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Abstract
Wheeler nondeterministic finite automata (WNFAs) were introduced in (Gagie et al., TCS 2017) as
a powerful generalization of prefix sorting from strings to labeled graphs. WNFAs admit optimal
solutions to classic hard problems on labeled graphs and languages such as compression and regular
expression matching. The problem of deciding whether a given NFA is Wheeler is known to be
NP-complete (Gibney and Thankachan, ESA 2019). Recently, however, Alanko et al. (Information
and Computation 2021) showed how to side-step this complexity by switching to preorders: letting
Q be the set of states and δ the set of transitions, they provided a O(|δ| · |Q|2)-time algorithm
computing a totally-ordered partition (i.e. equivalence relation) of the WNFA’s states such that
(1) equivalent states recognize the same regular language, and (2) the order of (the classes of)
non-equivalent states is consistent with any Wheeler order, when one exists. As a result, the output
is a preorder of the states as useful for pattern matching as standard Wheeler orders.

Further extensions of this line of work (Cotumaccio et al., SODA 2021 and DCC 2022) generalized
these concepts to arbitrary NFAs by introducing co-lex partial preorders: in general, any NFA admits
a partial preorder of its states reflecting the co-lexicographic order of their accepted strings; the
smaller the width of such preorder is, the faster regular expression matching queries can be performed.
To date, the fastest algorithm for computing the smallest-width partial preorder on NFAs runs in
O(|δ|2 + |Q|5/2) time (Cotumaccio, DCC 2022), while on DFAs the same task can be accomplished
in O(min(|Q|2 log |Q|, |δ| · |Q|)) time (Kim et al., CPM 2023).

In this paper, we provide much more efficient solutions to the co-lex order computation problem.
Our results are achieved by extending a classic algorithm for the relational coarsest partition
refinement problem of Paige and Tarjan to work with ordered partitions. More specifically, we
provide a O(|δ| log |Q|)-time algorithm computing a co-lex total preorder when the input is a Wheeler
NFA, and an algorithm with the same time complexity computing the smallest-width co-lex partial
order of any DFA. In addition, we present implementations of our algorithms and show that they
are very efficient also in practice.
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1 Introduction

The classical pattern matching problem between two strings S (the text) and P (the pattern)
over alphabet Σ asks to find the substrings of S matching P . Although many algorithms
solving the on-line version of the problem exist, in many scenarios it is possible to pre-process
S off-line into an index to speed up subsequent pattern matching queries. As a matter of
fact, a very successful line of research dating back to the invention of suffix trees [24] and
culminating with the discovery of compressed data structures [20] showed that it is possible
to represent S in compact space while speeding up matching queries.

The indexed pattern matching problem can be generalized to collections of strings: in
this case the pattern must be found as a substring in a string collection S. A natural
approach to solve this problem is to concatenate all strings in S into one string S and re-use
the well-optimized techniques for classical pattern matching. Even though there are many
successful examples of indexes following this strategy [12, 14, 19], this approach suffers from
high space consumption during index construction (the input is very large), and does not scale
to a more general (and interesting) scenario: the case where S contains an infinite number of
strings. A solution, addressing both issues, is to represent a (potentially infinite) collection
of strings using a finite-state automaton with set of states Q and transition function δ. In
this new scenario, the goal of pattern matching is to locate walks in the automaton (seen
as a labeled graph) spelling the query pattern P . In bioinformatics, for example, genomic
collections are represented using pangenome graphs: labeled graphs encoding nucleotide
variations within the collection [5, 23]. Matching a DNA sequence over a pangenome graph
allows one to discover the genetic variation in a population [22].

Unfortunately, both the off-line and on-line pattern matching problems are hard to solve
on labeled graphs: Equi et al. [10, 11] showed that, conditioned on OVH [25], it is not possible
to design a polynomial-time algorithm to index a labeled graph such that pattern matching
queries can be answered in O(|P | + |δ|α|P |β) time, for any constants α < 1 or β < 1.

A successful paradigm to cope with this hardness is to study sub-classes of graphs where
the problem is easier. Along these lines, Gagie et al. [13] introduced the class of Wheeler
automata: labeled graphs admitting a total order of their states (a Wheeler order) which
respects the underlying alphabet’s order and it is propagated through pairs of equally-labeled
edges. Wheeler orders generalize prefix sorting (the machinery standing at the core of the
most successful string indexes) to labeled graphs and as a consequence, an index over a
Wheeler automaton supports pattern matching queries in near-optimal O(|P | log |Σ|) time.

Wheeler automata, however, have two important limitations. First, the classes of Wheeler
automata and Wheeler languages (accepted by such automata) are quite restricted. For
example, Wheeler automata cannot contain proper cycles labeled with a unary string, and
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moreover, Wheeler languages are star-free [2]. Second, several natural problems related to
Wheeler graphs are computationally hard. For example, the simple fact of deciding if an
automaton is Wheeler is NP-complete, even when the automaton is acyclic [15].

Related to the first issue, the work [8] extended state-ordering to arbitrary automata
by using the concept of co-lex partial order. By switching from total to partial orders, the
authors showed that (i) every automaton can be (partially) sorted, and that (ii) the efficiency
of pattern matching on the automaton depends on the width (maximum size of an antichain)
of such partial order. Wheeler automata are the particular case in which there exists a total
co-lex order (i.e., of width one), thus enabling near-optimal time pattern matching queries.

