
Space-Efficient Parameterized Algorithms on
Graphs of Low Shrubdepth
Benjamin Bergougnoux #

Institute of Informatics, University of Warsaw, Poland

Vera Chekan #

Humboldt-Universität zu Berlin, Germany

Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Mamadou Moustapha Kanté #

Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Sang-il Oum #

Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea
Department of Mathematical Sciences, KAIST, Daejeon, Korea

Michał Pilipczuk #

Institute of Informatics, University of Warsaw, Poland

Erik Jan van Leeuwen #

Dept. Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques
used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or
tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s
width, and there are good reasons to believe that this is necessary. However, it has been shown that in
graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity
without requiring worse time complexity than their counterparts working on tree decompositions of
bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account
both the depth and the width of a tree decomposition of the graph, rather than the width alone.

Motivated by the above, we consider graphs that admit clique expressions with bounded depth
and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth
analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth.
We show that also in this setting, bounding the depth of the decomposition is a deciding factor for
improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a
tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels,

Independent Set can be solved in time 2O(dk) · nO(1) using O(dk2 log n) space;
Max Cut can be solved in time nO(dk) using O(dk log n) space; and
Dominating Set can be solved in time 2O(dk) · nO(1) using nO(1) space via a randomized
algorithm.

We also establish a lower bound, conditional on a certain assumption about the complexity of
Longest Common Subsequence, which shows that at least in the case of Independent Set the
exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep
the space complexity polynomial.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized complexity, shrubdepth, space complexity, algebraic methods

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.18

© Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich,
Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 18;
pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.bergougnoux@mimuw.edu.pl
mailto:vera.chekan@informatik.hu-berlin.de
https://orcid.org/0000-0002-6165-1566
mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:mamadou.kante@uca.fr
https://orcid.org/0000-0003-1838-7744
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:sangil@ibs.re.kr
https://orcid.org/0000-0002-6889-7286
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:e.j.vanleeuwen@uu.nl
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.ESA.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Related Version Full Version: https://arxiv.org/abs/2307.01285 [5]

Funding Vera Chekan: Supported by the DFG Research Training Group 2434 “Facets of Complex-
ity”.
Robert Ganian: Project No. Y1329 of the Austrian Science Fund (FWF), WWTF Project ICT22-029.
Mamadou Moustapha Kanté: Supported by the French National Research Agency (ANR-18-CE40-
0025-01 and ANR-20-CE48-0002).
Sang-il Oum: Supported by the Institute for Basic Science (IBS-R029-C1).
Michał Pilipczuk: This work is a part of project BOBR that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 948057).

Acknowledgements This work was initiated at the Graph Decompositions: Small Width, Big
Challenges workshop held at the Lorentz Center in Leiden, The Netherlands, in 2022.

1 Introduction

Treewidth and Treedepth. Dynamic programming on graph decompositions is a funda-
mental method in the design of parameterized algorithms. Among various decomposition
notions, tree decompositions, which underly the parameter treewidth, are perhaps the most
widely used; see e.g. [9, 12] for an introduction. A tree decomposition of a graph G of width k

provides a way to “sweep” G while keeping track of at most k + 1 “interface vertices” at a
time. This can be used for dynamic programming: during the sweep, the algorithm maintains
a set of representative partial solutions within the part already swept, one for each possible
behavior of a partial solution on the interface vertices. Thus, the width of the decomposition
is the key factor influencing the number of partial solutions that need to be stored.

In a vast majority of applications, this number of different partial solutions depends (at
least) exponentially on the width k of the decomposition, which often leads to time complexity
of the form f(k) · nO(1) for an exponential function f . This should not be surprising, as most
problems where this technique is used are NP-hard. Unfortunately, the space complexity –
which often appears to be the true bottleneck in practice – is also exponential. There is a
simple tradeoff trick, first observed by Lokshtanov et al. [29], which can often be used to
reduce the space complexity to polynomial at the cost of increasing the time complexity. For
instance, Independent Set can be solved in 2k · nO(1) time and using 2k · nO(1) space on an
n-vertex graph equipped with a width-k tree decomposition via dynamic programming [19];
combining this algorithm with a simple recursive Divide&Conquer scheme yields an algorithm
with running time 2O(k2) · nO(1) and space complexity nO(1).

Allender et al. [2] and then Pilipczuk and Wrochna [35] studied the question whether the
loss on the time complexity is necessary if one wants to achieve polynomial space complexity
in the context of dynamic programming on tree decompositions. While the formal formulation
of their results is somewhat technical and complicated, the take-away message is the following:
there are good complexity-theoretical reasons to believe that even in the simpler setting
of path decompositions, one cannot achieve algorithms with polynomial space complexity
whose running times asymptotically match the running times of their exponential-space
counterparts. We refer to the works [2, 35] for further details.

However, starting with the work of Fürer and Yu [20], a long line of advances [25, 31, 32, 35]
showed that bounding the depth, rather than the width, of a decomposition leads to the
possibility of designing algorithms that are both time- and space-efficient. To this end, we
consider the treedepth of a graph G, which is the least possible depth of an elimination
forest: a forest F on the vertex set of G such that every two vertices adjacent in G are in the

https://arxiv.org/abs/2307.01285

B. Bergougnoux et al. 18:3

ancestor/descendant relation in F . An elimination forest of depth d can be regarded as a tree
decomposition of depth d, and thus treedepth is the bounded-depth analogue of treewidth. As
shown in [20, 25, 32, 35], for many classic problems, including 3-Coloring, Independent
Set, Dominating Set, and Hamiltonicity, it is possible to design algorithms with running
time 2O(d) · nO(1) and polynomial space complexity, assuming the graph is supplied with
an elimination forest of depth d. In certain cases, the space complexity can even be as low
as O(d + log n) or O(d log n) [35]. Typically, the main idea is to reformulate the classic
bottom-up dynamic programming approach so that it can be replaced by a simple top-down
recursion. This reformulation is by no means easy – it often involves a highly non-trivial use of
algebraic transforms or other tools of algebraic flavor, such as inclusion-exclusion branching.

Cliquewidth and Shrubdepth. In this work, we are interested in the parameter cliquewidth
and its low-depth counterpart: shrubdepth. While treewidth applies only to sparse graphs,
cliquewidth is a notion of tree-likeness suited for dense graphs as well. The decompositions
underlying cliquewidth are called clique expressions [8]. A clique expression is a term
operating over k-labelled graphs – graphs where every vertex is assigned one of k labels –
and the allowed operations are: (i) apply any renaming function to the labels; (ii) make
a complete bipartite graph between two given labels; and (iii) take the disjoint union of
two k-labelled graphs. Then the cliquewidth of G is the least number of labels using which
(some labelling of) G can be constructed. Similarly to treewidth, dynamic programming over
clique expressions can be used to solve a wide range of problems, in particular all problems
expressible in MSO1 logic, in FPT time when parameterized by cliquewidth. Furthermore,
while several problems involving edge selection or edge counting, such as Hamiltonicity
or Max Cut, remain W[1]-hard under the cliquewidth parameterization [16, 17], standard
dynamic programming still allows us to solve them in XP time. In this sense, clique-width
can be seen as the “least restrictive” general-purpose graph parameter which allows for
efficient dynamic programming algorithms where the decompositions can also be computed
efficiently [18]. Nevertheless, since the cliquewidth of a graph is at least as large as its linear
cliquewidth, which in turn is as large as its pathwidth, the lower bounds of Allender et al. [2]
and of Pilipczuk and Wrochna [35] carry over to the cliquewidth setting. Hence, reducing
the space complexity to polynomial requires a sacrifice in the time complexity.

Shrubdepth, introduced by Ganian et al. [23], is a variant of cliquewidth where we stipulate
the decomposition to have bounded depth. This necessitates altering the set of operations
used in clique expressions in order to allow taking disjoint unions of multiple graphs as a single
operation. In this context, we call the decompositions used for shrubdepth (d, k)-tree-models,
where d stands for the depth and k for the number of labels used; a formal definition is
provided in Section 2. Shrubdepth appears to be a notion of depth that is sound from the
model-theoretic perspective, is FPT-time computable [21], and has become an important
concept in the logic-based theory of well-structured dense graphs [13, 14, 22, 23, 33, 34].

