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Abstract
We study the computational complexity of several polynomial-time-solvable graph problems para-
meterized by vertex integrity, a measure of a graph’s vulnerability to vertex removal in terms of
connectivity. Vertex integrity is the smallest number ι such that there is a set S of ι′ ≤ ι vertices such
that every connected component of G − S contains at most ι − ι′ vertices. It is known that the vertex
integrity lies between the well-studied parameters vertex cover number and tree-depth. Our work
follows similar studies for vertex cover number [Alon and Yuster, ESA 2007] and tree-depth [Iwata,
Ogasawara, and Ohsaka, STACS 2018].

Alon and Yuster designed algorithms for graphs with small vertex cover number using fast
matrix multiplications. We demonstrate that fast matrix multiplication can also be effectively used
when parameterizing by vertex integrity ι by developing efficient algorithms for problems including
an O(ιω−1n)-time algorithm for Maximum Matching and an O(ι(ω−1)/2n2) ⊆ O(ι0.687n2)-time
algorithm for All-Pairs Shortest Paths. These algorithms can be faster than previous algorithms
parameterized by tree-depth, for which fast matrix multiplication is not known to be effective.
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1 Introduction

Parameterized complexity provides a powerful framework for studying NP-hard problems.
The main idea behind parameterized algorithms is to analyze the running time in terms of
the input size |I| as well as a parameter k, some measure of the input instance. A problem
is fixed-parameter tractable or FPT for short, if it admits an FPT algorithm, an algorithm
running in time f(k) · |I|O(1) time, where f is a function solely depending on k. In the
past decade, a line of research dubbed “FPT in P” has emerged, where the goal is a more
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16:2 Fully Polynomial-Time Algorithms Parameterized by Vertex Integrity

refined parameterized analysis of polynomial-time-solvable problems [1, 5, 7, 13, 20, 25, 27].
Although the function f usually has to be at least exponential when working with NP-hard
problems, this is not true for problems in P . FPT algorithms where f is a polynomial
function are called fully polynomial-time algorithms and are of course desirable.

We study graph problems in this work. Let n and m be the number of vertices and edges,
respectively. Also, let vc be the vertex cover number and td be the tree-depth (see Section 2
for definitions). Alon and Yuster [2] demonstrated that fast matrix multiplication can be
used effectively for graphs with a (not necessarily small) vertex cover, developing algorithms
for Maximum Matching and All-Pairs Shortest Paths (APSP) that run in O(nω)
time (where ω < 2.372 is the matrix multiplication exponent) even when vc = Θ(n). More
recently, Iwata et al. [26] proposed a divide-and-conquer framework in the design of fully
polynomial-time algorithms parameterized by tree-depth. For instance, they showed that
Maximum Matching can be solved in O(m · td) time.

In this work, we consider the parameter vertex integrity, a parameter that lies between
vertex cover number and tree-depth. The vertex integrity ι of a graph G is the smallest
integer such that G contains a set S of ι′ ≤ ι vertices whose deletion results in a graph
whose connected components each have at most ι − ι′ vertices. Many problems can be solved
in O(nm) time and thus in O(ιn2) time, since m ∈ O(ιn). As the relation td ≤ ι ≤ vc +1
holds for any graph, an algorithm that runs in O(m ·td) time (e.g., for Maximum Matching)
also runs in time O(ι2n). These bounds become O(n3) when ι = Θ(n). However, many
problems can be solved in faster O(nω) time using fast matrix multiplication. We aim
to close this gap by developing fully polynomial-time algorithms that run in O(nω) time
even when ι = Θ(n). Such algorithms are called adaptive, and are optimal unless there
is an (unparameterized) algorithm that runs faster than O(nω) time. For many problems,
the discovery of such an algorithm would be a breakthrough, given that these O(nω)-time
algorithms were developed decades ago and have not been improved since.

Our approach. Before describing our results, let us briefly discuss our approach (see
Section 2 for details). Let S be a k-separator, a vertex set of size at most k′ ≤ k such that
each connected component of G − S has size k − k′. Throughout the paper, we will make the
assumption that a k-separator is given as input. We remark that our algorithms do not require
an (optimal) ι-separator to compute the correct solution. However, the running times of our
algorithm will depend on k and to achieve the claimed running times, we require a k-separator
with k ∈ O(ι). Although G − S may have O(n) connected components, we may assume
that there are Θ(n/k) “components” (which are not necessarily connected; see Section 2
for details), each with O(k) vertices. For every component C, we can use the O(nω)-time
algorithm to solve the instance on G[C] or G[S ∪ C], which takes O(kω · n/k) = O(kω−1n)
time. The next step is to combine solutions for O(n/k) instances, which varies depending on
the problem. For instance, this is trivial for the problem of finding a triangle, as a triangle
must be contained in S ∪ C for some component C. For other problems, e.g., finding a
maximum matching, this step requires a more sophisticated approach.