A way to circumvent the latter limitation (hardness of computing a Wheeler order)
was proposed by Alanko et al. [2] by switching to total preorders: the authors showed a
O(|δ| · |Q|2)-time partition refinement algorithm, which outputs a totally-ordered partition of
Q such that (1) states in the same part recognize the same language, and (2) the order of the
partition is consistent with any Wheeler order of Q. In other words, this ordered partition is
a preorder of the states as useful for indexing as Wheeler orders. Recently, a similar solution
was proposed by Chao et al. [4] to speed up the computation of Wheeler orders in practice;
after a first polynomial-time partition refinement step, their tool runs an exponential-time
solver to assign a Wheeler ordering within classes of equivalent states.

These strategies – partial orders and total preorders – were finally merged by Cotu-
maccio [6]. As in [8], the efficiency of pattern matching depends on the width of such a
partial preorder. The author described a polynomial-time algorithm computing a colex
partial preorder of smallest width over an arbitrary nondeterministic finite-state automaton
(NFA) in O(|δ|2 + |Q|5/2) time. Later, this running time was improved by Kim et al. [17]
in the particular case of DFAs with two algorithms running in time O(|Q|2 log |Q|) and
O(|δ| · |Q|), respectively, and one algorithm running in near-optimal time O(|δ| log |Q|) on
acyclic DFAs. Within the same running times, all the above-mentioned algorithms compute
also a chain partition of minimum size p of the partial preorder (by Dilworth’s theorem [9], p

is equal to the order’s width); such a chain partition is needed to build the index described
in [6]. The index can be built in linear time given as input such a chain partition, uses
(⌈log |Σ|⌉ + ⌈log p⌉ + 2) · (1 + o(1)) bits per edge, and answers pattern matching queries on the
regular language accepted by the automaton in O(p2 log(p · |Σ|)) time per pattern’s character.

Our contributions. We consider two cases of colex orders: (1) total preorders on NFAs,
and (2) partial orders of minimum width on DFAs. We provide algorithms running in time
O(|δ| log |Q|) for both cases, improving the state-of-the-art cubic and quadratic algorithms
to near-optimal time.

Our solution to (1) is obtained by extending a classic algorithm for the relational coarsest
partition refinement problem of Paige and Tarjan [21] to work with ordered partitions. Our
algorithm starts from the ordered partition corresponding to the states’ incoming labels and,
similarly to [21], iteratively refines this partition by enforcing forward-stability: for any two
parts B (the “splitter”) and D (the “split”) the image δa(B) of B through the transition
function (for any alphabet’s character a) must either contain D or be disjoint with D. If
this condition is not satisfied, D is split into three parts: states reached only from B, states
reached only from Q \ B, and states reached from both. In addition to Paige and Tarjan’s
algorithm, we show how to sort these three parts consistently with the current partition’s
order. In fact, we show that our algorithm finds a total preorder on a class of automata
being strictly larger than the Wheeler automata. We dub this class quasi-Wheeler, thereby
extending the class of automata that can be indexed to support queries in near-optimal time.
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15:4 Sorting Finite Automata via Partition Refinement

▶ Theorem 1. For an NFA A = (Q, δ, s), we can compute a total preorder ⪯ in O(|δ| log |Q|)
time such that ⪯ corresponds to a Wheeler preorder if and only if A is quasi-Wheeler.

Our solution to (2) relies on a further modification of the partition refinement algorithm.
More specifically, we show that within the same time complexity, we can prune the auto-
maton’s transition function so that the resulting graph is a quasi-forest satisfying the following
property: every state u has only one incoming walk, whose label is co-lexicographically
smallest (the infimum) among the labels of all walks ending at u in the original DFA.
Symmetrically, we compute a pruned automaton encoding the co-lexicographically largest
strings (the suprema). We obtain our second result by plugging in the O(|Q| log |Q|)-time
algorithms of Kim et al. [17], which sort the infimum and suprema strings (suffix-doubling)1

and then compute a minimum chain partition of the smallest-width co-lex order (interval
graph coloring). Our result assumes that the DFA is input-consistent (all in-going transitions
to a state are labeled with the same letter). This assumption is a common simplification
in automata theory and it is not a limitation of our approach as every DFA can be easily
transformed into an equivalent input-consistent DFA.

▶ Theorem 2. For an input-consistent DFA A = (Q, δ, s), we can compute a minimum
chain partition of the smallest-width co-lex order in O(|δ| log |Q|) time.

We have implemented our partition refinement algorithms. We compared the implement-
ation of our algorithm from Theorem 1 with a heuristic implementation from WGT [4] (their
first polynomial time step) which, similarly to our algorithm, computes an ordered partition
being consistent with any Wheeler order (although not the most refined – unlike the output
of our algorithm). On random Wheeler NFAs generated with a tool from the same toolbox
(WGT), our implementation outperforms the heuristic from WGT by more than two orders of
magnitude. We also experimentally show that our algorithm from Theorem 2 can prune a
pangenomic DFA with more than 50 million states in less than 6 minutes.

2 Notation and Preliminaries

For an integer k ≥ 1, we let [k] := {1, . . . , k}. Given a set U , a partition P of U is a set
of pairwise disjoint non-empty sets {U1, . . . , Uk} whose union is U . We call U1, . . . , Uk the
parts of P. If we, in addition, have a (total) order of the parts, we say that it is an ordered
partition and denote it with ⟨U1, . . . , Uk⟩. For two (ordered) partitions P and P ′ of U , we
say that P ′ is a refinement of P if every part of P ′ is contained in a part of P , i.e., for every
U ′ ∈ P ′ there is U ∈ P with U ′ ⊆ U . As a special case, a partition is a refinement of itself.

Relations and Orders. A relation R over a set U is a set of ordered pairs of elements from
U , i.e., R ⊆ U × U . We sometimes omit U if it is clear from the context. For two elements
u, v from U , we usually write uRv for (u, v) ∈ R.

