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Abstract
The min-diameter of a directed graph G is a measure of the largest distance between nodes. It
is equal to the maximum min-distance dmin(u, v) across all pairs u, v ∈ V (G), where dmin(u, v) =
min(d(u, v), d(v, u)). Min-diameter approximation in directed graphs has attracted attention recently
as an offshoot of the classical and well-studied diameter approximation problem.

Our work provides a 3
2 -approximation algorithm for min-diameter in DAGs running in time

O(m1.426n0.288), and a faster almost- 3
2 -approximation variant which runs in time O(m0.713n). (An

almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor
of α plus constant additive error.) This is the first known algorithm to solve 3

2 -approximation
for min-diameter in sparse DAGs in truly subquadratic time O(m2−ϵ) for ϵ > 0; previously only a
2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016],
a better than 3

2 -approximation can’t be achieved in truly subquadratic time under the Strong
Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a
new conditional lower bound for min-diameter approximation in general directed graphs, showing
that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time.

Our work also presents the first study of approximating bichromatic min-diameter, which is the
maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that
SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic
time, and that in general graphs, an approximation within a factor below 5

2 is similarly out of
reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter
is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime
Õ(min(m4/3n1/3, m1/2n3/2)).
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1 Introduction

The min-distance between two vertices x, y in a directed graph G is the minimum of the
one-way distances d(x, y) and d(y, x), and is written dmin(x, y). This notion of distance
was introduced by Abboud, Vassilevska W., and Wang [2] in their study of diameter in
directed graphs. Since the standard notion of distance in directed graphs is not symmetric,
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[2] considered a number of symmetric distance functions: roundtrip distance, max-distance,
and min-distance. The min-distance in particular, has since then been studied in a series of
papers [13, 15, 11].

The min-distance is arguably the most natural notion of distance in directed acyclic
graphs (DAGs), in which for every two vertices x, y, at most one of d(x, y), d(y, x) is finite.
Min-distance is also applicable in potential real-world contexts: for example, if a patient
needs to see a doctor as soon as possible, the doctor can visit the patient or vice versa.

The min-diameter of a directed graph G is the maximum min-distance between any
two vertices, or maxx,y∈V (G) dmin(x, y). One can additionally define the bichromatic min-
diameter in a graph G with vertex set V = A ⊔ B partitioned into “red” and “blue” vertices:
the bichromatic min-diameter is the maximum min-distance between oppositely-colored
vertices, or maxa∈A,b∈B dmin(a, b). These are variants on the standard notions of diameter
[1, 3, 6, 10, 12, 16, 24] and bichromatic diameter [5, 14], respectively.

One can compute min-diameter or bichromatic min-diameter – and for that matter All
Pairs Shortest Paths (APSP), the shortest path distances d(x, y) for all x, y ∈ V – in an
n-vertex m-edge graph in O(mn + n2 log n) time, simply by running Dijkstra’s algorithm
from every vertex. In unweighted graphs, one can instead use BFS, giving an O(mn) runtime.

One might ask whether, for either min-diameter or bichromatic min-diameter, a faster
algorithm exists. However, just as for standard diameter and other diameter variants that
have been studied [2, 14, 20], the Strong Exponential Time Hypothesis (SETH) [18, 9]
suggests exact computation cannot be done in runtimes that are truly subquadratic, meaning
O(m2−ϵ) for ϵ > 0. SETH is one of the main hypotheses in Fine-Grained Complexity [22],
and is among the most well-established hardness hypotheses for showing conditional lower
bounds. It states that for every ϵ > 0, there is an integer k ≥ 3 so that k-SAT on n variables
cannot be solved in O(2(1−ϵ)n) time.

Since exact computation is conditionally hard, we resort to finding approximations. Since
min-distance does not obey the triangle inequality, approximating min-diameter is especially
challenging, in comparison to standard diameter or even roundtrip diameter or max-diameter.
For this reason, much of the work on min-diameter has focused on DAGs.

Min-Diameter
Abboud, Vassilevska W., and Wang [2] gave a 2-approximation for min-diameter in DAGs,
running in Õ(m) time.1 Meanwhile, they showed that if one can obtain a ( 3

2 −δ) approximation
in O(m2−ϵ) time for min-diameter in DAGs (for ε, δ > 0), then SETH is false. The results
of [2] left a gap between the conditional lower bound of 3/2 and the upper bound of 2 for
O(m2−ϵ) time algorithms for DAGs. (The lower bound is for O((mn)1−ϵ) time algorithms
but since the instances are sparse, this is the same as O(m2−ϵ) time.)

Later work by Dalirrooyfard and Kaufmann [13] showed that in dense DAGs, one can
beat the mn barrier by obtaining an almost- 3

2 -approximation algorithm running in O(n2.35)
time. The conditional lower bound of [2] is for sparse DAGs, however, and the gap between
upper and lower bounds has remained.

Our main result is to close this gap for sparse DAGs:

▶ Theorem 1. There is an O(m0.713n) time algorithm that achieves a ( 3
2 , 1

2 )-approximation
for min-diameter in any m-edge, n-node unweighted DAG.

Furthermore, there is an O(m1.426n0.288) time algorithm that achieves a 3
2 -approximation

for min-diameter in any m-edge, n-node unweighted DAG.