Main results. There are three main results in this work.
The first result concerns the problem of finding an induced copy of a graph H. Vassilevska

Williams et al. [38] gave an O(nω)-time algorithm that finds an induced copy of H when H

is a graph on four vertices that is not a clique K4 or its complement K4. Their randomized
algorithm is based on computing the number of induced copies of H modulo some integer q

which they show to be computable from A2 in linear time, where A is the adjacency matrix.
We observe that the “essential” part of A2 can be computed in O(ιω−1n) time, leading
to O(ιω−1n)-time algorithms.
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Secondly, we develop an O(ιω−1n)-time algorithm for finding a maximum matching. We
start by showing that whether a graph contains a perfect matching can be determined in
O(ιω−1n) time. Tutte [36] observed that the Tutte matrix is nonsingular if and only if the
graph has a perfect matching. By the Schwartz-Zippel lemma, we can test its nonsingularity
in randomized O(nω) time. We can thus test whether each component in G − S has a perfect
matching in O(ιω−1n) time. However, there might be a vertex in S that must be matched to
a vertex in G − S. To handle these cases, we use Schur complements. The task of finding a
maximum matching is more intricate. Lovász [30] generalized Tutte’s observation by stating
that the rank of the Tutte matrix (which can be computed in randomized O(nω) time)
equals twice the size of a maximum matching. It was only decades later that O(nω)-time
algorithms for finding one were discovered. Mucha and Sankowski [31] and Harvey [24] gave
such algorithms. We show how to adapt the latter to obtain an O(ιω−1n)-time algorithm for
finding a maximum matching.

Lastly, we study APSP on unweighted graphs. Seidel [34] showed that APSP can be
solved in O(nω log n) time. Alon and Yuster [2] later developed an algorithm that runs
in O(vcω−2 n2) time (they actually provide a stronger bound using rectangular matrix
multiplication). We show that APSP can be solved in O(ιω−2n2) time when the graph has
constant diameter. We were not able to obtain an adaptive algorithm in general, but we
give an O(ι(ω−1)/2n2) ⊆ O(ι0.687n2)-time algorithm. When parameterizing by vc, we can
effectively replace every vertex not in the vertex cover with edges of weight two connecting
their neighbors. Thus, the O(Wnω)-time algorithm [17, 35] for weighted APSP, where W is
the maximum weight, finds all pairwise distances between vertices in the vertex cover
in O(vcω) time. For vertex integrity, we show how to replace every component with edges
of weight O(ι). To compute distances between pairs of vertices with at least one vertex
not in the k-separator, we use the known subcubic-time algorithm for computing min-plus
matrix multiplication for bounded-difference matrices, matrices in which the difference of two
adjacent entries in a row is constant [10].

Previous work on vertex integrity. The notion of vertex integrity was introduced by Barefoot
et al. [3]. The vertex integrity ι can be much smaller than n, e.g., it is known that ι ∈ O(n2/3)
on Kh-minor free graphs [4]. The Vertex Integrity problem, i.e., computing an ι-separator
is NP-hard. A straightforward branching algorithm solves Vertex Integrity in O(ιι · n)
time (see [15]). A greedy algorithm can find an O(ι2)-separator in linear time. There is
also a polynomial-time algorithm that can find an O(ι log ι)-separator [29]. FPT algorithms
parameterized by vertex integrity gained increased attention recently [6, 15, 16, 22, 28].
In particular, see Gima et al. [22] for an extensive list of problems that are W[1]-hard for
tree-depth but become FPT when parameterized by vertex integrity.

2 Preliminaries

We use standard notation from graph theory. Unless stated otherwise, all appearing graphs
are undirected. Further, V denotes the set of vertices in the graph, E its set of edges, n its
number of vertices, and m its number of edges. We denote an edge between two vertices u

and v by uv. A walk of length ℓ is a sequence v1, . . . , vℓ of (not necessarily distinct) vertices
such that vivi+1 ∈ E for all i ∈ [ℓ−1], where [j] := {1, . . . , j} for any integer j. A walk whose
vertices are all pairwise distinct is a path. The adjacency matrix of G is the V × V -matrix A

with A[u, v] = 1 if and only if uv ∈ E, and A[u, v] = 0 otherwise (where A[u, v] is the entry
of A indexed by u and v).

ESA 2023
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Graph parameters. For a graph G, the vertex integrity is the smallest integer ι such
that G contains a set S (called ι-separator) of ι′ ≤ ι vertices whose deletion results in a graph
whose connected components each have at most ι − ι′ vertices. The vertex cover number vc
is the smallest cardinality of a vertex cover, a set that contains at least one endpoint of every
edge. The tree-depth td is the smallest depth of a rooted forest F with vertex set V such
that G can be embedded in F , i.e., for every edge xy in G, x is an ancestor of y or vice versa.
The feedback vertex number is the smallest cardinality of a feedback vertex set, a set that
contains at least one vertex of every cycle.

Decomposition. Here, we describe the decomposition with respect to a k-separator, which
will be used throughout the paper. Let S be a k-separator. Typically in our algorithms, we
spend O(kω) time for every connected component in G − S. Since G − S may have Ω(n)
connected components, this would result in a running time of O(kωn), which is often worse
than a more straightforward algorithm. Thus, we will do the following to bound the number
of “components” by O(n/k): Basically, we put together some connected components C

and construct a collection T of sets, each (except for possibly the last one) containing
between k and 2k −1 vertices. More precisely, we start with T = ∅ and process the connected
components of G − S one by one as follows. If every set T ∈ T has at least k vertices, then
add {C} to T , and otherwise replace the set T ∈ T with |T | < k by T ∪ C. Since every
connected component C has at most k vertices, every set T ∈ T (except for possibly the last
set which may be smaller) contains between k and 2k − 1 vertices. Let T = {T1, . . . , Tν}.
It is easy to see that ν ≤ n/k + 1. In our algorithms, we will always assume that the
decomposition (S; T1, . . . , Tν) of V is given. Note that given a k-separator, the decomposition
can be computed in linear time.

Basic operations in matrix multiplication time. For n × n-matrices A, B, one can compute
the following in O(nω) time: (i) the product AB, (ii) the determinant det A, (iii) the
inverse A−1, and (iv) a row/column basis of A (see e.g., [9]). More generally, for a k × n-
matrix A and an n × k-matrix B, one can compute the product AB in O(kω−1n) time by
dividing A and B into n/k blocks of size k × k. The rank of A can be computed using
Gaussian elimination using O(kω−1n) arithmetic operations [8]. Throughout the paper, we
will use a word RAM model with word size O(log n). If F is a field of size poly(n), we will
assume that addition and multiplication take O(1) time.

