left to right. Hence our task is to lexicographically
interleave the path with the small roots. For an efficient implementation of this interleaving
process, it is crucial that we maintain the path from xk − k to 0 in a blockwise manner.
Just like in Algorithm 1, we maintain a stack of the nodes on the path. However, each
stack element is a pair (y,L), where y indicates that we consider block By, and L[1..k] is a
bitvector indicating which of the positions in the block are relevant. For j′ ∈ [1, k], it holds
L[j′] = 1 if and only if yk− k + j′ lies on the path from xk− k to 0. The stack then contains
exactly the blocks with at least one 1-bit in the bitvector. This is visualized in Figure 2a.

3.1 Detailed Description of the Blockwise Algorithm
So far, we described the algorithm in terms of the PSS tree. However, we want to directly
compute its BPS. After O(N) preprocessing time, we can obtain the BPS of the forest
induced by any block in O(1) time. This follows directly from the lemma below.

▶ Lemma 3. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, the following type of query can be answered in O(1) time.
Given a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds R[j] = 1 if
and only if i + j − 1 is the root of a tree in the forest.

The proof of the lemma is provided in Section 4. When we lexicographically interleave
the suffixes, we will repeatedly encounter another type of query. Given a small root, we have
to find its previous smaller suffix within a block on the stack. A solution for this is provided
by the lemma below, which we prove in Section 5.

▶ Lemma 4. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, we can answer the following type of query in O(1) time.
Given a position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | T [j′..n] ≺ T [i..n]} ∪ {j − 1}).

Now we have all the tools needed to describe the algorithm. We start with an empty
stack Q and B = (, i.e., with the opening parenthesis of the artificial root node 0. Now we
process the blocks B1, . . . , BN in left-to-right order. At the time at which we start processing
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Figure 2 Data structures during the execution of the blockwise algorithm with block size k = 10.
While processing B5 = [41..50], the dashed edges will be inserted into the partial PSS tree induced
by [0..40]. The drawings show the state of the relevant data structures before calling the subroutine
during the first iteration of the main routine (a), and after calling the subroutine in the first (b),
second (c), and third (d) iteration of the main routine. The state after finalizing B5 is shown in (e).
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14:8 Lyndon Arrays in Sublinear Time

Bx, the stack Q contains the nodes on the path from xk − k to 0 in the blockwise manner
described above, and B contains the prefix of the BPS of the PSS tree that ends with the
opening parenthesis of node xk − k. We start by querying Lemma 3 with Bx and obtain the
BPS F of the forest induced by Bx, as well as the bitvector R indicating the small roots.
We then find the rightmost 1-bit in R in constant time (there are only 2k = O( 8

√
n) possible

values of R, hence a lookup table for rightmost or leftmost 1-bits can be precomputed in
o(n/ log n) time). If this bit is at position R[b′

x], then bx = b′
x + xk− k is the rightmost small

root in the forest induced by Bx. Note that T [bx..n] is the lexicographically smallest suffix
starting in Bx. The state after this step is visualized in Figure 2a. Now we repeatedly run
the interleaving main routine described below, during which we will alter F , R, Q, and B.

Main Routine. The goal of this routine is to interleave (the remaining small trees of)
Bx with the topmost block on the stack. If F is empty (which happens if and only if R
contains only zeroes), then we have attached all small trees and the main routine terminates.
Otherwise, if Q is empty, the remaining small trees need to be attached to the root of the
PSS tree, and we append F to B. This takes O(1) time and also terminates the main routine.

If neither F nor Q are empty, then we retrieve and pop the topmost pair (y,L) from
Q. We use Lemma 4 to obtain by = max({j′ ∈ By | T [j′..n] ≺ T [bx..n]} ∪ {yk − k}), and
the corresponding within-block offset b′

y = by − yk + k. If pss[bx] ∈ By then by = pss[bx],
and all remaining small trees have to be attached to nodes from By ∩ [by, n]. Since bx will
be attached to by, none of the nodes from By ∩ (by, n] will remain on the stack. Hence we
compute a bitvector L′[1..k] where for j′ ∈ [1, k] it holds L′[j′] = 1 if and only if L[j′] = 1
and j′ ≤ b′

y (this takes constant time using bitwise operations). We then push (y,L′) back
onto the stack. If however pss[bx] /∈ By, then by = yk− k (the first position to the left of By)
and bx will be attached to a node in a block left of By. This means that block By will no
longer be on the stack. Note that either way ∀j′ ∈ (by, bx) : T [j′..n] ≻ T [bx..n].