1 The tilde hides polylogarithmic factors.
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A (c, a)-approximation for a quantity D is a quantity D′ such that D ≤ D′ ≤ cD + a.
Similar to [13], we use hitting set and set intersection methods to certify distances. Our

main new technique is to iteratively grow a central interval of vertices with convenient
distance properties by checking that at least one of two neighboring vertex subsets, to its left
and right, has the desired properties.

The algorithms use fast matrix multiplication. There are also combinatorial versions of
the algorithms, with runtimes O(m3/4n) for the ( 3

2 , 1
2 )-approximation and O(m5/4n1/2) for

the 3
2 -approximation.2 These runtimess are still subquadratic for sparse graphs.

Our paper also considers the case of general directed graphs. Abboud, Vassilevska W., and
Wang [2] showed that under SETH, any O(m2−ε) time algorithm for ε > 0 for min-diameter
can achieve at best a 2-approximation. This result only held for weighted graphs.

We give the first hardness result for unweighted graphs, extending the hardness of [2]:

▶ Theorem 2. Under SETH, there can be no O(m2−ε) time (2 − δ)-approximation algorithm
for the min-diameter of an unweighted directed graph with n vertices and m = n1+o(1) edges,
for ϵ, δ > 0.

Because our min-diameter approximation algorithms for DAGs obtain an approximation
factor better than 2 in truly subquadratic time, this gives the first separation of hardness
results for min-diameter approximation in the sparse cyclic versus acyclic cases.

This result, along with all other hardness results from SETH in this work, are via
Orthogonal Vectors (OV) reductions. The OV problem is as follows: Given two sets A, B

each containing n d-dimensional Boolean vectors, determine whether there are vectors a ∈ A

and b ∈ B that are orthogonal, meaning a · b = 0.

▶ OV Conjecture ([23]). There is no constant ϵ > 0 such that for any constant c and
d = c log n, the OV problem can be solved by a randomized algorithm in time O(n2−ϵ).

The OV Conjecture is implied by SETH [23]. OV-based sparse graph constructions have
been commonly used to provide hardness results for diameter variants for the past decade,
after having been first introduced by Roditty and Vassilevska W. in [20]. However, unlike
previous OV-based constructions known to us, our construction is of a graph shaped as a
cycle. If there are no orthogonal vectors then all vertices can reach one another via a single
loop around the cycle, whereas if there are orthogonal vectors a path between them must
loop nearly twice around the cycle, giving a min-diameter nearly twice as large.

As for upper bounds for general directed graphs, Dalirrooyfard et al. [15] gave for every
integer k ≥ 2, an Õ(mn1/k) time (4k − 5)-approximation algorithm for min-diameter. Most
recently, Chechik and Zhang [11] achieved a 4-approximation in near-linear time. There is
still a gap between the best approximation known in O(m2−ε) time (3 by [15]) and the best
hardness result for such algorithms (2 by this work for unweighted, and by [2] for weighted).

Bichromatic Min-Diameter
A bichromatic version of diameter was considered by Dalirrooyfard et al. [14]. In a graph
whose nodes are colored red and blue, the bichromatic diameter is the largest distance
between two nodes of different colors. Dalirrooyfard et al. [14] gave algorithms and hardness
for bichromatic diameter under the usual notion of distance.

2 Combinatorial is here used to refer to an algorithm that does not rely on fast matrix multiplication.
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Our work presents the first study of the notion of bichromatic min-diameter. As the
min-diameter is the most natural diameter notion for DAGs, the bichromatic min-diameter
is likewise a natural way to consider distances in DAGs whose vertices are two-colored.

We first give hardness for general directed graphs, suggesting that bichromatic min-
diameter may be harder than regular min-diameter:

▶ Theorem 3. Under SETH, there can be no O(m2−ε) time ( 5
2 − δ)-approximation algorithm

for bichromatic min-diameter in unweighted n-node, m = n1+o(1)-edge graphs for ϵ, δ > 0.
Furthermore, under SETH, there can be no O(m2−ε) time (3−δ)-approximation algorithm

for bichromatic min-diameter in graphs with O(log n) bit integer edge weights.

It would be interesting if the Õ(m
√

n) 3-approximation algorithm for min-diameter of
[15] can be extended to work for bichromatic min-diameter, as then one could get a tight
result in the weighted case.

We next turn to bichromatic min-diameter in DAGs. We give an almost-2-approximation
algorithm and show that it is essentially tight (up to the additive error) under SETH:

▶ Theorem 4. Under SETH, there can be no O(m2−ε) time (2 − δ)-approximation algorithm
for bichromatic min-diameter in unweighted n-node, m = n1+o(1)-edge DAGs, for ϵ, δ > 0.

▶ Theorem 5. There is an Õ(m4/3n1/3)-time algorithm, which, given a DAG and maximum
red-blue edge weight M , outputs a (2, M)-approximation of the bichromatic min-diameter.

Finally, we present a linear-time algorithm which determines whether a directed graph
has finite bichromatic min-diameter. The proof may be found in the full version of the paper
[7].

▶ Theorem 6. There is an O(m) time algorithm which checks, for any weighted directed
graph G, whether the bichromatic min-diameter is finite.