A strict partial order over a set U is a relation that satisfies irreflexivity, asymmetry, and
transitivity. If, in addition, a strict partial order satisfies connectedness it is a strict total
order. A total preorder over a set U is a relation that satisfies transitivity, reflexivity, and
connectedness (i.e., for all two distinct u, v ∈ U , u is in relation with v or v is in relation
with u). An equivalence relation over a set U is a relation that satisfies reflexivity, symmetry,

1 More precisely, it is a special case of the suffix doubling algorithm [17], which runs in the claimed time.



R. Becker, M. Cáceres, D. Cenzato, S.-H. Kim, B. Kodric, F. Olivares, and N. Prezza 15:5

and transitivity. For an equivalence relation ∼, we use [u]∼ to denote the equivalence class of
an element u ∈ U with respect to ∼, i.e., [u]∼ := {v ∈ U : u ∼ v}. We denote with U/∼ the
partition of U consisting of all equivalence classes [u]∼ for u ∈ U . In this paper, we denote
strict total orders with the symbols ≺ and <, total preorders with the symbols ⪯ and ≤,
and equivalence relations with the symbols ∼ and ≈.

A total preorder ⪯ over U induces an equivalence relation ∼ over U : For u, v ∈ U , define
u ∼ v if and only if u ⪯ v and v ⪯ u. Throughout the paper, ∼ will always refer to the
equivalence induced by ⪯ (the order ⪯ will always be unambiguously defined). A total
preorder ⪯, in addition, yields a strict total order ≺ on the elements of U/∼ as [u]∼ ≺ [v]∼
if and only if u ⪯ v and not v ⪯ u. Throughout the paper ≺ will refer to the strict order
induced by ⪯ (always unambiguously defined). A total preorder ⪯ over a set U can thus
be represented by a unique ordered partition ⟨U1, . . . , Uk⟩, where the parts Ui represent the
equivalence classes with respect to ∼ and their ordering represents the strict total order ≺.

Non-Deterministic Finite Automata (NFAs). Let Σ denote a fixed finite and non-empty
alphabet of letters. We assume that there is a strict total order < on the alphabet Σ.

▶ Definition 3 (NFA and DFA). A non-deterministic finite automaton (NFA) over the alphabet
Σ is an ordered triple A = (Q, δ, s), where Q is the set of states, δ : Q × Σ → 2Q is the
transition function, and s ∈ Q is the source state.

A deterministic finite automaton (DFA) over the alphabet Σ is an NFA over Σ such that
|δ(v, a)| ≤ 1 for all a ∈ Σ and v ∈ V .

We note that the standard definition of NFAs includes also a set of final states. As we are not
concerned with the accepting languages of automata in this work, we omit the final states
from the definition. In what follows we consider the alphabet Σ to be fixed and thus frequently
refer to NFAs without specifying the alphabet. Given an NFA A = (Q, δ, s), for a state u ∈ Q

and a letter a ∈ Σ, we use the shortcut δa(u) for δ(u, a), similarly δ−1
a (u) = {v : δ(v, a) = u}.

For a set S ⊆ Q, we let δa(S) :=
⋃

u∈S δa(u) and δ−1
a (S) :=

⋃
u∈S δ−1

a (u).
The set of finite strings over Σ, denoted by Σ∗, is the set of finite sequences of letters

from Σ. We extend the transition function from letters to finite strings in the common way,
i.e, for α ∈ Σ∗ and v ∈ Q, we define δα(v) recursively as follows. If α = ε, we let δα(v) = {v}.
Otherwise, if α = aα′ for some a ∈ Σ and α′ ∈ Σ∗, we let δα(v) =

⋃
w∈δa(v) δα′(w).

▶ Definition 4 (Strings Reaching a State). Given an NFA A = (Q, δ, s), for a state v ∈ Q,
the set of strings reaching v is defined as Sv = {α ∈ Σ∗ : v ∈ δα(s)}.

Equivalently, Sv is the regular language recognized by state v. For simplicity, in this
work we assume that NFAs satisfy the following two properties: (1) The source state has
no in-going transitions, i.e., Ss = {ε} and every other state is reachable from the source
state, i.e., |Sv| ≥ 1 for all v ∈ Q \ {s}. (2) The automaton is input-consistent, i.e., for
every state v ∈ Q \ {s} it holds that δ−1

a (v) is non-empty for exactly one letter a ∈ Σ.
It is easy to see that any automaton can be transformed into an equivalent one (in the
sense of the recognized language) satisfying assumptions (1) and (2). Condition (1) yields
that |Q| ≤ |δ| + 1. Condition (2) comes at the cost of increasing the number of states and
transitions by a factor of at most |Σ|. We also assume that a given NFA contains at least
one transition for every letter. We denote by λ(v) the unique label of the in-going transitions
of a state v ∈ Q \ {s}, while λ(s) := ε. We also extend this notation to sets of states, that is
for a set of states S, we let λ(S) := {λ(v) : v ∈ S} and if λ(S) = {a}, we write λ(S) = a.

ESA 2023



15:6 Sorting Finite Automata via Partition Refinement

Forward-Stable Partitions. Alanko et al. consider forward-stable partitions [2, Section 4.2].

▶ Definition 5 (Forward-Stability). Given an NFA A = (Q, δ, s) and two sets of states
S, T ⊆ Q, we say that S is forward-stable with respect to T , if, for all a ∈ Σ, S ⊆ δa(T ) or
S ∩ δa(T ) = ∅ holds. A partition P of A’s states is forward-stable for A, if, for any two
parts S, T ∈ P, it holds that S is forward-stable with respect to T .