Since shrubdepth is a bounded-depth analogue of cliquewidth in the same way as treedepth
is a bounded-depth analogue of treewidth, it is natural to ask whether for graphs from classes
of bounded shrubdepth, or more concretely, for graphs admitting (d, k)-tree-models where
both d and k are considered parameters, one can design space-efficient FPT algorithms.
Exploring this question is the topic of this work.

Our contribution. We consider three example problems: Independent Set, Max Cut,
and Dominating Set. For each of them we show that on graphs supplied with (d, k)-tree-
models where d = O(1), one can design space-efficient fixed-parameter algorithms whose

ESA 2023

18:4 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

running times asymptotically match the running times of their exponential-space counterparts
working on general clique expressions. While we focus on the three problems mentioned above
for concreteness, we in fact provide a more general algebraic framework, inspired by the work
on the treedepth parameterization [20, 25, 31, 32, 35], that can be applied to a wider range of
problems. Once the depth d is not considered a constant, the running times of our algorithms
increase with d. To mitigate this concern, we give a conditional lower bound showing that
this is likely to be necessary if one wishes to keep the space complexity polynomial.

Recall that standard dynamic programming solves the Independent Set problem in time
2k · nO(1) and space 2k · nO(1) on a graph constructed by a clique expression of width k [19].
Our first contribution is to show that on graphs with (d, k)-tree-models, the space complexity
can be reduced to as low as O(dk2 · log n) at the cost of allowing time complexity 2O(dk) ·nO(1).
In fact, we tackle the more general problem of computing the independent set polynomial.

▶ Theorem 1.1. There is an algorithm which takes as input an n-vertex graph G along with
a (d, k)-tree model of G, runs in time 2O(kd) · nO(1) and uses at most O(dk2 log n) space, and
computes the independent set polynomial of G.

The idea of the proof of Theorem 1.1 is to reorganize the computation of the standard
bottom-up dynamic programming by applying the zeta-transform to the computed tables.
This allows a radical simplification of the way a dynamic programming table for a node
is computed from the tables of its children, so that the whole dynamic programming can
be replaced by top-down recursion. Applying just this yields an algorithm with space
polynomial in n. We reduce space to O(dk2 log n) by computing the result modulo several
small primes, and using space-efficient Chinese remaindering. This is inspired by the algorithm
for Dominating Set on graphs of small treedepth of Pilipczuk and Wrochna [35].

In fact, the technique used to prove Theorem 1.1 is much more general and can be
used to tackle all coloring-like problems of local character. We formalize those under a
single umbrella by solving the problem of counting List H-homomorphisms (for an arbitrary
but fixed pattern graph H), for which we provide an algorithm with the same complexity
guarantees as those of Theorem 1.1. The concrete problems captured by this framework
include, e.g., Odd Cycle Transveral and q-Coloring for a fixed constant q (details in
the full version).

Next, we turn our attention to the Max Cut problem. This problem is W[1]-hard when
parameterized by cliquewidth, but it admits a simple nO(k)-time algorithm on n-vertex graphs
provided with clique expressions of width k [17]. Our second contribution is a space-efficient
counterpart of this result for graphs equipped with bounded-depth tree-models.

▶ Theorem 1.2. There is an algorithm which takes as input an n-vertex graph G along with
a (d, k)-tree model of G, runs in time nO(dk) and uses at most O(dk log n) space, and solves
the Max Cut problem on G.

Upon closer inspection, the standard dynamic programming for Max Cut on clique
expressions solves a Subset Sum-like problem whenever aggregating the dynamic program-
ming tables of children to compute the table of their parent. We apply the approach of
Kane [27] that was used to solve Unary Subset Sum in logarithmic space: we encode the
aforementioned Subset Sum-like problem as computing the product of polynomials, and
use Chinese remaindering to compute this product in a space-efficient way.

Finally, we consider the Dominating Set problem, for which we prove the following.

▶ Theorem 1.3. There is a randomized algorithm which takes as input an n-vertex graph G

along with a (d, k)-tree model of G, runs in time 2O(dk) · nO(1) and uses at most O(dk2 log n +
n log n) space, and reports the minimum size of a dominating set in G that is correct with
probability at least 1/2.

B. Bergougnoux et al. 18:5

Note that the algorithm of Theorem 1.3 is randomized and uses much more space than
our previous algorithms: more than n log n. The reason for this is that we use the inclusion-
exclusion approach proposed very recently by Hegerfeld and Kratsch [26], which is able
to count dominating sets only modulo 2. Consequently, while the parity of the number
of dominating sets of certain size can be computed in space O(dk2 log n), to determine
the existence of such dominating sets we use the Isolation Lemma and count the parity of
the number of dominating sets of all possible weights. This introduces randomization and
necessitates sampling – and storing – a weight function. At this point we do not know how
to remove neither the randomization nor the super-linear space complexity in Theorem 1.3;
we believe this is an excellent open problem.

Note that in all the algorithms presented above, the running times contain a factor d in
the exponent compared to the standard (exponential-space) dynamic programming on clique
expressions. The following conditional lower bound shows that some additional dependency
on the depth is indeed necessary; the relevant precise definitions are provided in Section 4.

▶ Theorem 1.4. Suppose Longest Common Subsequence cannot be solved in time Mf(r)

and space f(r) · MO(1) for any computable function f , even if the length t of the sought
subsequence is bounded by δ(N) for any unbounded computable function δ; here r is the
number of strings on input, N is the common length of each string, and M is the total bitsize
of the instance. Then for every unbounded computable function δ, there is no algorithm that
solves the Independent Set problem in graphs supplied with (d, k)-tree-models satisfying
d ⩽ δ(k) that would run in time 2O(k) · nO(1) and simultaneously use nO(1) space.

The possibility of achieving time- and space-efficient algorithms for Longest Common
Subsequence was also the base of conjectures formulated by Pilipczuk and Wrochna [35]
for their lower bounds against time- and space-efficient algorithms on graphs of bounded
pathwidth. The supposition made in Theorem 1.4 is a refined version of those conjectures
that takes also the length of the sought subsequence into account. The reduction underlying
Theorem 1.4 is loosely inspired by the constructions of [35], but requires new ideas due to
the different setting of tree-models of low depth.

Finally, given that the above results point to a fundamental role of shrubdepth in
terms of space complexity, it is natural to ask whether shrubdepth can also be used to
obtain meaningful tractability results with respect to the “usual” notion of fixed-parameter
tractability. We conclude our exposition by highlighting two examples of problems which are
NP-hard on graphs of bounded cliquewidth (and even of bounded pathwidth) [7, 28], and
yet which admit fixed-parameter algorithms when parameterized by the shrubdepth.

▶ Theorem 1.5. Metric Dimension and Firefighter can be solved in fixed-parameter
time on graphs supplied with (d, k)-tree-models, where d and k are considered the parameters.

In this work some technical details have been omitted due to space constraints. We refer
to the full version of the paper for all proofs [5].

2 Preliminaries

For a positive integer k, we denote by [k] = {1, . . . , k} and [k]0 = [k] ∪ {0}. For a function
f : A → B and elements a, b (not necessarily from A ∪ B), the function f [a 7→ b] : A ∪ {a} →
B ∪ {b} is given by f [a 7→ b](x) = f(x) for x ̸= a and f [a 7→ b](a) = b. We use standard
graph terminology [11]. The full proofs of our results also require the use of algebraic tools –
notably the cover product and the fast subset convolution machinery of Björklund et al. [6].

ESA 2023

18:6 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

We use the same computational model as Pilipczuk and Wrochna [35], namely the RAM
model where each operation takes time polynomially proportional to the number of bits of
the input, and the space is measured in terms of bits. We say that an algorithm A runs
in time t(n) and space s(n) if, for every input of size n, the number of operations of A is
bounded by t(n) and the auxiliary used space of A has size bounded by s(n) bits.