Matrices and Matchings. For a subset X of rows and a subset Y of columns, we denote
by A[X, Y ] the restriction of the matrix A to rows X and columns Y . For a set X of rows
(or columns), we will use the shorthand A[X] for A[X, X]. The i-th power of the adjacency
matrix A correspond to the number of walks of length i, i.e., Ai[u, v] equals the number of
u-v-walks of length i in G.

Note that for any graph with a k-separator S and decomposition (S; T1, . . . , Tν) it holds
that there is no edge between a vertex in Ti and a vertex in Tj for any i ̸= j. We can
therefore represent the adjacency matrix A of the graph as follows.

A =

S S̄[ ]
S γ β

S̄ βT α
, for α =

T1 · · · Tν T1 α1 · · · O
...

...
. . .

...
Tν O · · · αν

with β =
T1 · · · Tν[ ]

S β1 · · · βν . (1)
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Here, S̄ = T1 ∪ · · · ∪ Tν and the matrices αi, βi, γ all have size O(k) × O(k). Many of our
algorithms will use this representation and exploit the sparseness when computing e.g.,
matrix multiplications and determinants.

We denote the (unique) finite field with 2q many elements by GF(2q). Note that this
field has characteristic 2, i.e., x + x = 0 for every x ∈ GF(2q). For a graph G = (V, E), the
Tutte matrix (also known as the skew adjacency matrix) A whose rows and columns are
indexed by V = {v1, . . . , vn} is defined by

A[u, v] =


+xuv if u = vi, v = vj with i < j and uv ∈ E(G)
−xuv if u = vi, v = vj with j < i and uv ∈ E(G)
0 otherwise,

where xuv is a variable associated with the edge uv. The Tutte matrix A is skew-symmetric,
i.e., A = −AT . The Pfaffian of a skew-symmetric matrix A indexed by V is defined as

pf(A) =
∑

M∈M
σM

∏
uv∈M

A[u, v],

where M is the set of all perfect matchings of (V,
(

V
2
)
) and σM ∈ {±1} is the sign of M .

We will assume that the field has characteristic 2 (implying −1 = 1), and thus the precise
definition of σM is not important for us. (This assumption is not essential to our algorithm
but it will simplify the notation.)

The following are well-known facts about skew-symmetric matrices (see e.g., [23, 32]).

▶ Lemma 1. For a skew-symmetric matrix A, we have det A = pf(A)2.

In particular, a skew-symmetric matrix A is nonsingular if and only if pf(A) ̸= 0.

▶ Lemma 2. For a skew-symmetric matrix A, if X is a row (or column) basis, then A[X] is
nonsingular.

The next is immediate from the definition of Pfaffians.

▶ Lemma 3 (row expansion). For a skew-symmetric matrix A indexed by V and v ∈ V over
a field of characteristic 2, we have pf(A) =

∑
v′∈V \{v} A[v, v′] · pf(Âv,v′), where Âv,v′ is the

matrix where the rows and columns indexed by v and v′ are deleted.

Proofs of statements marked with ⋆ are omitted from the conference version and can be
found in a full version of this paper.

3 Finding Subgraphs

In this section, we develop adaptive algorithms for finding four-vertex subgraphs. There
are eleven non-isomorphic graphs with 4 vertices: the clique on four vertices (K4) and its
complement (K4), the diamond (K4 − e) and its complement (K4 − e), the claw (K1,3) and
its complement (K1,3), the paw (K1,3 + e) and its complement (K1,3 + e), the cycle on four
vertices (C4) and its complement (C4), and the path on four vertices (P4) (which is its own
complement). Note that +e and −e indicate the insertion of an edge or the deletion of
any edge, respectively. A linear-time algorithm is known for detecting whether the input
graph contains an induced P4 [12]. For K4 and K4, the currently fastest algorithm runs
in O(n3.257) [18, 21] and for all other graphs the best known algorithm is by Williams et
al. [38] and runs in O(nω) time. Their approach can be summarized as follows.

ESA 2023
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Let G be an undirected graph and let A be its adjacency matrix. Let H = (V ′, E′) be a
four-vertex graph that is none of K4, K4, C4, C4. There is an integer 2 ≤ qH ≤ 6 such
that if we can compute A2[u, v] for every edge uv ∈ E(G) in time t, then we can compute
the number of induced copies of H in G modulo qH in O(n + m + t) time. See [38,
Lemma 4.1] for details. (Some equations provided in [38] require A3[v] for every v ∈ V .
However, this can be computed in O(m) time if A2[u, v] is given for every edge uv.)
Let q ≥ 2 be an integer and let G, H be two undirected graphs. Let G′ be an induced
subgraph of G obtained by independently deleting each vertex with probability 1/2.
If G contains H as an induced subgraph, then the number of induced copies of H in G′

modulo q is not 0 with probability at least 2−|V (H)|. (For our applications, |V (H)| = 4,
so this probability is at least 1/16.)

We show that when a k-separator is given, one can test in O(kω−1n) time whether there
is an induced copy of H for each four-vertex graph H except for K4 and K4. We start with
all graphs except for K4, K4, C4, C4. Using the framework by Williams et al. [38], it suffices
to show how to compute A2[u, v] for every edge uv ∈ E(G). Clearly, it requires Ω(n2) time to
compute the square A2. Our key observation is that the relevant part of A2 can be computed
in O(kω−1 · n) time. (Incidentally, A2 can be computed in O(kω−2n2) time; see Lemma 18.)