Our next task is as follows. We have to attach some (possibly none, possibly all) of the
remaining small trees to nodes in By. We reflect this change in F and R by removing the
corresponding prefix of F , and setting the corresponding bits in R to 0. Simultaneously,
we extend B such that it contains the newly attached small trees, possibly interleaved with
additional closing parentheses of nodes from By. This is realized by the following interleaving
subroutine, which we run in a loop (and which will later be replaced by a single constant
time table lookup). A sequence B′ is used to buffer the parentheses that we will append to B.

Subroutine. If either L or R consists only of 0-bits, we terminate the subroutine. Otherwise,
we obtain the rightmost 1-bit of L (with a lookup table). If this bit is at position L[j′], then
the corresponding absolute position is j = j′ + yk − k. If j′ = b′

y (which is equivalent to
j = by = pss[bx]), then all remaining small trees need to be attached to j, and we append F
to B′. We replace F with ε and R with an all-zero bitvector. This terminates the subroutine.

Otherwise (i.e., if j′ > b′
y or equivalently j > by), we obtain the leftmost 1-bit of R (with

a lookup table). If this bit is at position R[i′], then i = i′ + xk − k is the leftmost small root
that we still have to attach. Now we have to determine if T [i..n] ≺ T [j..n]. (This state is
equivalent to reaching the head of the inner loop of Algorithm 1 with the current values of i

and j.) It holds T [i..n] ≺ T [j..n] if and only if T [i..bx) ⪯ T [j..j + bx − i). This is because
j + bx − i ∈ (by, bx), and hence we have already established that T [bx..n] ≺ T [j + bx − i..n].
Thus, if T [i..bx) = T [j..j + bx − i), it immediately follows that T [i..n] ≺ T [j..n]. Note that
T [i..bx) and T [j..j + bx− i) are substrings of T (xk−k..xk] and T (yk−k..yk + k] respectively,
which will later be relevant for an efficient implementation. If T [i..n] ≺ T [j..n], then we
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append ) to B′ (this is the closing parenthesis of node j), and we assign L[j′] = 0. If, however,
T [i..n] ≻ T [j..n], then pss[i] = j. In this case, we take the prefix of F that corresponds to
the small tree rooted in i (which is the shortest balanced prefix of F), and append it to B′.
We remove this prefix from F and assign R[i′] = 0. We then continue with the next iteration
of the subroutine. After the subroutine terminates, we append B′ to B and continue with
the next iteration of the main routine. Figures 2b–2d shows the result of the subroutine in
three consecutive iterations of the main routine.

Finalizing the Block. Once the main routine terminates for block Bx, we have attached
all the small trees of Bx to B. The stack Q contains the blockwise representation of all
the nodes on the path from xk to 0, except for the ones in block Bx. Before we can
continue with the next iteration of the main routine, we have to push (x,L′′) on the stack,
where the 1-bits in L′′ correspond to the nodes on the path from xk to bx. Note that
this information can be obtained from the state of F at the beginning of the main routine
iteration. Since F is a bitvector of length 2k, a lookup table W [1..22k] suffices to store the
bitvector L′′ for each possible F . The table has O( 4

√
n) entries and can be filled naively in

O( 4
√

n · polylog(n)) ⊂ O(n/ log n) time. Once we need L′′, we simply lookup W [int(F)] in
constant time. Finally, in order to continue, the last written parenthesis needs to be the
opening parenthesis of xk. Hence we remove the at most k trailing closing parentheses of B
(in constant time, using another lookup table), and then continue by processing block Bx+1.
Figure 2e shows the running example after finalizing the processed block.

After block BN has been processed, we finish the algorithm execution by appending the
2n + 2− |B| closing parentheses of the nodes on the path from n to 0. This can be done in
O(n/ log n) time by appending them one word (rather than one parenthesis) at a time.