A direct consequence of forward-stability is given in the following lemma, i.e., all states in
the same part of a forward-stable partition are reached by the exact same set of strings.

▶ Lemma 6. Let P be a forward-stable partition for an NFA A = (Q, δ, s) and assume that
u, v ∈ P for some part P ∈ P. Then, Su = Sv.

This property can be proven easily using the definition of forward-stability, see, e.g., [2,
Lemma 4.7]. Furthermore, there is a straightforward relationship between forward-stability
and bisimulation, see, e.g., the work of Kanellakis and Smolka [16] or Chapter 7.3 of the
book by Katoen and Baier [3]. The coarsest forward-stable partition for an NFA A, i.e.,
the forward-stable partition with fewest parts, is identical to the partition consisting of the
equivalence classes with respect to the bisimilarity relation (the unique largest bisimulation)
on A−1, the automaton obtained from A by reversing all its transitions. We include a proof
of this fact in full version of this article. This also directly yields that there is a unique
forward-stable partition. We note that a reverse statement of Lemma 6 may not necessarily
hold even for the coarsest forward-stable partition. More precisely, states in different parts of
the coarsest forward-stable partition may have the same set of strings reaching them, see the
left automaton in Figure 1. In what follows, for an NFA A = (Q, δ, s) and an equivalence
relation ∼ on Q, we write A/∼ for the quotient NFA (of A with respect to ∼) obtained
by collapsing the equivalence classes into single states, see [2, Definition 8] for a formal
definition.

Wheeler NFAs and Quasi-Wheeler NFAs. Wheeler NFAs [13] are a special class of NFAs
that can be stored compactly and indexed efficiently as they can be endowed with a specific
type of strict total order, the so-called Wheeler order.

▶ Definition 7 (Wheeler NFA and Wheeler order). Let A = (Q, δ, s) be an NFA. We say that
A is a Wheeler NFA, if there exists a Wheeler order ≺ of Q. A Wheeler order ≺ of Q is a
strict total order on Q such that the source state precedes all other states, i.e., s ≺ v for all
v ∈ Q \ {s}, and, for any pair v ∈ δa(u) and v′ ∈ δa′(u′):
(1) If a < a′, then v ≺ v′.
(2) If a = a′, u ≺ u′, and v ̸= v′, then v ≺ v′.

Clearly, not every NFA is a Wheeler NFA and, even worse, recognizing if a given NFA is
Wheeler is NP-complete (for alphabet size at least 2) as shown by Gibney and Thankachan [15].
We now introduce the following problem, called OrderWheeler: Given an arbitrary NFA
A = (Q, δ, s) as input, the task is to compute a strict total order ≺ of Q with the property
that ≺ is a Wheeler order if A is Wheeler. As a result of the NP-completeness of recognizing
Wheeler NFAs previously mentioned, also OrderWheeler is NP-hard. This follows as
checking whether a given order is indeed a Wheeler order can be done in linear time [1,
Lemma 3.1]. This motivates introducing the following relaxed version of Wheeler NFAs.
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▶ Definition 8 (Wheeler preorders and quasi-Wheeler NFAs). Let A = (Q, δ, s) be an NFA. A
Wheeler preorder ⪯ on Q is a total preorder on Q such that:

The partition Q/∼, where ∼ is the equivalence relation induced by ⪯, is equal to the
coarsest forward-stable partition of A.
The quotient automaton A/∼ is a Wheeler NFA with the strict total order ≺ induced by
⪯ on the equivalence classes with respect to ∼.

We say that A is a quasi-Wheeler NFA, if there exists a Wheeler preorder ⪯ on Q.

See the beginning of this section for the formal definition of ∼ and ≺. From the point of
view of indexing, quasi-Wheeler NFAs are as useful as Wheeler NFAs: note that the quotient
automaton A/∼ in the definition above generates the same language as the original NFA
A due to the properties of the forward-stable partition, see Lemma 6. However, A/∼ is a
Wheeler NFA and can thus be stored compactly and indexed efficiently. We next note that
Corollary 4.11 in the paper by Alanko et al. [2] directly yields the following lemma.

▶ Lemma 9. Let A = (Q, δ, s) be a Wheeler NFA, then A is also a quasi-Wheeler NFA.

Furthermore, the set of quasi-Wheeler NFAs is strictly larger than the set of Wheeler
NFAs as there exist non-Wheeler NFAs A for which the quotient automaton A/∼ is Wheeler,
e.g., the NFA and its corresponding quotient NFA in the center and on the right of Figure 1.

s 1 2 3a

a

a
a

a

a

s

1

2

3

4

b

b

b

b

b

a

a

s 1, 2 3 4a

b

b

b

Figure 1 Left: An NFA for which P = ⟨{s}, {1}, {2}, {3}⟩ is the coarsest forward-stable partition,
yet S2 = S3. Center: A non-Wheeler NFA (the two states 3 and 4 cannot be ordered) that is
quasi-Wheeler as witnessed by the Wheeler preorder ⪯ corresponding to the ordered partition
⟨{s}, {1, 2}, {3}, {4}⟩. Right: Quotient automaton A/∼, where A is the automaton in the middle
and ∼ is the equivalence relation induced by the Wheeler preorder ⪯. Notice that A/∼ is Wheeler
with the strict total order ≺ induced by ⪯ on the equivalence classes with respect to ∼.