▶ Lemma 4. Given a graph G and a k-separator S, we can compute A2[u, v] for every
edge uv ∈ E(G) in O(kω−1n) time.

Proof. We use the decomposition (S; T1, . . . , Tν) described in Section 2 and suppose that
the adjacency matrix A has the form given in Equation (1). Note that

A2 =

S T1 · · · Tν


S ζ η1 · · · ην

T1 ηT
1 δ1 · · · −

...
...

...
. . .

...
Tν ηT

ν − · · · δν

, where
ζ = γ2 + ββT ,

ηi = γβi + βiαi, and
δi = βT

i βi + α2
i .

Note that computing ζ takes O(ν · kω) = O(kω−1n) time and computing each of the O(ν)
submatrices ηi or δi takes O(kω) time. The − represents pairs where the corresponding
vertices belong to different Ti and are therefore non-adjacent. We thus do not need to
compute these values. Thus, we can compute all relevant values in O(kω−1n) time. ◀

By Lemma 4, an induced copy of H /∈ {K4, K4, C4, C4} can be detected in O(ιω−1n) time.
We show next that C4 and C4 can also be detected in O(ιω−1n) time.

▶ Proposition 5 (⋆). Given a graph G, a k-separator, and a graph H ∈ {C4, C4}, we can
test whether G contains H as an induced subgraph in O(kω−1n) time.

Thus, we obtain the following.

▶ Proposition 6. Given a graph G, a k-separator, and a graph H with four vertices that is
not K4 or K4, we can test whether G contains an induced copy of H in O(kω−1n) time.

We can also find an induced copy with a constant overhead using a standard self-reduction.

▶ Corollary 7 (⋆). Given a graph, a k-separator, and a graph H with four vertices that is
not K4 or K4, we can find an induced copy of H in O(kω−1n) time if it exists.
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Finally, let us also remark on the detection of cliques Kℓ and independent sets Kℓ.
Let tℓ(n) be the time complexity of finding Kℓ (or Kℓ) on an n-vertex graph. (It is known, for
instance, that t4(n) ∈ O(n3.257) [18] using fast rectangular matrix multiplication [21].) Since
any Kℓ must fully be contained in G[S ∪ Ti] for some i, it can be detected in O(tℓ(ι)/ι · n)
time. For the detection of Kℓ, note that if n/ι ≥ ℓ, then there is an independent set of size ℓ.
Thus, we may assume that n ≤ ιℓ. For constant ℓ, we can thus find Kℓ in O(tℓ(ι)) time.

In the full version of the paper, we also study the problem of finding short(est) cycles.
In particular, we show that girth, i.e., the length of a shortest cycle, can be computed
in O(ιω−1n) time.

4 Matching

As mentioned in the introduction, Lovász [30] showed that the cardinality of a maximum
matching can be determined in randomized O(nω) time. Several decades later, two algorithms
have been developed to find a maximum matching [24, 31]. In this section, we show the
following.

▶ Theorem 8. Given a graph and a k-separator, we can find a maximum matching in
randomized O(kω−1n) time.

In the full version of the paper, we show that the existence of a perfect matching can be
checked in O(kω−1n) time, where k is the feedback vertex number of the input graph, that
is, the minimum number of vertices to delete in order to turn the graph into a forest.

Tutte [36] showed that G has a perfect matching if and only if its symbolic Tutte matrix A

is nonsingular. Lovász [30] later showed that the rank of A equals twice the size of maximum
matching. To avoid computation over a multivariate polynomial ring, we will assume that
each variable xuv is instantiated with an element chosen from a finite field F uniformly at
random. (We will assume that |F| = GF(2c⌈log n⌉) for a sufficiently large constant c > 0.)
Since the determinant of the symbolic Tutte matrix has degree at most n, by the Schwartz–
Zippel lemma [33, 39] (which states that a non-zero polynomial of total degree d over a finite
field F is, when evaluated at a uniformly randomly coordinate, non-zero with probability at
least 1 − d/|F|), if G has a perfect matching and F is of size at least δn, then A is nonsingular
with probability at least 1 − 1/δ.

Let A be a block matrix A =
[
α β

γ δ

]
. If α is nonsingular, then the determinant of A

is det(A) = det(α) · det(C), where C = δ − γα−1β is the Schur complement (see e.g., [32]).
Thus, assuming that α is nonsingular, A is nonsingular if and only if δ −γα−1β is nonsingular.
A simple application of the Schur complement yields the following.

▶ Lemma 9. Consider a matrix A of the following form. Then, provided that α is nonsingular,
A is nonsingular if and only if the following matrix A′ is nonsingular.

A =

 α β 0
−βT γ ζ

0 −ζT η

 A′ =
[

γ ζ

−ζT η

]
−

[
−βT

0

]
α−1 [

β 0
]

=
[
γ + βT α−1β ζ

−ζT η

]

Harvey’s algorithm. There is a randomized O(nω)-time algorithm to find a perfect matching
in a graph (if one exists) due to Harvey [24]. We describe the algorithm outline here. The
main idea is to delete edges as long as at least one perfect matching remains until we are
left with a graph in which every vertex has exactly one neighbor. Here, deleting an edge

ESA 2023
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corresponds to setting the corresponding entries in the Tutte matrix to zero. Whether an
edge is deletable, i.e., whether there remains a perfect matching after its deletion, can be
determined in O(1) time after computing the inverse of the Tutte matrix in a preprocessing
step. This is essentially due to the fact that for a nonsingular matrix A and column vectors u

and v, matrix A + uvT is nonsingular if and only if 1 + vT A−1u ≠ 0. When an edge is
deleted, the inverse needs to be updated and the Sherman-Morrison-Woodbury formula
(which is not relevant for us) is employed in Harvey’s algorithm. However, it takes O(n2)
time when this update is implemented naively. The crux of Harvey’s algorithm lies in a
recursive scheme that essentially allows to perform the update in O(1) time. The algorithm
uses a subroutine called DeleteEdgesCrossing, which takes two disjoint vertex sets R

and S as input and iteratively deletes all deletable edges uv with u ∈ R and v ∈ S. This
subroutine runs in O(nω) time and our algorithm will also use it.