3.2 Analyzing the Time Complexity
The initial and final processing of each block (i.e., computing F , R, bx, and the pair (x,L′′)
to push on the stack) takes constant time. There are exactly N terminal iterations of the
main routine, i.e., iterations where either F or Q is empty. Each terminal iteration takes
constant time. In each of the non-terminal iterations, we pop a pair (y,L) from the stack.
If we do not push an updated pair (y,L′) back onto the stack, then block By will never
participate in the stack again, and hence this case occurs at most N times. If, however, we
do push an updated pair (y,L′) back onto the stack, then during the same main routine
iteration we will also attach all remaining small trees of Bx to the partial PSS tree, which
can also occur only N times. Hence the total number of iterations of the main routine is
O(N). In each non-terminal iteration of the main routine, we call the subroutine exactly
once (even though a single call may lead to multiple iterations of the subroutine). Apart
from this call, each iteration of the main routine takes constant time.

It remains to be shown how to implement the subroutine such that the O(N) calls take
O(n/ logσ n) time in total. A straightforward naive implementation takes O(poly(k)) ⊆
O(polylog(n)) time per call. Note that the subroutine only accesses the following information:
L, b′

y, R (which allows access to b′
x), F , and substrings Ty = T (yk − k..yk + k] and

Tx = T (xk− k..xk]. Bitvectors L and R are of length k bits each; b′
y is an integer from [0, k]

and hence can be encoded in ⌈log2(k + 1)⌉ ≤ ⌊0.99k⌋ bits (for sufficiently large k); sequence
F is of length at most 2k bits; strings Ty and Tx in packed representation require 2k ⌈log2 σ⌉
and k ⌈log2 σ⌉ bits respectively. This motivates a lookup table

M [1..2k][1..2⌊0.99k⌋][1..2k][1..22k][1..22k⌈log2 σ⌉][1..2k⌈log2 σ⌉].
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In entry M [int(L)][b′
y][int(R)][int(F)][int(Ty)][int(Tx)], we store B′ as well as the new values

of R and F after running the subroutine. Note that B′ is of length at most 3k because
it contains at most all the parentheses from F and one closing parenthesis per 1-bit in L.
Hence the information stored in each table entry fits in a constant number of words, and
can be retrieved in constant time. We fill the table in a lazy manner. Initially, we mark
each entry as uninitialized. When accessing M [int(L)][b′

y][int(R)][int(F)][int(Ty)][int(Tx)], we
check if this entry is marked. If it is, then we run the naive O(polylog(n)) time algorithm for
the subroutine, store the result in the entry, and remove its marking. Otherwise, the entry
already contains the values of B′, R, and F after running the subroutine, and we return
them in constant time. The lookup table has at most 27.99k⌈log2 σ⌉ ≤ 2log2 n·7.99/8 = n7.99/8

entries. Computing one entry takes O(polylog(n)) time. Thus, the entire time spent on filling
the table (i.e., on running the subroutine naively) is O(n7.99/8 · polylog(n)) ⊂ O(n/ log n).
Additional O(n/ logσ n) preprocessing time is needed for Lemmas 1, 3, and 4.

4 Proving Lemma 3

A key insight for the proof of Lemma 3 is that the lexicographical order of suffixes starting
in a small range almost entirely depends on a short substring. This is formally expressed by
the auxiliary lemma below.

▶ Lemma 5. Let T [1..n] be a string over a totally ordered alphabet, and let [i, i + 2ℓ) ⊆ [1, n]
be a non-empty interval of even length. Then at least one of the following properties holds:

∀x, y ∈ [i, i + ℓ) : T [x..n] ≺ T [y..n] ⇐⇒ T [x..i + 2ℓ) ≺ T [y..i + 2ℓ), or
∀x, y ∈ [i, i + ℓ) : T [x..n] ≺ T [y..n] ⇐⇒ T [x..i + 2ℓ)# ≺ T [y..i + 2ℓ)#,
where # is an infinitely large symbol, i.e., ∀i′ ∈ [1, n] : T [i′] < #.

Proof. Let ñ = i + 2ℓ. Assume that the lemma does not hold, then there are indices
x1, x2, y1, y2 ∈ [i, i + ℓ) such that T [x1..n] ≺ T [y1..n] but T [x1..ñ) ≻ T [y1..ñ), and T [x2..n] ≺
T [y2..n] but T [x2..ñ)# ≻ T [y2..ñ)#. It is easy to see that this implies

T [y1..ñ) ≺ T [x1..ñ) ≺ T [x1..n] ≺ T [y1..n] = T [y1..ñ)T [ñ..n], and
T [x2..ñ)# ≻ T [y2..ñ)# ≻ T [y2..n] ≻ T [x2..n] = T [x2..ñ)T [ñ..n].