Shrubdepth. We first introduce the decomposition notion for shrubdepth: tree-models.

▶ Definition 2.1. For d, k ∈ N, a (d, k)-tree-model (T, M, R, λ) of a graph G is a rooted tree T

of depth d together with a family of symmetric Boolean k × k-matrices M = {Ma}a∈V (T), a
labeling function λ : V (G) → [k], and a family of renaming functions R = {ρab}ab∈E(T) with
ρab : [k] → [k] for all ab ∈ E(T) such that:

The leaves of T are identified with vertices of G. For each node a of T , we denote by
Va ⊆ V (G) the leaves of T that are descendants of a, and with Ga = G[Va] we denote the
subgraph induced by these vertices.
With each node a of T we associate a labeling function λa : Va → [k] defined as follows.
If a is a leaf, then λa(a) = λ(a). If a is a non-leaf node, then for every child b of a and
every vertex v ∈ Vb, we have λa(v) = ρab(λb(v)).
For every pair of vertices (u, v) of G, let a denote their least common ancestor in T .
Then we have uv ∈ E(G) if and only if Ma[λa(u), λa(v)] = 1.

We introduce some notation. If (T, M, R, λ) is a (d, k)-tree model of a graph G, then for
every node a of T and every i ∈ [k], let Va(i) = λ−1

a (i) be the set of vertices labeled i at a.
Given a subset X of Va and i ∈ [k], let Xa(i) = X ∩ Va(i) be the vertices of X labeled i at a.

We say that a class C of graphs has shrubdepth d if there exists k ∈ N such that every
graph in C admits a (d, k)-tree-model. Thus, shrubdepth is a parameter of a graph class,
rather than of a single graph; though there are functionally equivalent notions, such as
SC-depth [23] or rank-depth [10], that are suited for the treatment of single graphs. We
remark that in the original definition proposed by Ganian et al. [23], relabeling is not allowed;
however, using either definition yields the same notion of shrubdepth. Moreover, throughout
this work we abstract away from the computation of the tree-models themselves and assume
that a (d, k)-tree-model of the considered graph is provided on input.

We note that a fixed-parameter algorithm for computing tree-models has been proposed
by Gajarský and Kreutzer [21] (in the sense of Ganian et al. [23]). The approach of Gajarský
and Kreutzer is essentially kernelization: they iteratively “peel off” isomorphic parts of the
graph until the problem is reduced to a kernel of size bounded only in terms of d and k. This
kernel is then treated by any brute-force method. Consequently, a straightforward inspection
of their algorithm [21] shows that it can be implemented with polynomial space; but not
space of the form (d+k)O(1) · log n, due to the necessity of storing all the intermediate graphs
in the kernelization process. We leave as an open question the computation of a (d, k)-tree
model, for a given graph G, running in time f(d, k) · nO(1) and using space (d + k)O(1) · log n.

3 Space-Efficient Algorithms on Tree-Models

Independent Set. In this section, we provide a fixed-parameter algorithm computing the
independent set polynomial of a graph in time 2O(dk) · nO(1) and using poly(d, k) log n space,
when given a (d, k)-tree model. In particular, given a (d, k)-tree model (T, M, R, λ) of an
n-vertex graph G, our algorithm will allow to compute the number of independent sets of
size p for each p ∈ [n]. For simplicity of representation, we start by describing an algorithm
that uses poly(d, k, n) space and then show how a result by Pilipczuk and Wrochna [35] can
be applied to decrease the space complexity to poly(d, k) log n.

B. Bergougnoux et al. 18:7

In order to simplify forthcoming definitions/statements, let a be an internal node of T

with b1, . . . , bt as children. For S ⊆ [k], we denote by q(a, S, p) the number of independent
sets I of size p of Ga such that S = {i ∈ [k] : Ia(i) ̸= ∅}. Let us define the polynomial
IS(a, S) =

∑
p∈N q(a, S, p) · xp. For the root r of T , the number of independent sets of G

of size p is then given by
∑

S⊆[k] q(r, S, p) and the independent set polynomial of G is∑
S⊆[k] IS(r, S). Therefore, the problem boils down to the computation of IS(r, S) and its

coefficients q(r, S, p). A usual way to obtain a polynomial or logarithmic space algorithm is
a top-down traversal of a rooted tree-like representation of the input – in our case, this will
be the tree model. In this top-down traversal, the computation of coefficients q(a, S, p) of
IS(a, S) makes some requests to the coefficients q(bi, Si, pi) of IS(bi, Si) for each i ∈ [t], for
some integer pi, and some set Si of labels of Gbi so that

∑
i∈[t] pi = p and

⋃
i∈[t] ρabi

(Si) = S.
Since there are exponentially many (in t) possible partitions of p into t integers and t can be
Θ(n), we must avoid running over all such integer partitions, and this will be done by the
fast computation of a certain subset cover.

We will later show that if some independent set of Ga contains vertices of labels i and j

with Ma[i, j] = 1, then all these vertices come from the same child of a. In particular, the
vertices of label i (rsp. j) cannot come from multiple children of a. To implement this
observation, after fixing a set S of labels, for each label class in S we “guess” (i.e., branch
on) whether it will come from a single child of a or from many. Such a guess is denoted
by α : S → {1=, 2⩾}. So, the assignment α will allow us to control the absence of edges in
the sought-after independent set. For a fixed α, naively branching over all possibilities of
assigning the labels of S to the children of a with respect to α would take time exponential
in t, which could be as large as Θ(n). We will use inclusion-exclusion branching to speed-up
the computations while retaining the space complexity. In some sense, we will first allow less
restricted assignments of labels to the children of a, and then filter out the ones that result
in non-independent sets using the construction of a certain auxiliary graph. The former will
be implemented by using “less restricted” guesses β : S → {1=, 1⩾} where 1⩾ reflects that
vertices of the corresponding label come from at least one child of a. Note that if the vertices
of some label i come from exactly one child of a, then such an independent set satisfies both
β(i) = 1= and β(i) = 1⩾. Although it might seem counterintuitive, this type of guesses will
enable a fast computation of a certain subset cover. After that, we will be able to compute
the number of independent sets satisfying guesses of type α : S → {1=, 2⩾} by observing
that independent sets where some label i occurs in at least two children of a can be obtained
by counting those where label i occurs in at least one child and subtracting those where this
label occurs in exactly one child.

We now proceed to a formalization of the above. Let S ⊆ λa(Va) and α : S → {1=, 2⩾}
be fixed. Let s1, . . . , s|α−1(2⩾)| be an arbitrary linear ordering of α−1(2⩾). To compute
the number of independent sets that match our choice of α, we proceed by iterating over
c ∈ {0, . . . , |α−1(2⩾)|}, and we count independent sets where the labels in {s1, . . . , sc} occur
exactly once, and the number of such sets where the labels occur at least once. Later, we
will obtain the desired number of independent sets via carefully subtracting these two values.
In particular, let γ : {s1, . . . , sc} → {1=, 1⩾}, and we denote by q(a, S, α, c, γ, p) the number
of independent sets I of size p of Ga such that

for every label i /∈ S, we have Ia(i) = ∅;
for every label i ∈ {s1, . . . , sc} with γ(i) = 1=, there exists a unique child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;
for every label i ∈ {s1, . . . , sc} with γ(i) = 1⩾, there exists at least one child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;

ESA 2023

18:8 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

for every label i ∈ S \ {s1, . . . , sc} with α(i) = 1=, there exists a unique child bj of a such
that Ia(i) ∩ Vbj

̸= ∅;
and for every label i ∈ S \{s1, . . . , sc} with α(i) = 2⩾, there exist at least two children bj1

and bj2 of a such that Ia(i) ∩ Vbj1
̸= ∅ and Ia(i) ∩ Vbj2

̸= ∅.
We now proceed with some observations that directly follow from the definitions.