1.1 Preliminaries
We assume the word-RAM model of computation with O(log n) bit words. All of our
algorithms and reductions fall within this model.

Graphs in this work are directed and weakly connected.3 Edge weights are polynomial
in n.

The min-eccentricity of a vertex, ϵ(v), is given by maxu∈V dmin(u, v).
For v ∈ V , the distance-D out-neighborhood of v is Nout

D (v) = {w ∈ V \{v} | d(v, w) ≤ D}.
We define N in

D (v) correspondingly.
Given a DAG G with topological ordering π and vertex sets S, T ⊆ V = V (G), we write

S <π T if all vertices in S appear to the left of all vertices in T . When S or T is equal to
{x} for some vertex x, we may omit the brackets. For vertices s, t, we write s ≤π t if s <π t

or s = t. We define a closed subset (with respect to π) to be a subset S such that for all
v ∈ V , either v ∈ S, v >π S, or v <π S.

Given a DAG G with topological ordering π, a vertex v ∈ V and a set S ⊆ V , let sv ∈ S

be the left-most vertex in S such that d(v, s) ≤ D, if such an sv exists. Then we define
Nout

D,S(v) to be the set of vertices w such that d(v, w) ≤ D and, if sv exists, w ≤π sv. One
can intuitively think of Nout

D,S(v) as the set Nout
D (v) of vertices at distance at most D from v,

3 If a graph is not weakly connected (which can be checked in O(m + n) time), then it has infinite
min-diameter, as well as infinite bichromatic min-diameter if its vertices are 2-colored.
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but cut off after the first (left-most) time we hit S. We define N in
D,S(v) symmetrically. A set

S such that for all v, |Nout
d,S (v)|, |N in

d′,S(v)| ≤ k, will be called a (k, (d, d′))-neighborhood cover.
If d = d′ we refer to it as a (k, d)-neighborhood cover.

A bichromatic DAG G is a DAG whose vertices are two-colored. An (A, B)-separated
DAG, which we may also simply call a separated DAG is a DAG ordered according to some
topological ordering π with color sets A, B such that A <π B.

We sometimes omit π when the choice of π is clear.
Let ω(1, r, 1) be the exponent of the runtime of multiplying n × nr by nr × n matrices.

The square matrix multiplication exponent is ω = ω(1, 1, 1) > 2.37286 [4].

1.2 Techniques

In this section, we review two useful techniques. The first of these is the greedy set cover
lemma. This lemma, and a related randomized version, have been commonly used in prior
work on diameter variants ([3], [20], [8], [2], [13]). See [21] for a proof of the lemma.

▶ Lemma 7. Let p = O(n), and let X1, . . . Xp ⊆ V have size |Xi| ≥ nϵ for ϵ ∈ [0, 1]. In time
O(n1+ϵ) one can construct a set S ⊆ V of size O(n1−ϵ log n) such that S ∩ Xi ̸= ∅ for all
i ∈ [p].

The following technique, previously used in [13], constructs a set cover of all sufficiently
large balls of radius d.

▶ Lemma 8. Given a topologically ordered DAG G and parameters d, d′ and k = nϵ for
ϵ ∈ [0, 1], one can in time O(nk2) construct a (k, (d, d′))-neighborhood cover S of size
O( n

k log n), and also construct the sets Nout
d,S (v), N in

d′,S(v) for all v ∈ V .

Proof. For each vertex v, if |Nout
d (v)| < k, we define Xk

d (v) = Nout
d (v). Otherwise let Xk

d (v)
be the k left-most vertices in Nout

d (v). Similarly, we define the set Y k
d′(v): if |N in

d′ (v)| < k,
then Y k

d′(v) = N in
d′ (v), and otherwise Y k

d′(v) is the k right-most vertices in N in
d′ (v).

We can compute Xk
d (v) as follows: We initialize a set S0 = ∅. While |St| < k, at step

t, we consider the set W = Nout(St ∪ {v}) ∩ Nout
d (v) of out-neighbors of St ∪ {v} that are

at distance at most d from v. If W is nonempty, we let w be its left-most element, and
we construct St+1 = S ∪ {w}. If W is empty, then St = Nout

d (v) = Xk
d (v). If |St| = k,

then St contains the left-most k vertices in Nout
d (v). Thus, in either case, we will eventually

construct St = Xk
d (v). The key step in this construction process, namely finding w, can be

done by maintaining a list containing the left-most neighbor of each vertex in St such that
the neighbor is of distance at most d from v, and choosing the left-most vertex in the list at
each step. At step t, this list has length at most |St| < k, and the total number of steps is at
most k, so the construction can be done in O(k2) time.

We can construct Y k
d′(v) in O(k2) time similarly. Doing this for all v ∈ V takes time

O(nk2).
Lemma 7 gives us a set cover S of size O( n

k log n) which intersects all sets Xk
d (v), Y k

d′(v) of
size at least k. This takes time O(nk). Then for each vertex v, we construct Nout

d,S (v) as the
set obtained from Xk

d (v) by removing all vertices to the right of the left-most s ∈ S ∩ Xk
d (v).