4.1 Detecting a perfect matching
In this section, we will describe a randomized O(kω−1n)-time algorithm to test whether
a given graph with a k-separator S contains a perfect matching. We assume that the
Tutte matrix A has the form of Equation (1) and that it is instantiated randomly from a
field F = GF(2c⌈log n⌉). For each component Ti, we find a basis T ′

i ⊆ Ti of A[Ti] in O(kω) time.
Note that A[T ′

i ] is nonsingular by Lemma 2. Let T ∗
i = Ti \ T ′

i , Si = Si−1 ∪ T ∗
i for S0 = S,

and S∗ = Sν . Note that if G has a perfect matching M , then at least |T ∗
i | vertices of Ti are

matched to S. Thus, if
∑

i∈[ν] |T ∗
i | > |S|, we can conclude that there is no perfect matching.

Otherwise, we have |S∗| ≤ 2k. Now, consider for each component T ′
i the matrix

Bi =

T ′
i S∗ V \ (S∗ ∪

⋃
j∈[i−1] T ′

j) T ′
i αi βi 0

S∗ −βT
i γi ζi

V \ (S∗ ∪
⋃

j∈[i−1] T ′
j) 0 −ζT

i ηi

,

where γ1 = γ, γi+1 = γi + βT
i α−1

i βi, and all entries except for γi for i > 1 are identical to the
corresponding entries of A. Note that αi and βi may differ from αi and βi in Equation (1),
but if T ′

j = Tj for all j ∈ [ν], then αi and βi here coincide with αi and βi from Equation (1).
Note that the matrix B1 coincides with the Tutte matrix A. Hence, we only need to test
whether B1 is nonsingular. We do this by iteratively computing Bi+1 from Bi in O(kω)
time. For notational convenience, we will assume that there is an empty component T ′

ν+1.
Since αi = A[T ′

i ] is nonsingular, by Lemma 9 the matrix Bi is nonsingular if and only if Bi+1
is nonsingular. The nonsingularity of Bν+1 = γν+1 can be tested in O(kω) time since it
has size O(k) × O(k). Note that our algorithm takes O(kω) time for each i ∈ [ν + 1] and
thus O(νkω) = O(kω−1n) time overall. If A is nonsingular, then our algorithm correctly
concludes that there is a perfect matching. By the Schwartz–Zippel lemma, we know that if G

admits a perfect matching, then the probability that A is nonsingular is at least 1−n/|F| ≥ 1/2.
This leads to the following result.

▶ Proposition 10. Given a graph and a k-separator, we can test whether it has a perfect
matching in randomized O(kω−1n) time.

In the full version of the paper, we show that whether there is a perfect matching can be
checked in O(kω−1n) time, where k is the feedback vertex number. We use a similar approach
based on the Schur complement. The major difference is that computing (A[V \ S])−1 would
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require Ω(n2) time (A is the Tutte matrix and S is a feedback vertex set). Instead, we
compute (A[V \ S])−1A[S, V \ S] via dynamic programming in O(kn) time. To that end,
we first show that for entries with both coordinates in S in the Tutte matrix, it suffices to
use values in {0, 1} instead of variables. This allows us to give a simple characterization
of the entries of (A[V \ S])−1 in terms of alternating paths. Our dynamic program uses a
recurrence relation based on this.

▶ Proposition 11 (⋆). Deciding whether a given graph G contains a perfect matching can be
done in randomized O(kω−1n) time, where k is the feedback vertex number of G.

4.2 Finding a perfect matching
We next give an algorithm to find a perfect matching (if one exists). We will use the same
notation as before and we will again assume that αi is nonsingular for every i ∈ [ν]. Note that
if the submatrix γ1 is also nonsingular, then it is easy to find a perfect matching since the
corresponding submatrices γ1 = A[S∗] and αi = A[T ′

i ] are all nonsingular and therefore there
exists a perfect matching in G[S∗] and G[T ′

i ] for every i ∈ [ν]. We can find these using one of
the randomized O(nω)-time algorithms [24, 31]. This procedure takes O(kων) = O(kω−1n)
time. However, in general, we cannot assume that γ1 is nonsingular.

To deal with the case that γ1 is singular, we use Harvey’s aforementioned algorithm. Our
algorithm first computes γi for each i ∈ [ν + 1]. We then proceed inductively in decreasing
order from i = ν +1 to i = 1. Our algorithm finds a set S̃i ⊆ S̃i+1 ⊆ S∗ (we set S̃ν+1 = S∗ for
notational convenience) and a matching Mi which saturates every vertex in (S̃i+1 \ S̃i) ∪ T ′

i .
The matching Mi is the union of two matchings M ′

i and M ′′
i , where M ′

i is a perfect matching
between S̃i+1 \ S̃i and T ′

i \ T ′′
i for T ′′

i ⊆ T ′
i and M ′′

i is a perfect matching in G[T ′′
i ] (see

Lemmas 13 and 14).
We will maintain the invariant that γi[S̃i] is nonsingular. For i = ν + 1, we have

that γν+1[S̃ν+1] = Bν+1 is nonsingular. Moreover, if this invariant is maintained, then γ1[S̃1]
is nonsingular and thus G[S̃1] contains a perfect matching that can be combined with all
previous Mi to obtain a perfect matching for G. To find the set S̃i for i ∈ [ν], consider the
following submatrix B′

i of Bi whose rows and columns are indexed by S̃i+1 ∪ T ′
i :

B′
i =

[
αi βi[T ′

i , S̃i+1]
−βT

i [S̃i+1, T ′
i ] γi[S̃i+1]

]
.