▶ Observation 3.1. We have q(a, S, p) =
∑

α∈{1=,2⩾}S ,γ∈{1=,1⩾}∅ q(a, S, α, 0, γ, p) for every
S ⊆ λa(Va) and integer p. Also, for every α ∈ {1=, 2⩾}S, every c ∈ {0, . . . , |α−1(2⩾)| − 1}
and every γ : {s1, . . . , sc} → {1=, 1⩾}, we have q(a, S, α, c, γ, p) = q(a, S, α, c + 1, γ[sc+1 7→
1⩾], p) − q(a, S, α, c + 1, γ[sc+1 7→ 1=], p).

It remains then to show how to compute the value q(a, S, α, |α−1(2⩾)|, γ, p) for every
α ∈ {1=, 2⩾}S , every γ ∈ {1=, 1⩾}α−1(2⩾), and every integer p. It is worth mentioning that
if β : S → {1=, 1⩾} is such that β−1(1=) = α−1(1=) ∪ γ−1(1=) and β−1(1⩾) = α−1(2⩾) \
γ−1(1=), then q(a, S, α, |α−1(1⩾)|, γ, p) is exactly the number of independent sets I of size p

of Ga satisfying the following:
1. For every i ∈ [k] \ S, we have Ia(i) = ∅.
2. For every i ∈ β−1(1=), there exists a unique index j ∈ [t] such that Ia(i) ∩ Vbj

̸= ∅.
3. For every i ∈ β−1(1⩾), there exists a (not necessarily unique) index j ∈ [t] such that

Ia(i) ∩ Vbj
̸= ∅.

We will therefore write q(a, S, β, p) instead of q(a, S, α, |α−1(1⩾)|, γ, p) and we define the
polynomial TIS(a, S, β) ∈ Z[x] (where “T” stands for “transformed”) as TIS(a, S, β) =∑

p∈N q(a, S, β, p) · xp. Recall that because we are computing IS(a, S) and TIS(a, S, β) in a
top-down manner, some queries for IS(bi, Si) will be made during the computation. Be-
fore continuing in the computation of TIS(a, S, β), let us first explain how to request the
polynomials IS(bj , Sj) from each child bj of a. If a is not the root, let a∗ be its parent
in T , and we use PIS(a, S) (where “P” stands for “parent”) to denote the polynomial
PIS(a, S) =

∑
p∈N0

qρ(a, S, p)xp where qρ(a, S, p) =
∑

D⊆λa(Va) : ρa∗a(D)=S q(a, D, p) is the
number of independent sets of Ga of size p that contain a vertex with label i ∈ [k] (i.e.,
Ia∗(i) ̸= ∅) if and only if i ∈ S holds, where the labels are treated with respect to λa∗ .
Then it holds that PIS(a, S) =

∑
D⊆λa(Va) : ρa∗a(D)=S

IS(a, D) .

As our next step, we make some observations that will not only allow to restrict the β’s
we will need in computing the polynomial IS(a, S) from the polynomials TIS(a, S, β), but
will also motivate the forthcoming definitions. Recall that we have fixed S ⊆ λa(Va) and
β : S → {1=, 1⩾}, and in IS(a, S) and TIS(a, S, α) we are only counting independent sets I

such that Ia(i) ̸= ∅ if and only if i ∈ S.

▶ Observation 3.2. If there exist i1, i2 ∈ S such that Ma[i1, i2] = 1, then for any independent
set I counted in IS(a, S), there exists a unique j ∈ [t] such that Ia(i1) ∪ Ia(i2) ⊆ Vbj

.

Recall that for every label i ∈ α−1(2⩾), each independent set I contributing to the
value q(a, S, α, 0, γ, p) has the property that there are distinct children bj1 and bj2 such that
Ia(i) ∩ Vbj1

and Ia(i) ∩ Vbj2
are both non-empty. Then by Observation 3.2 for every i1 ∈ S

it holds that if α(i1) = 2⩾, then Ma[i1, i2] = 0 for all i2 ∈ S. So if α does not satisfy
this, the request T (a, S, α, 0, γ) can be directly answered with 0. Otherwise, since we use
Observation 3.1 for recursive requests, the requests TIS(a, S, β) made all have the property
that for each i1 ∈ S the following holds: if β(i1) = 1⩾, then Ma[i1, i2] = 0 for all i2 ∈ S.
We call such β’s conflict-free and we restrict ourselves to only conflict-free β’s. In other
words, we may assume that if i1, i2 ∈ S and Ma[i1, i2] = 1, then we have β(i1) = β(i2) = 1=.
Observation 3.2 implies that for such i1 and i2, each independent set I counted in TIS(a, S, β)

B. Bergougnoux et al. 18:9

is such that Ia(i1) ∪ Ia(i2) ⊆ Vbj for some child bj of a. Now, to capture this observation, we
define an auxiliary graph F a,β as follows. The vertex set of F a,β is β−1(1=) and there is an
edge between vertices i1 ≠ i2 if and only if Ma[i1, i2] = 1. Thus, by the above observation, if
we consider a connected component C of F a,β , then in each independent set I counted in
TIS(a, S, β), all the vertices of I with labels from C come from a single child of a.

▶ Observation 3.3. Let C be a connected component of F a,β. For every independent set I

counted in TIS(a, S, β), there exists a unique j ∈ [t] such that
⋃

i∈C Ia(i) ⊆ Vbj .

We proceed with some intuition on how we compute TIS(a, S, β) by requesting some
PIS(bj , Sj). Let I be some independent set counted in TIS(a, S, β). This set contains vertices
with labels from the set S, and the assignment β determines whether there is exactly one
or at least one child from which the vertices of a certain label come from. Moreover, by
Observation 3.3, for two labels i1, i2 from the same connected component of F a,β , the vertices
with labels i1 and i2 in I come from the same child of a. Hence, to count such independent
sets, we have to consider all ways to assign labels from S to subsets of children of a such that
the above properties are satisfied – namely, each connected component of F a,β is assigned to
exactly one child while every label from β−1(1⩾) is assigned to at least one child. Since the
number of such assignments can be exponential in n, we employ the fast computation of a
certain subset cover.

We now formalize this step. Let cc(F a,β) we denote the set of connected components
of F a,β . The universe Ua,β (i.e., the set of objects we assign to the children of a) is defined
as Ua,β = β−1(1⩾) ∪ cc(F a,β). For every j ∈ [t], we define a mapping fa,β

j : 2Ua,β → Z[x, z]
(i.e., to polynomials over x and z) as follows: fa,β

j (X) = PIS(bj , flata,β(X))z|X∩cc(F a,β)|

where flata,β : 2Ua,β → 2S intuitively performs a union over all the present labels – formally:
flata,β(W) = (W ∩ β−1(1⩾)) ∪

⋃
w∈W ∩cc(F a,β) w. So if we fix the set X of labels coming from

the child bj , then the (unique) coefficient in fa,β
j (X) reflects the number of independent

sets of Gbj
using exactly these labels (with respect to λa). The exponent of the formal

variable z is intended to store the number of connected components of F a,β assigned to bj .
This will later allow us to exclude from the computation those assignments of labels from S

to children of a where the elements of some connected component of F a,β are assigned to
multiple children of a. For every j ∈ [t], we define a similar function ga,β

j : 2S → Z[x, z] as
follows:

ga,β
j (Y) =

{
fa,β

j (X) if flata,β(X) = Y for some X ∈ 2Ua,β

,

0 otherwise.

Observe that the function flata,β is injective and hence ga,β
j is well-defined. The mapping ga,β

j

filters out those assignments where some connected component of F a,β is “split”.