We construct N in
d,S(v) in a symmetric fashion. Since the sets Xk

d (v), Y k
d′(v) were of size at

most k, the sets Nout
d,S (v), N in

d′,S(v) are also of size at most k. ◀

ESA 2023
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2 Min-diameter approximation

In Section 2.1 we present a conditional lower bound showing that the OV Conjecture implies
that no (2 − δ)-approximation algorithm for min-diameter in unweighted graphs can run in
truly subquadratic time. Subsequently, in Section 2.2, we give an almost- 3

2 -approximation
algorithm for min-diameter in unweighted DAGs which runs in truly subquadratic time.

2.1 Conditional lower bound in general graphs
We first present a conditional lower bound for approximating min-diameter in general graphs.

▶ Theorem 9. If there are ϵ, δ > 0 such that there is an O(m2−ϵ)-time (2 − δ)-approximation
algorithm for min-diameter, then the OV Conjecture is false.

Proof. Given δ > 0, choose t = ⌈ 2
δ ⌉ so that 2 − δ < 2t

t+1 . Let A be an instance of single-set
OV4, that is, a set of n ≥ 2t vectors in {0, 1}c0 log n for a constant c0 > 0. We will construct a
graph Gt with O(tn) vertices, Õ(tn) edges such that the min-diameter is 2t + 1 if A contains
a pair of orthogonal vectors, and t + 1 otherwise. For each i ∈ [t], we construct a set Ai

of n vertices corresponding bijectively to the vectors in A. For each vector a ∈ A, let ai

be the vertex in set Ai corresponding to a. We also construct a set I of “index” vertices
x1, . . . , xc log n. In total we have O(tn) vertices. We add an edge a1 → xj and an edge
xj → at whenever a[j] = 1. We also add edges ai → ai−1 for each i ∈ {2, . . . , t}. Finally,
we add all possible edges A2 → I. In total we have Õ(tn) edges. This graph Gt may be
constructed in Õ(tn) = Õ(n) time.

We now check that if the OV instance is a YES instance, Gt has at least min-diameter
2t + 1, and in the NO case, Gt has min-diameter t + 1.

Figure 1 The graph Gt. The thick edge denotes that all possible edges A2 → I exist.

YES case

Let a, b ∈ A be orthogonal. Without loss of generality, dmin(a1, b1) = d(a1, b1). There is no j

such that a[j] = b[j] = 1, so there is no length-2 path from a1 to bt via I. Since all edges
between Ai and Ai−1 are of the form ai → ai−1, the first t vertices on any a1 → b1 path

4 The OV Conjecture can be equivalently stated in terms of single-set OV (OV where A = B). Informally,
the reduction is to construct A′ from A by appending 10 to all vectors, and B′ from B by appending 01
to all vectors. If v1, v2 ∈ A′ ∪ B′ are orthogonal, then we must have v1 ∈ A′, v2 ∈ B′ or vice versa.



A. Berger, J. Kaufmann, and V. Vassilevska Williams 17:7

must be of the form a1 → xj → ct → · · · → c2 for some j ∈ I, c ∈ A such that a[j] = c[j] = 1.
We note that any path from c2 to b1 must traverse all sets of the cycle with the possible
exception of A1, so must be of length at least t. Then if k is an index such that b[k] = 1, the
path c2 → xk → bt → · · · → b1 gives d(c2, b1) = t + 1. Thus, d(a1, b1) = dmin(a1, b1) ≥ 2t + 1.
So Gt has min-diameter at least 2t + 1.

NO case

Suppose that A contains no pair of orthogonal vectors. For any a1, bi, there is some j such
that a[j] = b[j] = 1, so there is a path a1 → xj → bt → . . . bi of length at most t + 1. Now,
consider any vertices ai, bi′ with 2 ≤ i ≤ i′. Let j be an index such that b[j] = 1. There is a
path ai → . . . a2 → xj → bt → · · · → bi′ which has length at most t. Furthermore, for any
a1 ∈ A1, xj ∈ I, d(a1, xj) ≤ t + 1, since there is a path a1 → xk → at → · · · → a2 → xj for
some k with a[k] = 1. Lastly, for any ai ∈ Ai with i ≥ 2, and for any xj ∈ I, there is a path
ai → . . . a2 → xj of length at most t. Hence, all pairs of vertices are at min-distance at most
t + 1. ◀

2.2 A (3
2 , 1

2)-approximation algorithm in unweighted DAGs
Unlike in general directed graphs, where (2 − δ)-approximating min-diameter seems to be
hard, in DAGs one can achieve an efficient ( 3

2 , 1
2 )-approximation and a (slightly less) efficient

3
2 -approximation. The ( 3

2 , 1
2 ) and the exact 3

2 approximations have very similar proofs; we
present the proof of the ( 3

2 , 1
2 )-approximation result here because the algorithm is faster and

marginally simpler than in the exact 3
2 case, whose proof can be found in the full version of

the paper [7].
Our algorithm uses fast sparse matrix multiplication to compute set intersections. Its

runtime involves the constants α = max{0 ≤ r ≤ 1 | ω(1, r, 1) = 2} and β = ω−2
1−α .

▶ Theorem 10. There is an Õ(m
4β+2−2αβ
5β+3−2αβ n)-time algorithm achieving a ( 3

2 , 1
2 )-approximation

for min-diameter in unweighted DAGs.