Note that for a nonzero entry in B′
i, if one of the coordinates is in T ′

i , then the corres-
ponding edge exists in G but this is not necessarily the case if both coordinates are in S̃i+1.
We first show that B′

i is nonsingular.

▶ Lemma 12 (⋆). For each i ∈ [ν], the matrix B′
i is nonsingular.

Since B′
i is nonsingular, we can compute (B′

i)−1 and apply the subroutine DeleteEdges-
Crossing of Harvey [24] on the bipartition (S̃i+1, T ′

i ) in O(kω) time. (This subroutine
requires the inverse to be given.) Essentially, we “delete” (i.e., change to zero) all deletable
entries with one coordinate in S̃i+1 and the other in T ′

i . We then get a skew-symmetric
matrix Ci that is identical to B′

i except that some entries in Ci[S̃i+1, T ′
i ] and Ci[T ′

i , S̃i+1]
are set to zero. Let S̃i be those vertices v ∈ S̃i+1 such that Ci[T ′

i , v] is a zero vector and T ′′
i

be those vertices u ∈ T ′
i such that Ci[S̃i+1, v] is a zero vector. Each remaining nonzero entry

in Ci[S̃i+1, T ′
i ] and Ci[T ′

i , S̃i+1] is undeletable. We show that all edges corresponding to these
entries form a perfect matching M ′

i between S̃i+1 \ S̃i and T ′
i \ T ′′

i .
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▶ Lemma 13. The set M ′
i = {uv | Ci[u, v] ̸= 0, u ∈ S̃i+1 \ S̃i, v ∈ T ′

i \ T ′′
i } is a matching

in G with high probability.

Proof. For a vertex u ∈ S̃i+1\S̃i, assume that there are two vertices v, v′ such that Ci[u, v] ̸= 0
and Ci[u, v′] ̸= 0. We show that this leads to a contradiction when the variables are treated
as indeterminates. Let Ĉiu,w be the result of deleting the rows and columns indexed by u

and w from Ci. By Lemma 3, we have

pf(Ci) = Ci[u, v] pf(Ĉiu,v) + Ci[u, v′] pf(Ĉiu,v′) + p, (2)

where p =
∑

w∈S̃i+1∪T ′
i , w /∈{v,v′} Ci[u, w] pf(Ĉiu,w).

By the assumption that deleting the corresponding edge uv or uv′ (i.e., setting xuv = 0
or xuv′ = 0) results in a singular matrix (this is due to Harvey’s algorithm), we have

Ci[u, v] pf(Ĉiu,v) + p = 0 and Ci[u, v′] pf(Ĉiu,v′) + p = 0.

We thus obtain Ci[u, v] pf(Ĉiu,v) = Ci[u, v′] pf(Ĉiu,v′) = −p. Note that p ≠ 0, since
otherwise pf(Ci) = −p = 0 by Equation (2), which is a contradiction because Ci is nonsin-
gular by Harvey’s algorithm. The left hand side Ci[u, v] pf(Ĉiu,v) is multiplied by a vari-
able Ci[u, v] = xu,v but this variable does not appear on the right hand side Ci[u, v′] pf(Ĉu,v′).
Thus, Q = Ci[u, v] pf(Ĉiu,v) − Ci[u, v′] pf(Ĉiu,v′) is a polynomial that is not identically zero,
which is a contradiction. We thus have exactly one vertex v ∈ T ′

i \ T ′′
i such that Ci[u, v] ̸= 0.

Since Q has degree at most n, this evaluates to non-zero with high probability by the
Schwartz–Zippel lemma. An analogous argument shows that for every v ∈ T ′

i \ T ′′
i , there is

exactly one u ∈ S̃i+1 \ S̃i such that Ci[u, v] ̸= 0. Since every nonzero entry in Ci[S̃i+1, Ti]
corresponds to an edge in G, we are done. ◀

We can now show that our main invariant can be maintained with high probability.

▶ Lemma 14 (⋆). The matrices γi[S̃i] and αi[T ′′
i ] are nonsingular with high probability.

Concluding this section, we prove our main result.

▶ Proposition 15 (⋆). Given a graph with a perfect matching and a k-separator, we can find
a perfect matching in O(kω−1n) time.

In the full version of the paper, we prove Theorem 8, that is, we show how to find a
maximum matching in O(kω−1n) time, when given a k-separator.

5 All-Pairs Shortest Paths

We study the well-known All-Pairs Shortest Paths problem (APSP) on unweighted
graphs. APSP on unweighted graphs can be solved in O(nω)-time using matrix multiplic-
ation [34]. In this section, we show an algorithm which is faster than O(nω) when k is
sufficiently small, that is, k ∈ O(n0.541).

▶ Theorem 16. Given an (unweighted undirected) graph and its k-separator, APSP can be
solved in O(k(ω−1)/2n2) ⊆ O(k0.687n2)-time.