▶ Lemma 3.4. Let (T, M, R, λ) be a (d, k)-tree model of an n-vertex graph G. Let a be a
non-leaf node of T and let b1, . . . , bt be the children of a. For every S ⊆ λa(Va), and every
conflict-free β : S → {1=, 1⩾}, it holds that

TIS(a, S, β) =

 ∑
X1,...,Xt⊆[k] :
X1∪···∪Xt=S

 t∏
j=1

ga,β
j (Xj)


 ⟨z|cc(F a,β)|⟩,

where for a polynomial P =
∑

u1,u2∈N0
qu1,u2xu1zu2 ∈ Z[x, z] the polynomial P ⟨z|cc(F a,β)|⟩ ∈

Z[x] is defined as P ⟨z|cc(F a,β)|⟩ =
∑

u1∈N0
qu1,|cc(F a,β)|x

u1 .

ESA 2023

18:10 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Now we can apply a result by Björklund et al. [6] to accelerate the computation of

TIS(a, S, β): It holds TIS(a, S, β) =
(∑

Y ⊆S

(−1)|S\Y |
t∏

j=1

∑
Z⊆Y

gj(Z)
)

⟨z|cc(F)|⟩. We now have

the equalities required for our algorithm to solve Independent Set parameterized by
shrubdepth. By using these equalities directly, we would obtain an algorithm running in
time 2O(kd) · nO(1) and space O(dk2n2). However, the latter can be substantially improved
by using a result of Pilipczuk and Wrochna [35] based on the Chinese remainder theorem:

▶ Theorem 3.5 ([35]). Let P (x) =
n′∑

i=0
qix

i be a polynomial in one variable x of degree at

most n′ with integer coefficients satisfying 0 ⩽ qi ⩽ 2n′ for i = 0, . . . , n′. Suppose that given
a prime number p ⩽ 2n′ + 2 and s ∈ Fp, the value P (s) (mod p) can be computed in time T

and space S. Then given k ∈ {0, ..., n′}, the value qk can be computed in time O(T · poly(n′))
and space O(S + log n′).

With this, we can finally prove Theorem 1.1.

Counting List-Homomorphisms. We now explain how to apply the techniques from the
above to a broader class of problems, namely all problems expressible as instantiations
of the #-List-H-Homomorphism problem for a fixed pattern graph H (which we will
introduce in a moment). In this way, we cover problems such as Odd Cycle Transversal
and q-Coloring, for a fixed q. Furthermore, the techniques will be useful for solving
Dominating Set later.

Let H be a fixed undirected graph (possibly with loops) and let R ⊆ V (H) be a designated
set of vertices. An instance of the R-Weighted #-List-H-Homomorphism problem
consists of a graph G, a weight function ω : V (G) → N, a list function L : V (G) → 2V (H),
a cardinality C ∈ N and a total weight W ∈ N. The goal is to count the number of list
H-homomorphisms of G such that exactly C vertices of G are mapped to R and their total
weight in ω is W . More formally, we seek the value∣∣{φ : V (G) → V (H)

∣∣ ∀v ∈ V (G) : φ(v) ∈ L(v), ∀uv ∈ E(G) : φ(u)φ(v) ∈ E(H),
|φ−1(R)| = C, and ω(φ−1(R)) = W

}∣∣ .

We say that such φ has cardinality C and weight W . For the “standard” #-List H-
Homomorphism problem we would use R = V (H), C = W = |V (G)|, and unit weights.
We also have the following special cases of the R-Weighted #-List-H-Homomorphism
problem. In all cases, we consider unit weights.

To model Independent Set, the pattern graph H consists of two vertices u and v and
the edge set contains a loop at v and the edge uv. The set R consists of u only.
Similarly, to model Odd Cycle Transversal, the pattern graph H is a triangle on
vertex set {u, v, w} with a loop added on u. Again, we take R = {u}.
To model q-Coloring, we take H to be the loopless clique on q vertices, and R = V (H).

While in all the cases described above we only use unit weights, we need to work with any
weight function in our application to Dominating Set. We prove the following result.

▶ Theorem 3.6. Fix a graph H (possibly with loops) and R ⊆ V (H). There is an algorithm
which takes as input an n-vertex graph G together with a weight function ω and a (d, k)-tree-
model, runs in time 2O(dk) · nO(1) · (W ∗)O(1) and uses space O(k2d(log n + log W ∗)), and
solves the R-Weighted #-List-H-Homomorphism in G, where W ∗ denotes the maximum
weight in ω.

B. Bergougnoux et al. 18:11

Max Cut. In the classical Max Cut problem, we are given a graph G and the task is to
output maxX⊆V (G) |E(X, V (G) \ X)|. Towards solving the problem, let us fix a graph G and
a (d, k)-tree model (T, M, R, λ) of G. Recall that for every node a of T , i ∈ [k] and X ⊆ Va,
we denote by Xa(i) the set of vertices in X labeled i at a, i.e., X ∩λ−1

a (i). Given a child b of a,
we let Vab = Vb and we denote by Vab(i) the set of vertices in Vb labeled i at a, i.e., Vb ∩ Va(i).
By Xab(i) we denote the set X ∩ Vab(i). Given c ∈ {a, ab}, we define the c-signature of
X ⊆ Vc – denoted by sigc(X) – as the vector (|Xc(1)|, |Xc(2)|, . . . , |Xc(k)|). We let S(c) be
the set of c-signatures of all the subsets of Vc, i.e., S(c) ..= {sigc(X) : X ⊆ Vc}. Observe that
|S(c)| ∈ nO(k) holds. Also, for the children b1, . . . , bt of a, we define S(ab1, . . . , abt) as the
set of all tuples (s1, . . . , st) with si ∈ S(abi) for each i ∈ [t]. Given s ∈ S(c), we define fc(s)
as the maximum of |E(X, Vc \ X)| over all the subsets X ⊆ Vc with c-signature s. To solve
Max Cut on G, it suffices to compute maxs∈S(r) fr(s) where r is the root of T .

Let b be a child of a. We start explaining how to compute fab(s) by making at most nO(k)

calls to the function fb. Given s′ ∈ S(b), we define ρab(s′) as the vector s = (s1, . . . , sk) ∈
S(ab) such that, for each i ∈ [k], we have si =

∑
j∈ρ−1

ab
(i) s′

j . Observe that for every X ⊆ Vb,
we have sigab(X) = ρab(sigb(X)). Consequently, for every s ∈ S(ab), fab(s) is the maximum
of fb(s′) over the b-signatures s′ ∈ S(b) such that ρab(s′) = s. It follows that we can
compute fab(s) with at most nO(k) calls to the function fb.

▶ Observation 3.7. Given a node a of T with a child b and s ∈ S(ab), we can compute fab

in space O(k log(n)) and time nO(k) with nO(k) oracle access to the function fb.

In order to simplify forthcoming statements, we fix a node a of T with children b1, . . . , bt.
Now, we explain how to compute fa(s) by making at most nO(k) calls to the functions
fab1 , . . . , fabt

. The first step is to express fa(s) in terms of fab1 , . . . , fabt
. We first describe

|E(X, Va \ X)| in terms of |E(X ∩ Vbi
, Vbi

\ X)|. We denote by E(Vb1 , . . . , Vbt
) the set of

edges of G[Va] whose endpoints lie in different Vbi ’s, i.e. E(G[Vb1 , . . . , Vbt]) \ (E(G[Vb1] ∪
· · · ∪ E(G[Vbt

]))). Given X ⊆ Va, we denote by Ea(X) the intersection of E(X, Va \ X) and
E(Vb1 , . . . , Vbt). In simple words, Ea(X) is the set of all cut-edges (i.e., between X and
Va \ X) running between distinct children of a. For i, j ∈ [k], we denote by Ea(X, i, j) the
subset of Ea(X) consisting of the edges whose endpoints are labeled i and j. We capture the
size of Ea(X, i, j) with the following notion. For every c ∈ {a, ab1, . . . , abt}, s ∈ S(c) and
i, j ∈ [k], we define

#pairsc(s, i, j) ..=
{

si · (|Vc(j)| − sj) + sj · (|Vc(i)| − si) if i ̸= j,

si · (|Vc(i)| − si) otherwise.