Due to first condition, T [y1..ñ) is a proper prefix of T [x1..ñ) and it holds x1 < y1. Note
that T [y1..ñ) is therefore also a proper suffix (and hence a border) of T [x1..ñ), and thus
T [x1..ñ) has period p1 = (y1−x1). By the same reasoning, the second condition implies that
T [x2..ñ) is a border of T [y2..ñ). Hence y2 < x2, and T [y2..ñ) has period p2 = (x2 − y2). By
combining these observations with the initial assumption, we obtain

T [y1..ñ)T [ñ− p1..n] = T [x1..n] ≺ T [y1..n] = T [y1..ñ)T [ñ..n], and
T [x2..ñ)T [ñ..n] = T [x2..n] ≺ T [y2..n] = T [x2..ñ)T [ñ− p2..n].

The former implies T [ñ− p1..n] ≺ T [ñ..n], the latter implies T [ñ..n] ≺ T [ñ− p2..n]. Hence

T [ñ− p1..ñ)T [ñ..n] ≺ T [ñ..n] ≺ T [ñ− p2..ñ)T [ñ..n].

Since T [max(x1, y2)..ñ) is a suffix of both T [x1..ñ) and T [y2..ñ), it has periods p1 and p2.
Note that x1 < i + ℓ − p1 and y2 < i + ℓ − p2, and hence T [max(x1, y2)..ñ) is of length
ñ−max(x1, y2) > ñ− i− ℓ + min(p1, p2) = ℓ + min(p1, p2) > p1 + p2. Therefore, it follows
from the periodicity lemma [18] that T [max(x1, y2)..ñ) has period p0 = gcd(p1, p2). Since
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both T [ñ− p1..ñ) and T [ñ− p2..ñ) are suffixes of T [max(x1, y2)..ñ), they also have period
p0. Let α = T [ñ − p0..ñ), k1 = p1/p0 and k2 = p2/p0. Then both k1 and k2 are positive
integers, and it holds T [ñ − p1..ñ) = αk1 and T [ñ − p2..ñ) = αk2 . Let k0 be the largest
integer (possibly 0) such that T [ñ..n] = αk0T [ñ + k0p0..n], and let β = T [ñ + k0p0..n]. Then
α is not a prefix of β. The inequality above can be written as αk1+k0β ≺ αk0β ≺ αk2+k0β.
However, this is equivalent to αk1β ≺ β ≺ αk2β, which implies that α is a prefix of β. Due
to this contradiction, the initial assumption must be false, and the lemma holds. ◀

Now we are ready to show Lemma 3, which is restated below.

▶ Lemma 3. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, the following type of query can be answered in O(1) time.
Given a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds R[j] = 1 if
and only if i + j − 1 is the root of a tree in the forest.

Proof. The answer to any query [i, i + ℓ) is a parentheses sequence of length exactly 2ℓ and a
bitvector of length ℓ. Hence it fits in a constant number of words. Let ℓmax =

⌊
log2 n

(2+ϵ)·⌈log2 σ⌉

⌋
.

We precompute a 2D lookup table E[1..2ℓmax][1..ℓmax] with the purpose of answering the
subset of queries that satisfy i + 2ℓmax > n. For any such query [i, i + ℓ), it holds n− i + 1 ∈
[1, 2ℓmax], and we explicitly store its answer in E[n − i + 1][ℓ]. Since these queries only
consider suffixes of length O(log n), each of the O(log2 n) table entries can be computed
naively in O(polylog(n)) time.

We answer the remaining queries using the LCE data structure from Lemma 1 and
additional lookup tables. For each possible value of ℓ, we construct tables Aℓ[1..22ℓ⌈log2 σ⌉]
and Bℓ[1..22ℓ⌈log2 σ⌉]. For every string S ∈ [0, σ)2ℓ, we store at position Aℓ[int(S)] the BPS
of the PSS forest of S that is induced by [1, ℓ], as well as the bitvector that indicates the
roots. At position Bℓ[int(S)], we store the BPS of the PSS forest of S# that is induced by
[1, ℓ], as well as the bitvector that indicates the roots.