Since α > 0.31389 [17] and ω < 2.37286 [4], we can use β ≃ 0.5435, giving the runtime
O(m0.713n).

The algorithm starts by topologically sorting the DAG and fixing a neighborhood-
size parameter k (whose value will be determined later). It then performs two layers of
recursion. The outer layer is a binary search over min-diameter estimates D: for each
estimate D, it will either determine that D is low or high, i.e. that min-diameter(G) > D

or min-diameter(G) ≤ ⌈ 3
2 D⌉. The inner layer, in which the estimate D is fixed, involves

recursively splitting the graph in half according to the topological ordering. Then, in the
core body of the algorithm, one of the following will occur:

We find a pair of vertices with min-distance larger than D, in which case we end the
recursion and report that min-diameter(G) > D.
We verify that every min-distance between a vertex in the left half and a vertex in the
right half is at most ⌈3D/2⌉, and we recurse on the left and right halves of the graph.

The core body of the algorithm – which will be repeated recursively as the graph is
repeatedly cut in half – is as follows:

First, using Lemma 8, we compute a (k, (D/2, ⌈D/2⌉))-neighborhood cover S of size
O( n

k log n) along with neighborhoods Nout
D/2,S(v), N in

⌈D/2⌉,S(v) all of which have size at most
k. Using BFS, we check that dmin(s, v) ≤ D for all s ∈ S, v ∈ V . This step ensures that, for

ESA 2023
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every vertex with a “sufficiently large” (meaning, size-k) distance-D/2 out-neighborhood or
distance-⌈D/2⌉ in-neighborhood, some vertex in S lies in that out- or in-neighborhood. In
this sense, S covers all of the large neighborhoods, which will be useful later.

We partition V into 2θ = n/k2 closed intervals, V1, . . . V2θ. We let L = V1 ∪ · · · ∪ Vθ and
R = Vθ+1 ∪ · · · ∪ V2θ be the left and right halves of V . We start in the middle and work
outwards verifying that min-distances between vertices in L and R are at most ⌈3D/2⌉.

At each inductive step, we consider two subsets of vertices A = Vi and B = Vj to the left
and right of the “middle interval,” which consists of the intervening subsets Vi+1 ∪ · · · ∪ Vj−1.
Intuitively, one might picture the middle interval as a growing amoeba, which at each step
engulfs one of A or B. We will only add vertices to the middle interval once they have
been “checked,” so vertices from A that are added to the middle interval have distance at
most 3D/2 to everything in B, and vice-versa. Eventually, either the algorithm will detect a
min-distance greater than D and report that min-diameter(G) > D, or the amoeba will
have engulfed enough of the graph that it contains the entirety of one of the halves L or R,
meaning that all distances from vertices in L to vertices in R are at most ⌈ 3

2 D⌉.
In order to expand the middle interval we have to confirm that one of our two candidate

subsets A and B has small distances to the opposite half of the graph. Performing a BFS
from each vertex in A or B to confirm this directly would be too slow, so instead we present
two subroutines to achieve this goal faster. Algorithm 2 checks that all min-distances between
vertices a ∈ A and b ∈ B are at most ⌈3D/2⌉. Algorithm 3 checks that either all vertices in A

have min-distance at most 3
2 D to all vertices to the right of B, or that a symmetric property

holds for all vertices in B. These algorithms will either detect that the min-diameter is more
than D or allow us to add one of A or B to the middle interval.

We first give a pseudocode description of the main algorithm, Algorithm 1, which will give
context for the two subroutines, Algorithms 2 and 3, whose descriptions follow afterwards.

We will present the correctness and runtime analyses for the two subroutines, and then
present the correctness proof and runtime analysis for the overall algorithm.

The first subroutine, Algorithm 2, checks distances between pairs of vertices in subsets
A, B by using the cover S to hit large neighborhoods and using fast sparse rectangular matrix
multiplication to efficiently check set intersections between small neighborhoods.

▶ Theorem 11 ([19]). If M, M ′ are p × l matrices having at most l nonzero entries, where
p1+ α

2 ≤ l ≤ p
ω+1

2 , then in time O(l
2β

β+1 p
2−αβ
β+1 ) one can compute the product MT M ′.5

▶ Lemma 12. Algorithm 2 produces the correct output in runtime O(k4+ 2β−2αβ
β+1 ).

Proof. We first show correctness. Assume the algorithm fails; then it fails inside the foreach
loop at some pair a, b. Suppose for the sake of contradiction that dmin(a, b) ≤ D. Let
x be a midpoint of the shortest path from a to b, so d(a, x) ≤ D/2, d(x, b) ≤ ⌈D/2⌉.
If x /∈ Nout

D/2,S(a) despite being distance ≤ D/2 from a, then x must lie after the out-
neighborhood of a reaches the (k, (D/2, ⌈D/2⌉))-neighborhood cover S and is cut off. That is,
there is some s ∈ Nout

D/2(a) ∩ S to the left of x, and hence to the left of b. Thus the condition
in line 9 holds, and we continue rather than FAIL, which is a contradiction. Similarly, if
x /∈ N in

⌈D/2⌉,S(b) then the condition in line 7 holds, which is a contradiction. We conclude
that x ∈ Nout

D/2,S(a) ∩ N in
⌈D/2⌉,S(b), in which case Mab ≥ 1, completing the contradiction.