An important advantage of quasi-Wheeler NFAs over classical Wheeler NFAs is that the
former can be recognized in polynomial time, which is implicit in the Forward Algorithm
of Alanko et al. [2]. Indeed, the Forward Algorithm receives a Wheeler NFA as input
and, in O(|δ||Q|2) time, outputs a Wheeler order of the quotient automaton A/∼, where
∼ is the equivalence relation induced by the returned partition. However, this algorithm
actually solves a slightly more general problem, since their output partition is guaranteed to
correspond to a Wheeler order of A/∼ whenever A is quasi-Wheeler rather than Wheeler. In
other words Alanko et al. gave a polynomial time algorithm for the following problem that
we call PreOrderWheeler: Given an arbitrary NFA A = (Q, δ, s), the task is to compute
a total preorder ⪯ of Q with the property that ⪯ is a Wheeler preorder if A is quasi-Wheeler.
Their polynomial time algorithm for PreOrderWheeler, the Forward Algorithm, yields a
polynomial-time recognition algorithm for quasi-Wheeler NFAs as follows: Given an arbitrary
input NFA A, run the Forward Algorithm to compute the Wheeler preorder ⪯ given by
an ordering of the forward-stable partition. The output partition is guaranteed to be the
coarsest forward-stable partition. Compute the quotient automaton with respect to this
partition and check if it is Wheeler (in polynomial time by [1, Lemma 3.1]) when endowed
with the induced strict total order ≺.

ESA 2023



15:8 Sorting Finite Automata via Partition Refinement

3 Partition Refinement for Wheeler Preorders of NFAs

In this section we provide an algorithm that solves PreOrderWheeler in O(|δ| log |Q|)
time. Recall that the Forward Algorithm of Alanko et al. [2] has running time O(|δ| · |Q|2).
We achieve the nearly-linear time complexity by using the partition refinement framework
of Paige and Tarjan [21]. It is in fact clear that this framework can be used to compute a
forward-stable partition. Our notion of forward-stability corresponds to stability with respect
to |Σ| relations, defined as Ea := {(u, v) ∈ Q2 : u ∈ δa(v)} for a ∈ Σ, in their terminology [21,
Section 3]. Our main contribution here is to extend the framework so as to compute an
ordered partition (and thus a preorder), while maintaining the nearly-linear running time.

We proceed with a description of the partition refinement algorithm by Paige and Tarjan.
The algorithm maintains two partitions P and X , here P is an input partition to be refined
and X is such that (1) P is a refinement of X and (2) every part of P is stable with respect
to every part of X . Initially, X is the partition with a single part containing all elements.
Until P becomes stable, i.e., every part of P is stable with respect to every part of P , which
is witnessed by the fact that P = X , the algorithm iteratively chooses a compound part S

from X , i.e., a part form X that consists of multiple parts in P. Then a “splitter” B is
chosen as one of the parts in P contained in S and every part in P is refined using B by
doing a so-called “three-way split” that we detail in the next section. The idea behind the
three-way split is essentially to make P stable with respect to B and S \ B at the same time.
In fact, the choice of B in the algorithm of Paige and Tarjan is crucial. It is fundamental to
always choose a block B such that |B| ≤ |S|/2. This is the essential property that yields
the nearly linear running time using the observation that every element is contained in at
most logarithmically many splitters. This property on the size of B is achieved in Paige and
Tarjan’s implementation by inspecting the first two elements of the list of all parts from P
contained in S and then choosing B to be the smaller one (in size).

As it turns out, this choice of B however interferes with maintaining the order of the parts
such as to satisfy the properties of the Wheeler preorder. We solve this issue by choosing
the smaller (in size) among the first and last block (in the sense of the ordered partition)
contained in the first compound block (rather than the smaller out of the first two blocks, as
in Paige and Tarjan’s algorithm). This choice both guarantees that |B| ≤ |S|/2 and enables
us to maintain a consistent ordering between the parts resulting from a split step.

Algorithm. We proceed with a description of our algorithm. A pseudo-code formulation can
be found in Algorithm 1. First, note that an input-consistent NFA has a natural partition of
its states into the |Σ|+1 parts {Qa}a∈Σ∪{ε}, where Qa := {v ∈ Q : λ(v) = a} for a ∈ Σ∪{ε}.
Property (1) of Wheeler orders already defines the ordering of these parts: any Wheeler
preorder of the NFA’s states has to satisfy that u precedes v if u’s in-coming letter is smaller
than v’s. Hence, the ordering of the |Σ|+1 parts has to be Qε, Qa1 , . . . Qak

, where we assume
that Σ = {a1, . . . , ak} with a1 < . . . < ak. Following this observation, the ordered partition
P in the algorithm is initialized to P := ⟨Qε, Qa1 , . . . Qak

⟩.
As in the original partition refinement framework, the algorithm then keeps splitting the

parts of the partition using so called splitters which are themselves parts in the partition.
By splitting, we mean the operation of making all parts of the partition forward-stable with
respect to the splitter. As in Paige and Tarjan’s algorithm, to maintain the set of splitters,
the algorithm also maintains another ordered partition X such that P is a refinement of
X . Initially X has a unique part that is equal to Q and the algorithm will maintain the
invariant that P is forward-stable with respect to each part from X . As before, we call the
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Algorithm 1 Ordered Partition Refinement.

