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Abstract
Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is
central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis
(SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper
bounds.

In directed graphs, however, where only some of the upper bounds apply, much larger gaps
remain. Since d(u, v) may not be the same as d(v, u), there are multiple ways to define the problem,
the two most natural being the (one-way) diameter (max(u,v) d(u, v)) and the roundtrip diameter
(maxu,v d(u, v) + d(v, u)). In this paper we make progress on the outstanding open question for each
of them.

We design the first algorithm for diameter in sparse directed graphs to achieve n1.5−ε time with
an approximation factor better than 2. The new upper bound trade-off makes the directed case
appear more similar to the undirected case. Notably, this is the first algorithm for diameter in
sparse graphs that benefits from fast matrix multiplication.
We design new hardness reductions separating roundtrip diameter from directed and undirected
diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes
k-Cycle hypothesis, and any (2 − ε)-approximation would imply a breakthrough algorithm for
approximate ℓ∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter
that are not based on SETH.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Graph algorithms analysis

Keywords and phrases Diameter, Directed Graphs, Approximation Algorithms, Fine-grained com-
plexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.2

Related Version Full Version: https://arxiv.org/abs/2307.07583

Funding Amir Abboud: This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon Europe research and innovation programme (grant
agreement No 101078482). Additionally, Amir Abboud is supported by an Alon scholarship and a
research grant from the Center for New Scientists at the Weizmann Institute of Science.
Mina Dalirrooyfard: Partially supported by an Akamai Fellowship.
Ray Li: Supported by the NSF Mathematical Sciences Postdoctoral Research Fellowships Program
under Grant DMS-2203067, and a UC Berkeley Initiative for Computational Transformation award.
Virginia Vassilevska Williams: Partially supported by the National Science Foundation Grant
CCF-2129139.

Acknowledgements We would like to thank Piotr Indyk, Karthik C.S., and the participants of the
Fine-Grained Approximation Algorithms & Complexity Workshop (FG-APX 2019) at Bertinoro
2019 for many helpful discussions.

© Amir Abboud, Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.abboud@weizmann.ac.il
https://www.weizmann.ac.il/math/AmirAbboud/home
https://orcid.org/0000-0002-0502-4517
mailto:minad@mit.edu
http://people.csail.mit.edu/minadrf/
https://orcid.org/0000-0002-7797-3690
mailto:rayyli@berkeley.edu
https://cs.stanford.edu/~rayyli/index.html
https://orcid.org/0000-0003-3441-2364
mailto:virgi@mit.edu
https://people.csail.mit.edu/virgi/
https://orcid.org/0000-0003-4844-2863
https://doi.org/10.4230/LIPIcs.ESA.2023.2
https://arxiv.org/abs/2307.07583
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 On Diameter Approximation in Directed Graphs

1 Introduction

The diameter of the graph is the largest shortest paths distance. A very well-studied
parameter with many practical applications (e.g. [23, 36, 45, 15]), its computation and
approximation are also among the most interesting problems in Fine-Grained Complexity
(FGC). Much effort has gone into understanding the approximation vs. running time tradeoff
for this problem (see the survey [43] and the progress after it [14, 13, 34, 35, 28, 25]).

Throughout this introduction we will consider n-vertex and m-edge graphs that, for
simplicity, are unweighted and sparse with m = n1+o(1) edges1. The diameter is easily
computable in Õ(mn) = n2+o(1) time2 by computing All-Pairs Shortest Paths (APSP). One
of the first and simplest results in FGC [41, 46] is that any O(n2−ε) time algorithm for
ε > 0 for the exact computation of the diameter would refute the well-established Strong
Exponential Time Hypothesis (SETH) [30, 18]. Substantial progress has been achieved in the
last several years [41, 19, 14, 13, 34, 35, 28, 25], culminating in an approximation/running
time lower bound tradeoff based on SETH, showing that even for undirected sparse graphs,
for every k ≥ 2, there is no 2 − 1/k − δ-approximation algorithm running in Õ(n1+1/(k−1)−ε)
time for some δ, ε > 0.

In terms of upper bounds, the following three algorithms work for both undirected and
directed graphs:

1. compute APSP and take the maximum distance, giving an exact answer in Õ(n2) time,

2. compute single-source shortest paths from/to an arbitrary node and return the largest
distance found, giving a 2-approximation in Õ(n) time, and

3. an algorithm by [41, 19] giving a 3/2-approximation in Õ(n1.5) time.

For undirected graphs, there are some additional algorithms, given by Cairo, Grossi
and Rizzi [17] that qualitatively (but not quantitatively) match the tradeoff suggested by
the lower bounds: for every k ≥ 1 they obtain an Õ(n1+1/(k+1)) time, almost-(2 − 1/2k)
approximation algorithm, meaning that there is also a small constant additive error.

The upper and lower bound tradeoffs for undirected graphs are depicted in Figure 1 ; a
gap remains (depicted as white space) because the two trade-offs have different rates. In
directed graphs, however, the gap is significantly larger because an upper bound trade-off is
missing (the lower bound tradeoff follows immediately because it is a harder problem). One
could envision for instance, that the conditional lower bounds for directed diameter could be
strengthened to show that if one wants a (2 − ε)-approximation algorithm, then it must take
at least n1.5−o(1) time. Since the work of [17], the main open question (also asked by [43])
for diameter algorithms in directed graphs has been:

Why are there only three approximation algorithms for directed diameter, but undirected
diameter has an infinite approximation scheme? Is directed diameter truly harder, or can

one devise further approximation algorithms for it?