It is not hard to check that, for every subset X ⊆ Va with a-signature s, #pairsa(s, i, j) is the
size of pairsa(X, i, j) being the set of pairs of distinct vertices in Va labeled i and j at a such
that exactly one of them is in X. Observe that when Ma[i, j] = 1, then |Ea(X, i, j)| is the
number of pairs in pairsa(X, i, j) whose endpoints belong to different sets among Vb1 , . . . , Vbt

.
Moreover, given a child b of a, the number of pairs in pairsa(X, i, j) whose both endpoints
belong to Vb is exactly #pairsab(sigab(X), i, j). Thus when Ma[i, j] = 1, we have

|Ea(X, i, j)| = #pairsa(siga(X), i, j) −
∑
i∈[t]

#pairsabi
(sigabi

(X), i, j) . (1)

We capture the size of Ea(X) with the following notion. For every c ∈ {a, ab1, . . . , abt},
s ∈ S(c) and (k × k)-matrix M , we define mc(s, M) ..=

∑
i,j∈[k],i⩽j
M [i,j]=1

#pairsc(s, i, j). Note

that |Ea(X)| =
∑

i,j∈[k] : i⩽j,Ma[i,j]=1 |Ea(X, i, j)|. Hence, by Equation 1, we deduce that
|Ea(X)| = ma(siga(X), Ma) −

∑
i∈[t] mabi

(sigabi
(X), Ma). Since E(X, Va \ X) is the disjoint

union of Ea(X) and the sets E(X ∩ Vb1 , Vb1 \ X), . . . , E(X ∩ Vbt , Vbt \ X) , we deduce:

ESA 2023

18:12 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

▶ Observation 3.8. For every X ⊆ Va we have

|E(X, Va \X)| = ma(siga(X), Ma)+
t∑

i=1

(
|E(Xi ∩ Vbi , Vbi \ Xi)| − mabi(sigabi

(Xi), Ma)
)

.

We are ready to express fa(s) in terms of fab1 , . . . , fabt and ma, mab1 , . . . , mabt .

▶ Lemma 3.9. For every s ∈ S(a), we have

fa(s) = ma(s, Ma) + max
(s1,...,st)∈S(ab1,...,abt)

s=s1+···+st

(
t∑

i=1

(
fabi

(si) − mabi
(si, Ma)

))
.

To compute fa(s) we use a twist of Kane’s algorithm [27] for solving the k-dimensional
Unary Subset Sum in Logspace.

Dominating Set. We now prove Theorem 1.3. Note that Dominating Set cannot be
directly stated in terms of H-homomorphisms for roughly the following reason. For H-
homomorphisms, the constraints are universal: every neighbor of a vertex with a certain
state must have one of allowed states. For Dominating Set, there is an existential constraint:
a vertex in state “dominated” must have at least one neighbor in the dominating set. Also,
the state of a vertex might change from “undominated” to “dominated” during the algorithm.
The techniques we used for H-homomorphisms cannot capture such properties.

The problem occurs for other parameters as well. One approach that circumvents the
issue is informally called inclusion-exclusion branching, and was used by Pilipczuk and
Wrochna [35] in the context of Dominating Set on graphs of low treedepth. Their dynamic
programming uses the states Taken (i.e., in a dominating set), Allowed (i.e., possibly
dominated), and Forbidden (i.e., not dominated). These states reflect that we are interested
in vertex partitions into three groups such that there are no edges between Taken vertices
and Forbidden vertices; these are constraints that can be modelled using H-homomorphisms
for a three-vertex pattern graph H. Crucially, for a single vertex v, if we fix the states of the
remaining vertices, the number of partitions in which v is dominated is given by the number
of partitions where v is possibly dominated minus the number of partitions where it is not
dominated, i.e., informally “Dominated = Allowed - Forbidden”.

For technical reasons explained later, our algorithm uses the classic Isolation Lemma:

▶ Theorem 3.10 (Isolation lemma, [30]). Let F ⊆ 2[n] be a non-empty set family over the
universe [n]. For each i ∈ [n], choose a weight ω(i) ∈ [2n] uniformly and independently at
random. Then with probability at least 1/2 there exists a unique set of minimum weight in F .

Consequently, we pick a weight function ω that assigns every vertex a weight from
1, . . . , 2n uniformly and independently at random. Storing ω takes O(n log n) space. The
remainder of the algorithm uses only O(dk2 log n) space.

To implement the above idea, we let the graph H have vertex set {T, A, F} standing
for Taken, Allowed, and Forbidden. This graph H has a loop at each vertex as well as the
edges TA and AF. Further, let R := {T}. Following our approach for H-homomorphisms,
for every set S ⊆ States with States := {(T, 1), (F, 1), . . . , (T, k), (F, k)}, every cardinality
c ∈ [n]0, and every weight w ∈ [2n2]0, in time 2O(dk) · nO(1) and space O(dk2 log n) (recall
that here for the maximum weight W ∗ we have W ∗ ⩽ 2n) we can compute the value aS,c,w

being the number of ordered partitions (T̂ , F̂ , Â) of V (G) satisfying the following properties:

B. Bergougnoux et al. 18:13

1. there are no edges between T̂ and F̂ ;
2. |T̂ | = c and ω(T̂) = w; and
3. for every i ∈ [k] and I ∈ {T, F}, we have (I, i) ∈ S iff Î ∩ V (i) ̸= ∅.
Note that we do not care whether vertices of some label i are mapped to A or not.

After that, we aim to obtain the number of dominating sets of cardinality c and weight w

from values aS,c,w. For this we need to transform the “states” Allowed and Forbidden into
Dominated. Above we have explained how this transformation works if we know the state of
a single vertex. However, now the set S only captures for every label i, which states occur on
the vertices of label i. First, the vertices of this label might be mapped to different vertices
of H. And even if we take the partitions where all vertices of label i are possibly dominated
and subtract the partitions where all these vertices are not dominated, then we obtain the
partitions where at least one vertex with label i is dominated. However, our goal is that all
vertices of label i are dominated. So the Dominated = Allowed - Forbidden equality is not
directly applicable here.

Recently, Hegerfeld and Kratsch [26] showed that when working with label sets, this
equality is in some sense still true modulo 2. On a high level, they show that if we fix a
part T̂ of a partition satisfying the above properties, then any undominated vertex might be
put to any of the sides Â and F̂ . Thus, if T̂ is not a dominating set of G, then there is an
even number of such partitions and they cancel out modulo 2.

We can apply the same transformation to obtain from aS,c,w’s the number of dominating
sets of size c and weight w modulo 2. Isolation lemma implies that with probability at
least 1/2 for some w this number if non-zero if a dominating set of size c exists.

▶ Question 3.11. Is there an algorithm for Dominating Set of n-vertex graphs provided
with a (d, k)-tree-model that runs in time 2O(kd) · nO(1) and uses (d + k)O(1) log n space?

4 The Lower Bound

In this section, we prove Theorem 1.4. This lower bound is based on a reasonable conjecture
on the complexity of the problem Longest Common Subsequence (LCS).

An instance of LCS is a tuple (N, t, Σ, s1, . . . , sr) where N and t are positive integers,
Σ is an alphabet and s1, . . . , sr are r strings over Σ of length N . The goal is to decide
whether there exists a string s ∈ Σt of length t appearing as a subsequence in each si.
There is a standard dynamic programming algorithm for LCS that has time and space
complexity O(Nr). Abboud et al. [1] proved that the existence of an algorithm with running
time O(Nr−ε) for any ε > 0 would contradict the Strong Exponential-Time Hypothesis. As
observed by Elberfeld et al. [15], LCS parameterized by r is complete for the class XNLP:
parameterized problems solvable by a nondeterministic Turing machine using f(k) · nO(1)

time and f(k) log n space, for a computable function f . The only known progress on the
space complexity is due to Barsky et al. with an algorithm running in O(Nr−1) space [3].
This motivated Pilipczuk and Wrochna to formulate the following conjecture [35].