Input : NFA A = (Q, δ, s)
Output : Ordered Partition P of Q that corresponds to Wheeler preorder if and only

if A is quasi-Wheeler

// * initialization * //
1 P := ⟨Qε, Qa1 , ..., Qak

⟩, X := ⟨Q⟩

2 while X ̸= P do

// * get splitter B * //
3 S := first block in X consisting of multiple blocks in P
4 B := smaller of first and last block from P contained in S

5 // * variable B contains this block even if split *//

// * update X * //
6 if B is first block then replace S in X with B, S \ B else with S \ B, B

// * split blocks in P using B * //
7 for D ∈ P do

// * split D * //
8 D1 := D ∩ δa(B), D2 := D \ D1, where a = λ(D)
9 D11 := D1 ∩ δa(S \ B), D12 := D1 \ D11

// * update P * //
10 if B first block then replace D in P with non-empty sets from D12, D11, D2
11 else with non-empty sets from D2, D11, D12

// * continue for behind newly inserted blocks in P * //

12 return P

Figure 2 The two cases of our “ordered” three-way split of D into D2, D11 and D12 using splitter
B contained in the compound part S. Here, D11 is the part of D that is reached both by B and
S \ B, D12 is the part of D reached by B but not by S \ B, and D2 is the part of D reached by
S \ B but not by B. The size of the splitter B is at most half of the size of the compound block S

containing B. On the left, B is the first part in S (in the ordered partition), on the right it is the
last part. On the left, the order of B, S \ B gets propagated forward, the resulting order within D is
D12, D11, D2. On the right, the order of S \ B, B gets propagated forward, the resulting order within
D is D2, D11, D12. The two shades of blue indicate the pruning of edges explained in Section 4.

parts of X that contain more than a single part from X compound parts. The algorithm then
iteratively takes the first (in the order of the ordered partition) compound block S from P
and defines the splitter B as the smaller (in size) of the first and last (in the order of the
ordered partition) block in P contained in S.
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Once the splitter B is defined, the algorithm aims to split each part D of the partition P
(including B itself) using B. As we aim at making the partition forward-stable with respect
to B we would want to split D into D1 := D ∩ δa(B) and D2 := D \ D1. To implement the
three-way split, we however want to further refine D by S \ B. Recall that S was a part in
X that contained B and that P is already forward-stable with respect to S by the invariant.
The forward-stability of D with respect to S yields that all states in D2 are reached by S \ B

and thus D is decomposed into only three parts D11 := D1 ∩ δa(S \ B), D12 := D1 \ D11,
and D2 := D \ D1 when splitting both with B and S \ B. This three-way split can be
implemented with work proportional to the number of edges leaving B (rather than B and
S \ B). Together with the choice of B being the smaller out of the first and the last block
contained in S, this is the main property that allows to prove the nearly linear running time
bound of the algorithm. The order in which the sets D11, D12, and D2 are put in P replacing
D depends on whether B was the first or the last block in S and is chosen so as to satisfy
property 2 of Wheeler orders. Intuitively, the order of B and S \ B is propagated forward to
D11, D12, and D2, see Figure 2 for an illustration of this “ordered” three-way split.

The algorithm keeps splitting the parts in P in this way until X = P , i.e., until there are
no compound blocks left. Stopping at this point is correct by the invariant that the partition
P is forward-stable with respect to each part from X = P, and, thus, forward-stable for A.

Analysis. The following lemma states that the claimed invariant, that every part of P is
forward-stable with respect to every part of X , holds. This follows immediately from the
same property of the framework by Paige and Tarjan (the proof of this lemma can be found
in the full version).

▶ Lemma 10. At the beginning of every iteration of the while loop in Algorithm 1, it holds
that every part of the ordered partition P is forward-stable with respect to every part of X .

We will now prove the core technical result of this section: The ordered partition refinement
algorithm in fact computes a partition that corresponds to a Wheeler preorder.

▶ Lemma 11. Assume that Algorithm 1 is called on a quasi-Wheeler NFA A = (Q, s, δ).
Then, at any step of the algorithm, the partition P = ⟨Q1, . . . , Qk⟩ agrees with every Wheeler
order ≺ of the quotient automaton A′ := A/P′ , where P ′ denotes the coarsest forward-stable
partition for A. That is, if i < j, u ∈ Pi, v ∈ Pj then u ≺ v for every Wheeler order ≺ of A′.

Proof. The initial partition P = ⟨Qε, Qa1 , . . . , Qak
⟩ agrees with any Wheeler order ≺ of A′.

We will show by induction over the number of steps of the while loop that this is the case in
any step of the algorithm. Assume that this is true before some intermediate iteration and
let us denote with P the ordered partition at that point. Now, let S be the compound block
and let B be the splitter chosen in that iteration. Let us call P ′ the ordered partition after
refining P with B and S \ B, i.e., at the end of that iteration. We will prove that P ′ agrees
with any Wheeler order ≺. As in the algorithm, for D ∈ P, assume that a = λ(D) and let
D1 = D ∩ δa(B), D2 = D \ D1, and D11 = D1 ∩ δa(S \ B) and D12 = D1 \ D11. Now let
u, v ∈ D. If u and v are contained in the same set out of the three sets D12, D11, D2, nothing
is to be shown. Hence, assume that u and v are in two different sets out of the three sets.
There are three cases: (1) u ∈ D11 and v ∈ D2, (2) u ∈ D12 and v ∈ D2, and (3) u ∈ D12
and v ∈ D11. Notice first that in all three cases, there exists x ∈ B with u ∈ δa(x). Now,
recall that D is stable with respect to S due to Lemma 10 and thus there exists y ∈ S \ B

with v ∈ δa(y) in all three cases as well. Let us now first assume that B is the first block in S

in line 5. Then, as B precedes all blocks in S \ B in P and P is consistent with any Wheeler
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order of A′, we have that x ≺ y for any Wheeler order of A′. Then, property 2 of Wheeler
orders implies that u ≺ v for any Wheeler order of A′. In summary, as the algorithm replaces
D by D12, D11, D2 in this case, we deduce that P ′ again agrees with each Wheeler order of
A′. If, instead B is the last block in S in line 5, then B succeeds all blocks in S \ B in P
and thus we can analogously deduce v ≺ u from property 2 of Wheeler orders and as the
algorithm replaces D by D2, D11, D12, we deduce that P ′ agrees with every Wheeler order
of A′ also in this case. ◀

It remains to argue that the ordered partition refinement algorithm in fact runs in the
claimed running time bound of O(|δ| log |Q|). The two main ingredients are as follows: (1)
We always choose the smaller out of the first and the last part contained in S as B and thus
|B| ≤ |S|/2. As a result every state is in at most logarithmically many splitters. (2) We can
implement the algorithm in such a way that the work done in a refinement step with splitter
B is proportional to the size of B and the number of out-going transitions from B. This can
be argued completely analogously as done by Paige and Tarjan. We prove our algorithm
running time and describe the main data structure details in the full version. In summary,
we obtain the following theorem.