APSP is closely connected to the min-plus-product. In fact, solving APSP is sub-
cubic equivalent to computing the min-plus product of two matrices [19]. The min-
plus product A ⋆ B of a p × q-matrix A with a q × r-matrices B is the p × r-matrix C
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with C[i, j] = mink∈[q] A[i, k] + B[k, j]. While it is conjectured that there is no algorithm
computing the min-plus product of two n × n-matrices in O(n3−ϵ) time for any ϵ > 0, there
is a subcubic-time min-plus matrix multiplication algorithm for bounded-difference matrices,
i.e., matrices in which the difference of two adjacent entries in a row is small [10]. Although
the distance matrix D (which contain pairwise distances) does not necessarily have bounded
differences, for two adjacent vertices u and v, the difference between D[u, w] and D[u, v]
for any w ∈ V is at most 1. The “standard” decomposition of G − S into T1, . . . , Tν from
Section 2 is not convenient in this case, since two vertices in Ti may have distance Θ(n),
e.g., when Ti is not connected. Our algorithm first modifies the given graph so that we have
bounded-difference distance matrices. The main idea is that, for a k-separator S, we can join
connected components from G − S by adding copies of vertices in S. We will also ensure
that there is a Hamiltonian path through each component (this step is essentially also used
by Deng et al. [14]). This ensures that if we rearrange the rows and columns according to
the Hamiltonian path, then two consecutive rows correspond to adjacent vertices and the
distances between either of them and some third vertex differ by at most one.

▶ Lemma 17 (⋆). Given a graph G and a k-separator S, we can compute in O(n + m) time
a graph G′ and its O(k)-separator S′ such that G′ − S′ has connected components T ′

1, . . . , T ′
ν

for ν′ ∈ O(n/k), each of which has a Hamiltonian path Hi, and |S′| = |T ′
1| = · · · = |T ′

ν |.
Moreover, given the distance matrix D′ for G′, one can compute the distance matrix D of G

in O(n2) time.

Using Lemma 17, we now show that APSP on unweighted graphs can be solved faster
than O(nω) if the vertex integrity is sufficiently small and ω > 2.

Proof of Theorem 16. If k ≥ n0.6, then k(ω−1)/2n2 > nω and we apply the O(nω log n)-time
algorithm [34]. Otherwise, k ≤ n0.6 and we use the following algorithm to solve APSP.
1. We apply Lemma 17, resulting in a graph G and sets S, T1, . . . , Tν .
2. For every i, we solve APSP on G[S ∪ Ti]. Let Di = D′

i[Ti, S], where D′
i is the distance

matrix of G[S ∪ Ti].
3. We compute an edge-weighted graph GS where the vertex set is S, the edge set is

(
S
2
)
,

and w(uv) = 1 if uv ∈ E(G), and w(uv) = mini Di(uv) otherwise. We solve APSP on
this weighted graph and call the resulting distance matrix DS . As we show later, DS [u, v]
is the distance from u to v in G.

4. For each i, j ∈ [ν], we compute D∗
i := Di ⋆ DS . and D∗

i,j := D∗
i ⋆ DT

j .
5. Return a symmetric matrix D∗ where the upper triangular part of D∗ is defined by

D∗[u, v] =


DS [u, v] u, v ∈ S,

D∗
i [u, v] u ∈ S and v ∈ Ti,

min{Di[u, v], D∗
i,i[u, v]} u, v ∈ Ti for some i ∈ [ν],

D∗
i,j [u, v] u ∈ Ti and v ∈ Tj for i ̸= j.

First we show the correctness of the algorithm. For u, v ∈ S, Step 3 guarantees
that D∗[u, v] = DS [u, v] is the distance between u and v in the weighted graph GS . As each
edge u′v′ in GS corresponds to a path in S ∪ Ti of length w(u′v′) for some i ∈ [ν], it follows
that each path in GS corresponds to a walk in G of the same length. Thus, DS [u, v] is not
smaller than a shortest u-v-path in G. On the other hand, let P be a shortest u-v-path
in G. Let u = s1, . . . , sℓ = v be the vertices of P in S (in the order they appear in P ). By
construction, for each i < ℓ, there are no vertices in S between si and si+1 in P . Hence,
this subpath of P is fully contained in G[S ∪ Tj ] for some connected component Tj and we
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have w(si, si+1) ≤ distG[S∪Tj ](si, si+1). Consequently, we have that P corresponds to a path
in the weighted graph GS and DS(u, v) is not larger than the length of a shortest u-v-path
in G. Thus, DS [u, v] equals the distance between u and v in G and D∗[u, v] has therefore
been computed correctly.

Next, assume that u ∈ Ti for some i ∈ [ν] and v ∈ S (the case u ∈ S and v ∈ Ti is
analogous). A shortest u-v-path then consists of a shortest u-s-path in G[S ∪ Ti] and a
shortest s-v-path in G for some s ∈ S (since each vertex in Ti only has neighbors in Ti ∪ S).
This implies distG[u, v] = mins∈S Di[u, s] + DS [s, v] = D∗

i [u, v].
Next, assume that u ∈ Ti and v ∈ Ti for some i ∈ [ν]. Then a shortest u-v-path either

stays completely in Ti or it decomposes into a shortest u-s-path in G[S ∪ Ti], followed
by a shortest s-s′-path in G, and finally followed by a shortest s′-v-path in G[S ∪ Ti] for
some s, s′ ∈ S. In the first case, the distance between u and v equals to Di[u, v]. In the
second case, the distance between u and v equals

min
s,s′∈S

distG[S∪Ti](u, s) + distG(s, s′) + distG[S∪Ti](s′, v) = D∗
i,i[u, v].