When answering query [i, i + ℓ), we first extract T ′ = T [i, i + 2ℓ). Due to Lemma 5, the
answer to the query is either Aℓ[int(T ′)] or Bℓ[int(T ′)]. A table Cℓ[1..22ℓ⌈log2 σ⌉] is used to
decide which answer is correct. For every string S ∈ [0, σ)2ℓ, we store at position Cℓ[int(S)]
an integer pair (x, y) ∈ [1, ℓ]2 such that S[x..2ℓ] ≺ S[y..2ℓ] and S[x..2ℓ]# ≻ S[y..2ℓ]# (or
x = y = 1 if such a pair does not exist). This is as a witness pair of suffixes for which S

and S# disagree on the lexicographical order. At query time, we lookup (x̂, ŷ) = Cℓ[T ′]. If
T [i+x̂−1..n] ≺ T [i+ŷ−1..n], then we return Aℓ[int(T ′)], and otherwise we return Bℓ[int(T ′)].
The correctness follows from Lemma 5. Testing T [i+ x̂−1..n] ≺ T [i+ ŷ−1..n] takes constant
time with the LCE data structure from Lemma 1. Extracting T ′ and performing table
lookups also takes constant time because T ′ fits in a single word of memory.

A single lookup table entry can be computed naively in O(polylog(n)) time. There are
O(log n) tables, each storing at most 22ℓmax⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/2) = 1+ϵ/2

√
n entries. Thus,

the precomputation of lookup tables takes O(1+ϵ/2
√

n · polylog(n)) time, which is dominated
by the O(n/ logσ n) time needed to construct the LCE data structure. ◀

5 Proving Lemma 4

The proof of Lemma 4 relies on the properties of periodic substrings that are stated below.

▶ Proposition 6. Let α, β, and γ be arbitrary strings. The following properties hold.
1. If αβ ≻ β and αγ ≺ γ then β ≺ γ.
2. If αγ ≺ γ and α is not a prefix of γ, then ∀x, y ∈ N0 : x > y =⇒ αxβ ≺ αyγ.
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Proof. We start with (1). Let k ∈ N0 be the maximal value such that both β = αkβ′ and
γ = αkγ′ for some (possibly empty) strings β′ and γ′. If αk+1β′ ≻ αkβ′ and αk+1γ′ ≺ αkγ′,
then β′ ≺ αβ′ and αγ′ ≺ γ′. Now assume that γ′ ⪯ β′, then αγ′ ≺ γ′ ⪯ β′ ≺ αβ′. However,
this implies that α is a prefix of both β and γ, which contradicts the definition of k. Thus
β′ ≺ γ′, which also implies β = αkβ′ ≺ αkγ′ = γ. For (2), consider any x, y ∈ N0 with x > y,
and assume that αγ ≺ γ. Since α is not a prefix of γ, it follows from αγ ≺ γ that αδ ≺ γ for
every string δ. Hence also αx−yβ ≺ γ, which implies αxβ = αyαx−yβ ≺ αyγ. ◀

Now we are ready to show Lemma 4, which is restated below.

▶ Lemma 4. Let T ∈ [0, σ)n be a string in packed representation and let ϵ ∈ R+. After
O(n/ logσ n) preprocessing time, we can answer the following type of query in O(1) time.
Given a position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | T [j′..n] ≺ T [i..n]} ∪ {j − 1}).

Proof. Similarly to what was done in Lemma 3, we spend O(polylog(n)) time to precompute
the answers to all queries that satisfy j + 3ℓ ≥ n or i + 2ℓ ≥ n. For any of the remaining
queries, we consider the set

C = {j′ ∈ [j, j + ℓ) | T [j′..j′ + 2ℓ) = T [i..i + 2ℓ)} = {c1, c2, . . . , ch}

with c1 < c2 < · · · < ch. This set contains exactly the positions j′ ∈ [j, j + ℓ) for which
we cannot easily determine whether T [j′..n] ≺ T [i..n] by inspecting only a small number of
symbols. Hence it captures the difficult part of answering a query, and we treat it separately
from the rest. We answer the query using the following subsets of [j, j + ℓ):

D′ = {j′ ∈ C | T [j′..n] ≺ T [i..n]} (the hard subset), and
D′′ = {j′ ∈ [j, j + ℓ) \ C | T [j′..n] ≺ T [i..n]} (the easy subset).

The result of the query is jmax = max(j′
max, j′′

max), where j′
max = max(D′ ∪ {j − 1}) and

j′′
max = max(D′′ ∪ {j − 1}). We start with the significantly harder task of computing j′

max.
First, we outline the algorithmic approach and the combinatorial properties of the present
substrings (without giving details of an efficient implementation). Later, we describe lookup
tables that achieve the claimed preprocessing and query times.