▶ Conjecture 4.1 ([35]). There is no algorithm that solves the LCS problem in time Mf(r)

and using f(r)MO(1) space for any computable function f , where M is the total bitsize of
the instance and r is the number of input strings.

Note that in particular, the existence of an algorithm with time and space complexity as
in Conjecture 4.1 implies the existence of such algorithms for all problems in the class XNLP.

Our lower bound is based on the following stronger variant of Conjecture 4.1, in which
we additionally assume that the sought substring is short.

ESA 2023

18:14 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

▶ Conjecture 4.2. For any unbounded and computable function δ, Conjecture 4.1 holds even
when t ⩽ δ(N).

Let (N, t, Σ, s1, . . . , sr) be an instance of LCS. We assume, without loss of generality,
that N is a power of 2. We provide a reduction from (N, t, Σ, s1, . . . , sr) to an equivalent
instance of Independent Set consisting of a graph G with (r + t + N)O(1) vertices which
admits a (d, k)-tree-model where d = O(log t) and k = O(r log N). This implies Theorem 1.4
since for every unbounded and computable function δ there exists an unbounded and
computable function δ′ such that if t ⩽ δ′(N), then d ⩽ δ(k) for all sufficiently large
N, r ∈ N.

To outline the main idea of the reduction, let s⋆ be a potential common substring of
s1, . . . , sr of length t. We use matchings to represent the binary encoding of the positions of
the letters of s⋆ in each string.

For every string sp and q ∈ [t], we define the selection gadget Sq
p which contains, for

every i ∈ [log N], an edge called the i-edge of Sq
p. One endpoint of this edge is called the

0-endpoint and the other is called the 1-endpoint; i.e., a selection gadget induces a matching
on log N edges. This results in the following natural bijection between [N] and the maximal
independent sets of Sq

p. For every I ∈ [N], we denote by Sq
p|I the independent set that

contains, for each i ∈ [log N], the x-endpoint of the i-edge of Sq
p where x is the value of

the i-th bit of the binary representation of I − 1 (we consider the first bit to be the most
significant one and the log N -th one the least significant). Then the vertices selected in Sq

p

encode the position of the q-th letter of s⋆ in sp.
We need to guarantee that the selected positions in the gadgets S1

p, . . . , St
p are coherent,

namely, for every q ∈ [t], the position selected in Sq
p is strictly smaller than the one selected

in Sq+1
p . For this, we construct an inferiority gadget denoted by Inf(p, q) for every string sp

and every q ∈ [t − 1]. The idea behind it is to ensure that the only possibility for an
independent set to contain at least 3 log N vertices from Sq

p, Sq+1
p , and their inferiority gadget,

is the following: there exist I < J ∈ [N] such that the independent set contains Sq
p|I ∪ Sq+1

p |J .
The maximum solution size in the constructed instance of Independent Set – which is the
sum of the independence number of each gadget – will guarantee that only such selections
are possible. We refer to the full version of this paper for the construction of these inferiority
gadgets and the arguments proving the following observation.

▶ Observation 4.3. Let p ∈ [r] and q ∈ [t − 1]. The independence number of Inf(p, q) is
log N and for every I, J ∈ [N], we have I < J iff there exists a set of log N vertices S from
Inf(p, q) such that the union of S, Sq

p|I and Sq+1
p |J induces an independent set.

Next, we need to ensure that the t positions chosen in s1, . . . , sr indeed correspond to a
common subsequence, i.e., for every q ∈ [t], the q-th chosen letter must be the same in every
s1, . . . , sr. For p ∈ [r − 1], let Mp denote the set of all ordered pairs (I, J) ∈ [N]2 such that
the I-th letter of sp and the J-th of sp+1 are identical. For each p ∈ [r − 1] and q ∈ [t], we
create the matching gadget Match(p, q) as follows:

For every pair (I, J) ∈ Mp and for each p⋆ ∈ {p, p + 1}, we create a copy Mp,q,I,J
p⋆ of Sq

p⋆

and for every ℓ ∈ [log N] and x ∈ {0, 1}, we add an edge between the x-endpoint of the
ℓ-edge of Sq

p⋆ and the (1 − x)-endpoint of the ℓ-edge of Mp,q,I,J
p⋆ .

For every pair (I, J) ∈ Mp, we add a new vertex vq
p,I,J adjacent to (1) all the vertices

from Mp,q,I,J
p that are not in Mp,q,I,J

p |I and (2) all the vertices from Mp,q,I,J
p+1 that are not

in Mp,q,I,J
p+1 |J .

B. Bergougnoux et al. 18:15

Finally, we turn {vq
p,I,J : (I, J) ∈ Mp} into a clique. Observe that, for each p⋆ ∈ {p, p+1},

an independent set S contains (|Mp| + 1) log N vertices from Sq
p⋆ and its copies Mp,q,I,J

p⋆ if
and only if there exists a value I ∈ [N] such that S contains Sq

p⋆ |I and Mp,q,I,J
p⋆ |I for each

copy. This leads to the following observation.

▶ Observation 4.4. Let p ∈ [r − 1] and q ∈ [t]. The independence number of Match(p, q)
is 1 + 2 · |Mp| · log N and for every I, J ∈ [N], we have (I, J) ∈ Mp iff there exists an
independent set S of Match(p, q) with 1 + 2|Mp| · log N vertices such that the union of S,
Sq

p|I and Sq
p+1|J is an independent set.

This concludes the construction of the graph G. See Figure 1 below for an overview.

S11

S12

Match(1, 1)

Inf(1, 1)

S21

S22

Match(1, 2)

Inf(2, 1)

Inf(1, 2)

S31

S32

Match(1, 3)

Inf(2, 2)

Inf(1, 3)

S41

S42

Match(4, t)

Inf(2, 3)

Figure 1 Overview of the graph G with log N = 3, r = 2 and t = 4. There are some edges
between two gadgets if and only if there are some edges between their vertices in G.

We prove correctness of the reduction in the following lemma which follows mostly from
Observations 4.3 and 4.4.

▶ Lemma 4.5. There exists an integer goal such that G admits an independent set of size at
least goal iff the strings s1, . . . , sr admit a common subsequence of length t.

The next step is to construct a tree-model of G.

▶ Lemma 4.6. We can compute in polynomial time a (d, k)-tree-model of G where d =
2 log t + 4 and k = 14r log N − 3.

Sketch of proof. First, we prove that the union of the gadgets associated with a position
q ∈ [t] admits a simple tree-model. For every q ∈ [t], we denote by Gq the union of the
selection gadgets Sq

p with p ∈ [r] and the matching gadgets Match(p, q) with p ∈ [r − 1].
For each q ∈ [t], we prove that Gq admits a (3, k)-tree-model (T q, Mq, Rq, λq) where

the tree T q is constructed as follows. We create the root aq of T q and we attach all the
vertices in the selection gadgets Sq

p with p ∈ [r] as leaves adjacent to aq. Then, for every
p ∈ [r − 1], we create a node aq

p adjacent to aq and for every (I, J) ∈ Mp, we create a
node aq

p,I,J adjacent to aq
p. For each (I, J) ∈ Mp, we make aq

p,I,J adjacent to the vertex
vq

p,I,J and all the vertices in Mp,q,I,J
p and Mp,q,I,J

p+1 . Note that all the vertices in Match(p, q)
are the leaves of the subtree rooted at aq

p, and the leaves of T q are exactly the vertices in Gq.
See Figure 2 for an illustration of T q.

For every q ∈ [t − 1], we denote by Inf(q) the union of Inf(1, q), . . . , Inf(r, q). Moreover,
for every interval [x, y] ⊆ [t], we denote by Gx,y, the union of the graphs Gq over q ∈ [x, y],
and the inferiority gadgets in Inf(q) over q ∈ [x, y] such that q + 1 ∈ [x, y].