Thus, D∗[u, v] contains the distance between u and v.
Finally, assume that u ∈ Ti and v ∈ Tj for some i ̸= j ∈ [ν]. A shortest u-v-path then

decomposes into a shortest u-s-path in G[S ∪ Ti], followed by a shortest s-s′-path in G, and
finally followed by a shortest s′-v-path in G[S ∪ Tj ] for some s, s′ ∈ S. Consequently, we
have dist(u, v) = mins,s′∈S Di[u, s] + DS [s, s′] + Dj [s′, v] = D∗

i,j [u, v].
It remains to analyze the running time of the algorithm. Step 1 runs in linear time by

Lemma 17. Step 2 solves APSP on O(n/k) many instances, each with O(k) vertices. As
APSP on unweighted graphs with k vertices can be solved in O(kω log(k)) time, Step 2 runs
in O(nkω−1 log(k)) time.

Step 3 first computes a weighted graph on O(k) vertices. Each edge can be computed
in O(n/k) time. As there are O(k2) many edges, computing the graph takes O(n · k)
time. Solving weighted APSP on this graph then can be done in O(k3) time [37]. As we
assumed k ≤ n0.6, this step runs in O(n1.8) time.

Step 4 computes for each pair (i, j) ∈ [n/k] the min-plus product of Di, DS , and Dj . We
will show that we can compute these min-plus products in O(k(3+ω)/2) time (which is faster
than the state-of-the-art algorithm for computing arbitrary min-plus products). The trick
is to use the fact that Di and D∗

i have bounded difference and then use a result by Chi et
al. [10] stating that the min-plus product of two matrices of dimension n×n can be computed
in O(n(3+ω)/2) ⊆ O(n2.687) time if one of the matrices has bounded difference. While it is
not true a priori that Di and D∗

i have bounded difference, we will order the rows according
to the Hamiltonian path Hi. This ensures that two consecutive vertices are adjacent, which
implies that consecutive entries in a row differ by at most one. Hence, each computation of
the min-plus product can be done in O(k(3+ω)/2) time, as |S| = |T1| = · · · = |Tν | = O(k) by
Lemma 17. Overall, Step 4 runs in O((n/k)2 · k(3+ω)/2) = O(n2 · k(ω−1)/2) time.

Lastly, Step 5 runs in O(n2) time. The overall running time of O(k(ω−1)/2 ·n2) follows from
the observation that the running time for Step 4 dominates the running time of Steps 1, 2, 3,
and 5 as k ≤ n and ω < 2.9. ◀

Adaptive algorithm for bounded diameter. We give an adaptive algorithm for constant
diameter. The crucial observation here is that we can compute the product of the adjacency
matrix of a graph with any other matrix in O(ιω−2n2) time.

▶ Lemma 18. Given a graph G with adjacency matrix A, a k-separator S for G, and
an n × n-matrix M , the matrices AM and MA can be computed in O(kω−2n2) time.
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Proof. Suppose that the adjacency matrix has the form as described in Equation (1). Then,

AM =
[

γM [S, V ] + βM [S, V ]
βT M [S, V ] + αM [S, V ]

]
.

A closer inspection reveals that all the computation can be done in O(kω−2n2) time: First
observe that γM [S, V ] can be computed in O(kω−1n) time. For the other terms, note that

βM [S, V ] =
[
βM [S, S] βM [S, T1] . . . βM [S, Tν ]

]
,

βT M [S, V ] =
[
βT M [S, S] βT M [S, T1] . . . βT M [S, Tν ]

]
,

αM [S, V ] =
[
α1M [T1, S] α2M [T2, S] . . . ανM [Tν , S]

]T
.

Since there are O(n/k) submatrices and each takes O(kω−1n) time to compute, AM can be
computed in O(kω−2n2) time. Note that MA = (AMT )T can be computed analogously. ◀

We obtain our algorithm from the folklore observation that for any two vertices u, v ∈ V ,
there is a walk of length exactly length d between u and v if and only if Ad[u, v] ̸= ∅.

▶ Proposition 19. Given a graph G and a k-separator S, APSP can be solved in O(dkω−2n2)
time where d is the diameter of G.

Proof. Let A be the adjacency matrix of G. We compute matrices B1, . . . , Bd ∈ {0, 1}n×n

recursively as follows. We start with B1 := A. Matrix Bi+1 is computed by multiplying Bi

with A and replacing all non-zero entries by 1. Note that Ai[u, v] = 0 if and only if Bi[u, v] = 0.
Thus, the distance between two vertices u ̸= v is the minimum i such that Bi[u, v] ̸= 0.
By Lemma 18, we can multiply any matrix with A in O(kω−2n2) time. Thus, we can
compute B1, . . . , Bd in O(dkω−2n2) time. ◀

Note that d can be of order Ω(k2) as the vertex integrity in a cycle with n vertices is in O(
√

n)
and its diameter is ⌊n/2⌋.

6 Conclusion

In this work, we investigated the parameter vertex integrity in search for more efficient
algorithms in the FPT-in-P paradigm. We exhibited that for many problems, the structure
of graphs with a small vertex integrity allows us to harness the power of fast matrix
multiplication. In particular, we designed randomized O(ιω−1n)-time algorithms for finding
a four-vertex subgraph (which is not a K4 or a K4) and a maximum matching. We also
showed that unweighted APSP can be solved in O(ι(ω−1)/2n2) time using min-plus product
of bounded-differences matrices, leaving open whether there is an O(ιω−2n2)-time algorithm.
More broadly, we wonder whether a similar approach using fast matrix multiplication can be
used for graphs of bounded tree-depth or tree-width. Existing approaches (e.g. [11, 20, 26])
do not seem amenable to fast matrix multiplication.
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