Periodicity of T [i..i+2ℓ) and T [c1..ch +2ℓ). We show that, if |C| ≥ 2, then there is some
p such that T [c1..ch + 2ℓ) has period p, and ∀x ∈ [1, h) : cx+1− cx = p. This is similar to [34,
Lemma 1] and [28, Lemma 2]. Assume that |C| ≥ 2. For x ∈ [1, h), let px = cx+1 − cx < ℓ.
By design of C, it holds T [cx..cx + 2ℓ− px) = T [cx+1..cx+1 + 2ℓ− px) = T [cx + px..cx + 2ℓ).
This means that T [i..i + 2ℓ) = T [cx..cx + 2ℓ) has a border of length 2ℓ− px, and therefore it
has period px. Let p be the smallest period of T [i..i + 2ℓ). If there was some x ∈ [1, h) such
that px < p, then p would not be the smallest period of T [i..i + 2ℓ). Hence px ≥ p. Now we
show that ∀x ∈ [1, h) : px = p. For the sake of contradiction, assume px > p. By definition
of C, it holds px < ℓ, which means that T [cx..cx + 2ℓ) and T [cx+1..cx+1 + 2ℓ) overlap by
cx + 2ℓ− cx+1 = 2ℓ− px > ℓ > p symbols. Due to this overlap, and because the identical
substrings T [cx..cx +2ℓ) and T [cx+1..cx+1 +2ℓ) have period p, it is clear that also their union
T [cx..cx+1 + 2ℓ) has period p. However, this implies T [cx..cx + 2ℓ) = T [cx + p..cx + p + 2ℓ),
which means that cx + p should be in C. Due to this contradiction, it holds px = p. It also
follows that T [c1..ch + 2ℓ) has period p.
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Computing j′
max from c1, ch, and p. We will later introduce lookup tables that output

c1, ch, and p for any query in constant time. The tables might return that c1 and ch do
not exist (i.e., |C| = 0), in which case we report j′

max = j − 1. Otherwise, it might be that
c1 = ch (i.e., |C| = 1). In this case, we report that j′

max = c1 if T [i..n] ≻ T [c1..n] (using an
LCE query for the comparison). Otherwise, we report j′

max = j − 1. It remains to be shown
how to compute j′

max if c1 ̸= ch (i.e., if |C| ≥ 2, and the previously described periodicity
exists).

We evaluate T [i..n] ≺ T [i + p..n] and T [ch..n] ≺ [ch + p..n] (using LCE queries). Due to
the periodicity of T [c1..ch + 2ℓ), for x ∈ [1, h) it holds T [ch..n] ≺ T [ch + p..n] if and only if

T [cx..n] = T [i..i + p)k−xT [ch..n] ≺ T [i..i + p)k−xT [ch + p..n] = T [cx+1..n].

Hence either T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n] or T [c1..n] ≻ T [c2..n] ≻ · · · ≻ T [ch..n], and
we already know which of the two applies. Depending on the outcome of the lexicographical
comparisons, we report j′

max according to one of the following three cases.

Case 1: T [c1..n] ≻ T [c2..n] ≻ · · · ≻ T [ch..n].
For the computation of j′

max, we are only interested in the rightmost x ∈ [1, h] such that
T [i..n] ≻ T [cx..n]. Since T [ch..n] is both rightmost and lexicographically minimal among
all the possible T [cx..n], we simply use another LCE query to check if T [i..n] ≻ T [ch..n].
If yes, we report j′

max = ch. Otherwise, we report j′
max = j − 1.

Case 2: T [i..n] ≻ T [i + p..n] and T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n].
Let α = T [i..i + p), β = T [i + p..n], and γ = T [c2..n]. The precondition of this
case means that αβ ≻ β and αγ ≺ γ. Proposition 6.1 implies β ≺ γ, and thus also
T [i..n] = αβ ≺ αγ = T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n]. Hence we report j′

max = j − 1.