Thus, dmin(a, b) > D, and so min-diameter(G) > D.

5 To be precise, if we have α ≥ a, ω ≤ c, we can define b = c−2
1−a , and then the theorem holds for any such

pair a, b, used in place of α, β.
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Algorithm 1 Full graph min-distance tester.

Input: DAG G = (V, E), diameter guess D, parameters k = m
β+1

5β+3−2αβ and
θ = n/2k2.

Output: One of the following. Each output verifies a corresponding property of G.
PASS ⇒ min-diameter(G) ≤ ⌈ 3

2 D⌉
FAIL ⇒ min-diameter(G) > D

1 Topologically sort G;
2 Using Lemma 8 compute a (k, (D/2, ⌈D/2⌉))-neighborhood cover S ⊆ V . Run BFS

to and from each vertex in S;
3 if ∃s ∈ S such that ϵ(s) > D then
4 FAIL
5 Partition V into consecutive closed intervals, V1, . . . V2θ, with |Vi| = k2 for each i;
6 Initialize i = θ and j = θ + 1;
7 while i ≥ 1 and j ≤ 2θ do
8 Run Algorithm 2 (all-pairs) on the pair (Vi, Vj). If this fails, then FAIL;
9 Run Algorithm 3 (directional tester) on the pair (Vi, Vj). If this fails, then FAIL;

10 else if Algorithm 3 passes and returns Vi then
11 i = i − 1;
12 else

/* Otherwise, Algorithm 3 passes and returns Vj. */
13 j = j + 1;

/* If this line is reached, all distances from L to R are at most
⌈ 3

2 D⌉. */
14 Recursively call this algorithm on G[L] and G[R]. If either fails, FAIL. Else PASS;

Conversely, assume the algorithm passes. Then for each pair of vertices a ∈ A, b ∈ B,
one of the conditions in lines 5, 7, or 9 must hold. If Mab ≥ 1, then there is some x ∈
Nout

D/2,S(a)∩N in
⌈D/2⌉,S(b), giving d(a, b) ≤ d(a, x)+d(x, b) ≤ D/2+⌈D/2⌉ ≤ D+1. Otherwise

if a <π N in
⌈D/2⌉,S(b) and N in

⌈D/2⌉,S(b) ∩ S is nonempty, then there is some s ∈ N in
⌈D/2⌉,S(b) ∩ S

with s ≥π a. Thus d(a, b) ≤ d(a, s) + d(s, b) ≤ D + ⌈D/2⌉ ≤ ⌈3D/2⌉. Similarly, if
b >π Nout

D/2,S(a) and Nout
D/2,S(a) ∩ S is nonempty, then there is some s ∈ Nout

D/2(a) ∩ S with
s ≤π b. So d(a, b) ≤ d(a, s) + d(s, b) ≤ D/2 + D ≤ 3D/2. We conclude that if the algorithm
passes, then every pair a ∈ A, b ∈ B satisfies d(a, b) ≤ ⌈3D/2⌉.

We conclude with runtime analysis. Ma and Mb are sparse p × n matrices with O(pk) =
O(k3) entries, so may be treated as p × pk matrices. Using Theorem 11, the matrix
multiplication takes time at most O((pk)

2β
β+1 p

2−αβ
β+1 ) = O(k4+ 2β−2αβ

β+1 ). The foreach loop
takes O(|A||B|) = O(k4) time. ◀

▶ Remark 13. One can modify Algorithm 2 by computing set intersections of the sets
Nout

D/2,S(a), N in
⌈D/2⌉,S(b) for a ∈ A, b ∈ B, by brute force in lieu of matrix multiplication. This

gives a combinatorial version of Algorithm 2 which runs in time Õ(p2k) = Õ(k5).

Next we give the directional min-distance tester. A call to this subroutine will prove a
min-distance bound of 3D/2 from A to everything past B, prove a bound of ⌈3D/2⌉ from B

to everything before A, or find a pair of vertices with min-distance greater than D. The idea
is to iterate over vertices a in A; those with large D/2-neighborhoods get hit by S, and if
some a has a small D/2-neighborhood it can be used as a jumping-off set to show B is close
to everything past A.
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Algorithm 2 All-pairs min-distance tester.

Input: DAG G = (V, E), topological ordering π, subsets A <π B ⊆ V with
|A| = |B| = p = O(k2), diameter guess D, (k, (D/2, ⌈D/2⌉))-neighborhood
cover S ⊆ V such that ϵ(s) ≤ D for all s ∈ S, and Nout

D/2,S(a), N in
⌈D/2⌉,S(b) for

a ∈ A, b ∈ B.
Output: One of the following. Each output verifies a corresponding property of G.

PASS ⇒ dmin(a, b) ≤ ⌈ 3
2 D⌉ for all in a ∈ A and b ∈ B

FAIL ⇒ min-diameter(G) > D

1 Compute MA, the matrix with columns given by indicator vectors of Nout
D/2,S(a) for

a ∈ A;
2 Compute MB , the matrix with columns given by indicator vectors N in

⌈D/2⌉,S(b) for
b ∈ B;

3 Compute M = MT
A MB ;

4 foreach a ∈ A, b ∈ B do
5 if Mab ≥ 1 then
6 continue;
7 else if a <π N in

⌈D/2⌉,S(b) and N in
⌈D/2⌉,S(b) ∩ S ̸= ∅ then

8 continue;
9 else if b >π Nout

D/2,S(a) and Nout
D/2,S(a) ∩ S ̸= ∅ then

10 continue;
11 else
12 FAIL;

13 PASS;

▶ Lemma 14. Algorithm 3 produces the correct output in runtime O(mk).