For every interval [x, y], we prove by induction on y − x that Gx,y admits a (2 log(y − x +
1) + 4, k)-tree-model. In particular, it implies that G1,t = G admits a (d, k)-tree-model. It
is also easy to see from our proof that this (d, k)-tree-model is computable in polynomial

ESA 2023

18:16 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

M1,q,I,J
1 M1,q,I,J

2
vqp,I,J

Match(1, q)

Match(r − 1, q)

Inf(q − 1)

T<q T>q

aq

α

Sq1

Sqr
aq1

aqr−1

aq1,I,JT q

Inf(q)

α<q α>q

Figure 2 Illustration of the tree T and its subtree T q for the tree-model constructed in Lemma 4.6.
An edge between a white filled rectangle labeled X and a node a of the tree means that all the
vertices in X are leaves adjacent to a.

time. For the base case of the induction, when y = x, we have Gx,y = Gx and we have
proved above that it admits a (3, k)-tree-model. When x < y, let q = ⌊(y − x)/2⌋. We use
the induction hypothesis to obtain:

A (2 log(q − x) + 4, k)-tree model (T <q, R<q, M<q, λ<q) for Gx,q−1.
A (2 log(y − q) + 4, k)-tree-model (T >q, R>q, M>q, λ>q) for Gq+1,y.

Then, we construct a (4 + 2 log(y − x + 1), k)-tree-model (T, R, M, λ) of Gx,y from the
tree-models of Gx,q−1, Gq+1,y, but also the (3, k)-tree-model (T q, λq, Rq, Mq) of Gq. To
obtain T , we create the root α of T and we make it adjacent to aq, the root of T q, and two
new vertices: α<q and α>q. We make α<q adjacent to the root of T <q and to all the vertices
in Inf(q − 1). Symmetrically, we make α>q adjacent to the root of T >q and to all the vertices
in Inf(q). See Figure 2 for an illustration of T . ◀

5 Fixed-Parameter Algorithms for Metric Dimension and Firefighting

Theorem 1.5 – and in particular the fixed-parameter tractability of Metric Dimension and
Firefighter parameterized by shrub-depth – can be obtained by combining known results
about these problems [4, 24] with a bound on the maximum length of induced paths in graph
classes of bounded shrubdepth [23, Theorem 3.7]. These results contrast the NP-hardness of
both problems on graphs of bounded pathwidth [7, 28].

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Proc. FOCS 2015, pages 59–78, 2015.
doi:10.1109/FOCS.2015.14.

2 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: Time–space tradeoffs. Theory Comput., 10(12):297–339, 2014.
doi:10.4086/toc.2014.v010a012.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4086/toc.2014.v010a012

B. Bergougnoux et al. 18:17

3 Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton. Shortest path approaches for
the longest common subsequence of a set of strings. In Proc. BIBE 2007, pages 327–333, 2007.
doi:10.1109/BIBE.2007.4375584.

4 Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fedor V. Fomin, and
Erik Jan van Leeuwen. Parameterized complexity of firefighting. J. Comput. System Sci.,
80(7):1285–1297, 2014. doi:10.1016/j.jcss.2014.03.001.

5 Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias
Mnich, Sang il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-efficient parameterized
algorithms on graphs of low shrubdepth. arXiv, 2023. doi:10.48550/arXiv.2307.01285.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:
fast subset convolution. In Proc. STOC 2007, pages 67–74, 2007.

7 Janka Chlebíková and Morgan Chopin. The firefighter problem: further steps in understanding
its complexity. Theoret. Comput. Sci., 676:42–51, 2017. doi:10.1016/j.tcs.2017.03.004.

8 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

9 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of
graphs. European J. Combin., 90:Article 103186, 2020.

11 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 4th
edition, 2012.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

13 Jan Dreier. Lacon- and shrub-decompositions: A new characterization of first-order trans-
ductions of bounded expansion classes. In Proc. LICS 2021, pages 1–13, 2021. doi:
10.1109/LICS52264.2021.9470680.

14 Jan Dreier, Jakub Gajarský, Sandra Kiefer, Michał Pilipczuk, and Szymon Toruńczyk. Treelike
decompositions for transductions of sparse graphs. In Proc. LICS 2022, pages 31:1–31:14,
2022. doi:10.1145/3531130.3533349.

15 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

16 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

18 Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. In Proc.
STOC 2022, pages 886–899, 2022.

19 Martin Fürer. Multi-clique-width. In Proc. ITCS 2017, volume 67 of Leibniz Int. Proc. Inform.,
pages 14:1–14:13, 2017. doi:10.4230/LIPIcs.ITCS.2017.14.

20 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017. doi:10.1007/s00224-017-9751-3.

21 Jakub Gajarský and Stephan Kreutzer. Computing shrub-depth decompositions. In Proc.
STACS 2020, volume 154 of Leibniz Int. Proc. Inform., pages 56:1–56:17, 2020. doi:10.4230/
LIPIcs.STACS.2020.56.

22 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Trans. Comput. Log., 21(4):Art. 29, 41, 2020. doi:10.1145/3382093.

ESA 2023

https://doi.org/10.1109/BIBE.2007.4375584
https://doi.org/10.1016/j.jcss.2014.03.001
https://doi.org/10.48550/arXiv.2307.01285
https://doi.org/10.1016/j.tcs.2017.03.004
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1109/LICS52264.2021.9470680
https://doi.org/10.1109/LICS52264.2021.9470680
https://doi.org/10.1145/3531130.3533349
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1137/080742270
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.4230/LIPIcs.ITCS.2017.14
https://doi.org/10.1007/s00224-017-9751-3
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.1145/3382093

18:18 Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

23 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1):7:1–7:25,
2019. doi:10.23638/LMCS-15(1:7)2019.

24 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Ex-
ploring the gap between treedepth and vertex cover through vertex integrity. Theoret. Comput.
Sci., 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

25 Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth
in single-exponential time and polynomial space. In Proc. STACS 2020, volume 154 of Leibniz
Int. Proc. Inform., 2020.

26 Falko Hegerfeld and Stefan Kratsch. Tight algorithms for connectivity problems parameterized
by clique-width. arXiv, 2023. doi:10.48550/ARXIV.2302.03627.

27 Daniel M. Kane. Unary subset-sum is in logspace. arXiv, 2010. arXiv:1012.1336.
28 Shaohua Li and Marcin Pilipczuk. Hardness of metric dimension in graphs of constant

treewidth. Algorithmica, 84(11):3110–3155, 2022. doi:10.1007/s00453-022-01005-y.
29 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponential

time and polynomial space. In Proc. WG 2011, volume 6986 of Lecture Notes Comput. Sci.,
pages 262–270, 2011. doi:10.1007/978-3-642-25870-1_24.

30 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

31 Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz. Computing treedepth in polyno-
mial space and linear FPT time. In Proc. ESA 2022, volume 244 of Leibniz Int. Proc. Inform.,
pages 79:1–79:14, 2022. doi:10.4230/lipics.esa.2022.79.

32 Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space.
In Proc. WG 2020, volume 12301 of Lecture Notes Comput. Sci., pages 27–39, 2020.
doi:10.1007/978-3-030-60440-0_3.

33 Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Canonical
decompositions in monadically stable and bounded shrubdepth graph classes. arXiv, 2023.
doi:10.48550/arXiv.2303.01473.

34 Patrice Ossona de Mendez, Michał Pilipczuk, and Sebastian Siebertz. Transducing paths
in graph classes with unbounded shrubdepth. European J. Combin., page 103660, 2022.
doi:10.1016/j.ejc.2022.103660.

35 Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.48550/ARXIV.2302.03627
https://arxiv.org/abs/1012.1336
https://doi.org/10.1007/s00453-022-01005-y
https://doi.org/10.1007/978-3-642-25870-1_24
https://doi.org/10.1007/BF02579206
https://doi.org/10.4230/lipics.esa.2022.79
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.48550/arXiv.2303.01473
https://doi.org/10.1016/j.ejc.2022.103660
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856

	1 Introduction
	2 Preliminaries
	3 Space-Efficient Algorithms on Tree-Models
	4 The Lower Bound
	5 Fixed-Parameter Algorithms for Metric Dimension and Firefighting