Case 3: T [i..n] ≺ T [i + p..n] and T [c1..n] ≺ T [c2..n] ≺ · · · ≺ T [ch..n].
Let α = T [i..i+p). We compute r = ⌊lce(i, i + p)/p⌋+1 and s = ⌊lce(c1, c1 + p)/p⌋+1,
i.e., the respectively maximal integer powers with T [i..n] = αrβ and T [c1..n] = αsγ,
where β = T [i + rp..n] and γ = T [c1 + sp..n]. The precondition of this case means
that αsγ ≺ αs−1γ, and thus also αγ ≺ α. Note that α is not a prefix of γ. Hence
Proposition 6.2 implies that αrβ ≺ αs′

γ for any s′ < r. Thus, for x ∈ [1, h], if s−x+1 < r

then T [i..n] = αrβ ≺ αs−x+1γ = T [cx..n]. Hence we only have to consider x ≤ s− r + 1.
On the other hand, the precondition of the case also implies αrβ ≺ αr−1β, and thus
αβ ≺ α. Also, α is not a prefix of β. Hence Proposition 6.2 (with swapped roles of
β and γ) implies that αrβ ≻ αs′

γ for any s′ > r. For x ∈ [1, h], if x ≤ s − r then
T [i..n] = αrβ ≻ αs−x+1γ = T [cx..n].
This motivates the following strategy. If s− r + 1 < 1, then there is no suitable choice
of x and we report j′

max = j − 1. If k ≤ s − r, then T [i..n] ≻ T [ch..n] and we report
j′

max = ch. We are left with the case where s− r + 1 ∈ [1, h]. If T [i..n] ≻ T [cs−r+1..n],
then we report j′

max = cs−r+1 (we use another LCE query to achieve constant time). If
we still have not reported anything, then we report j′

max = cs−r if and only if s−r ∈ [1, h]
(we have already established that T [i..n] ≻ T [cs−r..n]). If, however, s− r /∈ [1, h], then
we report j′

max = j − 1.

The three cases are exhaustive, and it takes constant time to determine which case applies.
Regardless of the case, we report j′

max in constant time. We require the LCE data structure
from Lemma 1, and hence the preprocessing time is O(n/ logσ n).
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Lookup Tables for c1, ch, p, and j′′
max. As described above, we can compute j′

max in
constant time if we can determine c1, ch, and p in constant time. Note that these values
depend solely on the substrings T [i..i + 2ℓ) and T [j..j + 3ℓ). This also holds for j′′

max, which
can be written as j′′

max = max({j′ ∈ [j, j + ℓ) | T [j′..j′ + 2ℓ) ≺ T [i..i + 2ℓ)} ∪ {j − 1}).
For each possible value of ℓ, we compute a lookup table Lℓ[1..22ℓ⌈log2 σ⌉][1..23ℓ⌈log2 σ⌉]. Let
S1 ∈ [0, σ)2ℓ and S2 ∈ [0, σ)3ℓ be packed strings. In entry Lℓ[int(S1)][int(S2)], we store the
quadruple ⟨p̂, ĉmin, ĉmax, ŷmax⟩, where

p̂ is the shortest period of S1,
ĉmin = min({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) = S1} ∪ {∞}),
ĉmax = max({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) = S1} ∪ {−∞}),
ŷmax = max({x′ ∈ [1, ℓ] | S2[x′..x′ + 2ℓ) ≺ S1} ∪ {−∞}).

A single entry Lℓ[int(S1)][int(S2)] can be computed naively in O(poly(ℓ)) ⊆ O(polylog(n))
time. Table Lℓ has 25ℓ⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/5) = 1+ϵ/5

√
n entries, and there are O(log n) tables.

Thus, the entire preprocessing time is O(1+ϵ/5
√

n · polylog(n)) ⊂ O(n/ logσ n). Whenever we
have to answer a query i, [j, j + ℓ), we extract T ′ = T [i..i + 2ℓ) and T ′′ = T [j..j + 3ℓ) and
lookup ⟨p, cmin, cmax, ymax⟩ = Lℓ[int(T ′)][int(T ′′)]. This takes constant time because T ′ and
T ′′ fit in a single word of memory. From the construction of Lℓ, it is clear that

p is the shortest period of T [i..i + 2ℓ).
If cmin ̸=∞ then c1 = j + cmin − 1. Otherwise, c0 does not exist.
If cmax ̸= −∞ then ch = j + cmax − 1. Otherwise, ch does not exist.
If ymax ̸= −∞ then j′′

max = j + ymax − 1. Otherwise, j′′
max = j − 1.

Hence we can compute j′
max in constant time as described above, and output the query

result jmax = min(j′
max, j′′

max) in constant time. ◀
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