▶ Theorem 1. For an NFA A = (Q, δ, s), we can compute a total preorder ⪯ in O(|δ| log |Q|)
time such that ⪯ corresponds to a Wheeler preorder if and only if A is quasi-Wheeler.

4 Partition Refinement for Width-Optimal Co-lex Orders of DFAs

Cotumaccio and Prezza [8] propose a way of sidestepping the fact that there may not be a
Wheeler order for a given NFA. They show how to index general NFAs using partial orders.
For this purpose, they define co-lex orders for NFAs as follows.

▶ Definition 12 (Co-lex Order). Let A = (Q, δ, s) be an NFA. A co-lex order for A is a strict
partial order ≺ of Q such that the source state precedes all other states, i.e., s ≺ v for all
v ∈ Q \ {s}, and, for any pair v ∈ δa(u) and v′ ∈ δa′(u′):
(1) If a < a′, then v ≺ v′.
(2) If a = a′, v ≺ v′, and u ̸= u′, then u ≺ u′.

The width of a strict partial order ≺ is defined as the size of the largest antichain,
i.e. set of pairwise incomparable states, where two distinct states u, v ∈ Q are said to be
incomparable if neither u ≺ v nor v ≺ u holds. Finding a smallest-width co-lex order of
A has been of particular interest for constructing efficient indexes for pattern matching on
automata [8, 6, 7, 17]. We provide more context on co-lex orders in the full version. For
DFAs, the following order is known to be the smallest-width co-lex order [8].

▶ Definition 13. Let A = (Q, δ, s) be a DFA. The relation ≺A over Q is defined as follows.
For u, v ∈ Q, u ≺A v holds if and only if α < β for all α ∈ Su and β ∈ Sv.

In the above definition, the alphabet order < over Σ is extended to the co-lexicographical
order on strings. For the purpose of the co-lex order ≺A, a state v ∈ Q can thus be represented
solely using upper and lower bounds on Sv. In particular, for a state v ∈ Q, let inf Sv and
sup Sv be the greatest lower bound (infimum) and the least upper bound (supremum) of Sv,
respectively, which are possibly left-infinite strings. We refer the reader to the full version
for a formal definition of these concepts. As shown by Kim et al. [17], the co-lex order ≺A
can be characterized using the co-lex order of ISA := {inf Sv : v ∈ Q} ∪ {sup Sv : v ∈ Q}.
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▶ Lemma 14 ([17, Theorem 10]). Let A = (Q, δ, s) be a DFA. Then, for any two distinct
states u, v ∈ Q, u ≺A v holds if and only if sup Su ≤ inf Sv.

We note that, for the purpose of indexing, we also need a minimum chain partition of
≺A, i.e., a minimum-size partition of Q such that the states in each part are totally ordered
under ≺A. As shown by Kim et al. [17], such a chain partition can be computed in linear
time via a greedy algorithm for the interval graph coloring problem, provided that the set
ISA (implicitly defining an interval in co-lex order for each state) has been computed and
sorted.

In this section, we give an algorithm for co-lex sorting the set ISA that runs in nearly-
linear time O(|δ| log |Q|) on any input-consistent DFA. This is a significant improvement with
respect to the best previously-known algorithms that run in O(|δ| · |Q|) and O(|Q|2 log |Q|)
time [17].

Outline. Given an input DFA A = (Q, δ, s), we first compute a pruned automaton Ainf =
(Q, δinf , s) that encodes {inf Sv : v ∈ Q} in a sense that walking back starting at a state
v ∈ Q on the pruned transition δinf yields its infimum string inf Sv. Similarly, we compute
a pruned automaton Asup = (Q, δsup, s) that encodes the supremum strings. As we will
see, computing these sets takes O(|δ| log |Q|) time each. On these two pruned automata, we
compute the co-lex order of ISA in O(|Q| log |Q|) time in a similar way as done by Kim et
al. [17], from which the smallest-width co-lex order of A (with a minimum chain partition)
can be computed in linear time.

Pruning Algorithm. The algorithm is identical to Algorithm 1 with the only difference
that we insert an additional pruning step, Algorithm 2, before Line 8 of the algorithm. See
Figure 2 for an illustration: If a state in D is reached from both B and S \ B, we only keep
the edges from the smaller (in the sense of the ordered partition) of the two. This corresponds
to changing δa such that the blue portion of the figure shrinks to the dark blue one.

Algorithm 2 Pruning Step for Algorithm 1 inserted before Line 8.

// * prune A * //
if B is the first block then delete transitions from S \ B to D1 else from B to D1.