Proof. We first show correctness. If the algorithm fails, we must have found a vertex u with
ϵ(u) > D, and thus min-diameter(G) > D.

If the algorithm returns A, then for each a ∈ A, there is some s ∈ S ∩ Nout
D/2,S(a) with

s appearing in B or to its left. Thus for all u >π B, we have d(a, u) ≤ d(a, s) + d(s, u) ≤
D/2 + D = 3D/2.

Otherwise, the algorithm returns B. Then the condition in line 2 must hold for some
a ∈ A. Let u <π A and b ∈ B. Since we do not fail in line 5, we must have d(a, b) ≤ D.
Let x be a midpoint of the shortest path from a to b, so d(a, x) ≤ D/2 and d(x, b) ≤ ⌈D/2⌉.
Since Nout

D/2,S(a) is either not cut off by hitting S or is cut off after B, we have x ∈ Nout
D/2,S(a).

Finally, since we do not fail in line 5, we must have d(u, x) ≤ D. Concluding, d(u, b) ≤
d(u, x) + d(x, b) ≤ D + ⌈D/2⌉ ≤ ⌈3D/2⌉. As u, b were arbitrary, this completes the case.

We conclude with runtime analysis. The outer foreach loop repeats until we have covered
every vertex in A or the condition in line 2 is satisfied. Checking this condition takes time
at most O(k) for a total of O(|A|k) = O(mk). If the condition is satisfied, we perform
1 + |Nout

D/2,S(a)| calls to BFS, for a total of O(mk). The algorithm concludes before returning
to the outer loop, so we may add these contributions for a total time of O(mk). ◀

We can now complete the analysis of the overall algorithm.

▶ Lemma 15. Algorithm 1 produces the correct output in runtime Õ(m
4β+2−2αβ
5β+3−2αβ n).
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Algorithm 3 Directional min-distance tester.

Input: DAG G = (V, E), topological ordering π, closed subsets A <π B ⊆ V ,
diameter guess D, parameter k, (k, (D/2, ⌈D/2⌉))-neighborhood cover S ⊆ V

with ϵ(s) ≤ D for all s ∈ S, and neighborhoods Nout
D/2,S(a) for all a ∈ A.

Output: One of the following. Each output verifies a corresponding property of G.
PASS and return A ⇒ d(a, v) ≤ 3

2 D for all a ∈ A and v >π B

PASS and return B ⇒ d(v, b) ≤ ⌈ 3
2 D⌉ for all b ∈ B and v <π A

FAIL ⇒ min-diameter(G) > D

1 foreach a ∈ A do
2 if Nout

D/2,S(a) ∩ S = ∅ or Nout
D/2,S(a) ∩ S >π B then

3 foreach v ∈ {a} ∪ Nout
D/2,S(a) do

4 BFS to and from v;
5 if ϵ(v) > D then
6 FAIL;

7 PASS and return B;

8 PASS and return A;

Proof. This algorithm fails only when some s ∈ S has ϵ(s) > D, when Algorithm 2 fails, or
Algorithm 3 fails, all of which imply min-diameter(G) > D. We now show that in the event
of a pass, min-diameter(G) ≤ ⌈3D/2⌉. It suffices to prove that if the algorithm reaches line
13 then all min-distances between vertices in L and R are at most ⌈3D/2⌉.

Assume we are at the beginning of iteration t of the while loop. Let It =
⋃

i<ℓ<j Vℓ be
the interval strictly between Vi and Vj . We will show inductively that for all x ∈ L and
y ∈ R, where at least one of x or y is in the interval It, dmin(x, y) ≤ ⌈3D/2⌉. When the loop
terminates, It must entirely contain either L or R, which will prove that all min-distance
between vertices in L and R are at most ⌈3D/2⌉.

The base case is trivial, as I1 is empty. Assume the claim holds for t. Without loss of
generality, assume Algorithm 3 returns Vi, so that It+1 = It ∪ Vi. Let x ∈ L, y ∈ R with at
least one of x or y in It+1. If x or y is in It, then d(x, y) ≤ ⌈3D/2⌉ by induction. Otherwise,
one must lie in It+1 \ It = Vi, and since Vi ⊂ L, this vertex must be x. Then we have y ∈ Vj

or y >π Vj . If y ∈ Vj , then since Algorithm 2 did not fail, we have d(x, y) ≤ 3D/2. If
y >π Vj , then because Algorithm 3 returned Vi we have d(x, y) ≤ ⌈3D/2⌉. This completes
the induction and the proof of correctness.