We inductively show that Algorithm 2 outputs a pruned automaton encoding the set of
infima I := {inf Sv : v ∈ Q}. For an integer i ≥ 1, let δ(i) be the pruned transition at the
end of the i-th iteration of the while loop. Let us analogously denote with X (i) and P(i) the
state of the ordered partitions X and P in the algorithm at the end of the i-th iteration. For
convenience, we also define δ(0) = δ, X (0) = ⟨Q⟩, and P(0) = ⟨Qε, Qa1 , . . . , Qak

⟩. Lemma 10
and the definition of the pruning step yield the following invariant on forward-stability.

▶ Observation 15. At the end of every iteration i of the while loop in Algorithm 1 when
run together with the pruning step, it holds that every part of the ordered partition P(i) is
forward-stable with respect to every part in X (i) in the automaton A(i) = (Q, δ(i), s).

Intuitively speaking, the pruning step removes transitions that do not originate from the
co-lexicographically smallest part in the sorted partition. Hence, we obtain the following
lemma (the proof is deferred to the full version).

▶ Lemma 16. Let v ∈ Q be a state with a = λ(v) and let A, A′ ∈ X (i) for some i ≥ 0 be
such that v ∈ δ

(i)
a (A) ∩ δa(A′). Then either (i) A = A′ or (ii) A precedes A′ in X (i).
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Let P∗ and δ∗ be the ordered partition and the pruned transition, respectively, obtained
at the end of the algorithm’s execution. From Lemma 16, we can see that for every state
v ∈ Q \ {s}, there exists a unique part A ∈ P∗ such that v ∈ δ∗

λ(v)(A). Combining this
with Observation 15, we obtain that a unique string can be obtained by walking backwards
through the pruned transitions δ∗. For u ∈ Q, let α∗

u be the longest (or possibly left-infinite)
string that can be obtained in this way starting from u. Since every transition comes from a
co-lex smallest part, we can obtain the following lemma (the proof is included in the full
version).

▶ Lemma 17. For every u ∈ Q, α∗
u = inf Su.

It is worth noting that some states possibly have more than one in-going transitions after
the termination of the algorithm. Nevertheless, Lemma 17 still holds when we choose any of
them and remove the others. From this observation, we can assume that every state (except
the source state) in the pruned automaton Ainf has exactly one in-going transition.

Similarly, we can compute the pruned automaton for the set of suprema {sup Sv : v ∈ Q}.
The only difference is that we start with the partition P ′(0) = ⟨Qak

, . . . , Qa1 , Qε⟩ with the
reversed order. It is simple to see the greatest string can be computed with this setting.

Regarding the time complexity, notice that the partition refinement algorithm iterates
through the same partitions as if it were run on Ainf in the first place. Additional time is
taken for the pruning step for deleting transitions. This work can be done in O(1) time
per transition. Once a transition is deleted, it will never be considered in the rest of the
execution and hence the additional work amortizes to O(|δ|). Consequently, the asymptotic
time complexity of the partition refinement algorithm with pruning remains O(|δ| log |Q|).

Computing Co-Lex Order of ISA. Once the two pruned automata Ainf and Asup are
obtained, we can easily compute the co-lex order of ISA in O(|Q| log |Q|) time using the
suffix doubling algorithm [17], which extends the well-known prefix-doubling algorithm [18].
Instead of accessing via integer indexes for the doubling procedure, each state keeps a pointer
referring to another (possibly the same) state that is 2k hops away along its backward walk.
We describe all details of this algorithm in the full version. In summary, we conclude this
section with the following theorem.

▶ Theorem 2. For an input-consistent DFA A = (Q, δ, s), we can compute a minimum
chain partition of the smallest-width co-lex order in O(|δ| log |Q|) time.

5 Experimental results

We implemented our partition refinement algorithms in C++ and made it available at https:
//github.com/regindex/finite-automata-partition-refinement.git. We compared
the algorithm from Theorem 1 to the only (to the best of our knowledge) other available
tool for computing a sorted partition consistent with any Wheeler order of the input NFA,
the renaming heuristic from WGT [4]. For a fair comparison, we only run the first part of
the WGT recognizer and remove the exponential time search that is used to subsequently
compute a Wheeler order of the states ending up in equivalence classes.2 We used the
Wheeler graph generator included in WGT to generate 7 random input Wheeler NFAs with

2 As observed empirically, the partition computed by WGT is in some cases coarser than the partition
computed by our algorithm and is, thus, not necessarily forward-stable.
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|Q| ∈ {56 · 2i : i = 0, . . . , 6} and |δ| = 3|Q| (we cannot generate much denser graphs since for
Wheeler graphs δ = O(|Σ| · |Q|) and here |Σ| = 5). Our experiments were run on a server
with Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz with 8 cores and 128 gigabytes of RAM
running Ubuntu 18.04 LTS 64-bit.

Figure 3 CPU time (left) and memory peak (right) for sorting seven Wheeler NFAs using our
partition refinement algorithm and the renaming heuristic contained in the WGT recognizer software.
Datasets generated using WGT specifying seven different combinations of number of states and edges.

Figure 3 shows the running time and peak memory consumption of both implementations.
As expected, our partition refinement implementation shows a slight super-linear behavior
confirming the O(|δ| · log |Q|) worst-case running time of the algorithm. On the other hand,
WGT shows a quadratic behavior, which is better than the cubic O(|δ| · |Q|2) bound for the
Forward Algorithm of Alanko et. al [2], but between ≈ 100× to ≈ 10000× slower than our
implementation. In terms of peak memory, both implementations behave linearly with respect
to the automaton’s size with a 3× advantage in favor of our implementation. On the largest
input instance containing one million states, our implementation computes the Wheeler
preorder in about seven seconds. In a second experiment, we show that our implementation
of the algorithm from Theorem 2 can prune a pangenomic DFA containing over 51 million
states and 53 million edges in 355 seconds with a peak memory of 33.2 Gb.
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