G can be topologically sorted in time Õ(n). Lemma 8 constructs the set S in time O(nk2).
Running BFS to and from each vertex in S takes time Õ(mn/k). We run Algorithm 2 and
Algorithm 3 each up to 2θ = n/2k2 times. Since Algorithm 2 takes time O(k4+ 2β−2αβ

β+1 ) and
Algorithm 3 takes time O(mk), the total runtime of a recursive step is therefore:

Õ(mn/k + nk2+ 2β−2αβ
β+1 )

Setting k = m
β+1

5β+3−2αβ , we obtain Õ(m
4β+2−2αβ
5β+3−2αβ n) for each recursive step. The recursion

over the left and right halves of the graph then adds a logarithmic factor. ◀

Proof of Theorem 10. Binary searching over D ∈ [n] using Algorithm 1 gives the desired
algorithm. The additive +1/2 follows from the fact that ⌈3D/2⌉ may equal 3D/2 + 1/2. ◀

▶ Remark 16. Using the combinatorial version of Algorithm 2, one can obtain a combinatorial
( 3

2 , 1
2 )-approximation algorithm for min-diameter which runs in time Õ(m3/4n).
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▶ Theorem 17. There is a 3
2 -approximation algorithm for min-diameter in unweighted DAGs

that runs in time Õ(m
8β+4−4αβ
5β+3−2αβ n

β+1
5β+3−2αβ ).

This runtime is at most O(m1.426n0.288). We note that there is also a combinatorial
version of this algorithm which runs in time Õ(m5/4n1/2), and a version which runs in
Õ(m

7β+3−3αβ
5β+3−2αβ n

2β+2−αβ
5β+3−2αβ ) time, which is O(m1.171n0.543), when m ≤ n1.283. A proof of the

theorem may be found in the full version of the paper [7].

3 Bichromatic min-diameter

We first present OV-based conditional lower bounds for bichromatic min-diameter ap-
proximations, both for general graphs and for DAGs. Then in Section 3.2, we give an
almost-2-approximation algorithm for bichromatic min-diameter in DAGs.

3.1 Conditional lower bounds for bichromatic min-diameter
We present, in order of increasing strength of the bound, three conditional lower bounds for
approximating bichromatic min-diameter: one for DAGs, one for unweighted directed graphs,
and one of weighted directed graphs. The constructions proceed analogously to Theorem 9,
and can be found in the full version of the paper [7].

▶ Theorem 18. For any ϵ, δ > 0 if there is an O(n2−ϵ)-time algorithm giving a (2 − δ)-
approximation for bichromatic min-diameter in unweighted DAGs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

▶ Theorem 19. For any ϵ, δ > 0, if there is an O(n2−ϵ)-time algorithm giving a (5/2 − δ)-
approximation for bichromatic min-diameter in unweighted graphs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

▶ Theorem 20. For any ϵ, δ > 0, if there is an O(n2−ϵ)-time algorithm giving a (3 − δ)-
approximation for bichromatic min-diameter in weighted graphs with O(n) vertices and
O(n1+o(1)) edges, then the OV Conjecture is false.

3.2 Almost-2-approximation for bichromatic min-diameter in DAGs
We conclude by turning to upper bounds for bichromatic min-diameter.

▶ Theorem 21. There is an Õ(min(m4/3n1/3, m1/2n3/2))-time algorithm, which, given a
DAG G with maximum red-blue edge weight M0, outputs an approximation D0 such that
D ≤ D0 < 2D + M0 ≤ 3D.

We give a brief overview of the algorithm. The full details and proof of correctness can
be found in the full version of the paper [7].

We first consider the simpler case when the DAG is separated, i.e. when in some topological
ordering every red vertex is to the left of every blue vertex. As is typical, we proceed by a
binary search; at each stage we have some guess D for the bichromatic min-diameter and
either verify the true bichromatic min-diameter is larger than D or smaller than 2D.

We begin by finding a hitting set for the red vertices with large red outneighborhoods
(other red vertices at distance at most D). This is achieved via the standard sampling method
(Lemma 8). By running a BFS from this hitting set, we can verify min-distances for all
vertices hit in this way to the blue side are not large; it remains to control vertices with
small red out-neighborhoods. This is handled separately for sparse and dense graphs.
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For sparse graphs, we add an additional step of BFS for each vertex of high degree. By
sparsity, this must be a small fraction of the vertices, so this has a controllable contribution
to the total runtime. For any red vertex with a high-degree vertex in its red outneighborhood,
this will again verify an upper bound on the min-distance to any blue vertex. At this stage,
if any vertex is left, its red outneighborhood is composed of few vertices of low degree. Its
blue boundary, the set of blue neighbors of vertices in its red outneighborhood, must therefore
be small. Consider a single such vertex. Any path from it to a blue vertex must intersect its
blue boundary. So its blue boundary must be a hitting set for blue in-neighborhoods of all of
the blue vertices, or our red vertex would be unable to reach all blue vertices in distance D.
BFSing from this small blue hitting set completes the algorithm.

For dense graphs, the BFS steps from every vertex of high degree and every vertex in a
blue boundary become too costly. After eliminating vertices with large neighborhoods via
the randomized hitting set, we compute blue in-neighborhoods for all remaining blue vertices
and blue boundaries for all remaining red vertices, and conclude by running set intersection
on these two lists of sets.

We then bootstrap this special case for separated DAGs into a complete proof, by
recursively splitting the DAG into a “middle” (consisting of a separated DAG) along with left
and right halves, and bounding min-distances between these different sections of the graph.
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