1 Notably, however, our algorithmic results hold for general graphs, and our hardness results hold even
for very sparse graphs.

2 The notation Õ(f(n)) denotes O(f(n) poly log(f(n)).
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Figure 1 Undirected diameter algorithms and hardness.

Directed is Closer to Undirected

Our first result is that one can devise algorithms for directed diameter with truly faster
running times than n1.5, and approximation ratios between 3/2 and 2. It turns out that
the directed case has an upper bound tradeoff as well, albeit with a worse rate than in the
undirected case. Conceptually, this brings undirected and directed diameter closer together.
See Figure 2 for our new algorithms.

▶ Theorem 1. Let k = 2t+2 for a nonnegative integer t ≥ 0. For every ε > 0 (possibly
depending on m), there exists a randomized 2− 1

k +ε-approximation algorithm for the diameter
of a directed weighted graphs in time Õ(m1+α/ε), for

α =
2( 2

ω−1 )t − (ω−1)2

2

( 2
ω−1 )t(7 − ω) − ω2−1

2
.

The constant 2 ≤ ω < 2.37286 in the theorem refers to the fast matrix multiplication
exponent [6]. A surprising feature of our algorithms is that we utilize fast matrix multiplication
techniques to obtain faster algorithms for a problem in sparse graphs. Prior work on shortest
paths has often used fast matrix multiplication to speed-up computations, but to our
knowledge, all of this work is for dense graphs (e.g. [7, 44, 47, 24]). Breaking the n1.5 bound
with a combinatorial algorithm is left as an open problem.

Roundtrip is Harder

One unsatisfactory property of the shortest paths distance measure in directed graphs is
that it is not symmetric (d(u, v) ̸= d(v, u)) and is hence not a metric. Another popular
distance measure used in directed graphs that is a metric is the roundtrip measure. Here the
roundtrip distance d̃(u, v) between vertices u, v is d(u, v) + d(v, u).

Roundtrip distances were first studied in the distributed computing community in the
1990s [22]. In recent years, powerful techniques were developed to handle the fast computation
of sparse roundtrip spanners, and approximations of the minimum roundtrip distance, i.e.

ESA 2023
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Figure 2 Directed diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted).

the shortest cycle length, the girth, of a directed graph [38, 21, 26, 20]. These techniques
give hope for new algorithms for the maximum roundtrip distance, the roundtrip diameter of
a directed graph.

Only the first two algorithms in the list in the beginning of the introduction work for
roundtrip diameter: compute an exact answer by computing APSP, and a linear time 2-
approximation that runs SSSP from/to an arbitrary node. These two algorithms work for
any distance metric, and surprisingly there have been no other algorithms developed for
roundtrip diameter. The only fine-grained lower bounds for the problem are the ones that
follow from the known lower bounds for diameter in undirected graphs, and these cannot
explain why there are no known subquadratic time algorithms that achieve a better than
2-approximation.

Are there O(n2−ε) time algorithms for roundtrip diameter in sparse graphs that achieve a
2 − δ-approximation for constants ε, δ > 0?

This question was considered e.g. by [4] who were able to obtain a hardness result for
the related roundtrip radius problem, showing that under a popular hypothesis, such an
algorithm for roundtrip radius does not exist. One of the main questions studied at the
“Fine-Grained Approximation Algorithms and Complexity Workshop” at Bertinoro in 2019
was to obtain new algorithms or hardness results for roundtrip diameter. Unfortunately,
however, no significant progress was made, on either front.

The main approach to obtaining hardness for roundtrip diameter, was to start from the
Orthogonal Vectors (OV) problem and reduce it to a gap version of roundtrip diameter, similar
to all known reductions to (other kinds of) diameter approximation hardness. Unfortunately,
it has been difficult to obtain a reduction from OV to roundtrip diameter that has a larger
gap than that for undirected diameter; in Section 4.1 we give some intuition for why this is
the case.

In this paper we circumvent the difficulty by giving stronger hardness results for roundtrip
diameter starting from different problems and hardness hypotheses. We find this intriguing
because all previous conditional lower bounds for (all variants of) the diameter problem were
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based on SETH. In particular, it gives a new approach for resolving the remaining gaps in
the undirected case, where higher SETH-based lower bounds are provably impossible (under
the so-called NSETH) [35].

Our first negative result conditionally proves that any 5/3−ε approximation for roundtrip
requires n2−o(1) time; separating it from the undirected and the directed one-way cases where
a 1.5-approximation in Õ(n1.5) time is possible. This result is based on a reduction from the
so-called All-Nodes k-Cycle problem.

▶ Definition 2 (All-Nodes k-Cycle in Directed Graphs). Given a k partite directed graph
G = (V, E), V = V1 ∪ · · · ∪ Vk, whose edges go only between “adjacent” parts E ⊆

⋃k
i=1 Vi ×

Vi+1 mod k, decide if all nodes v ∈ V1 are contained in a k-cycle in G.

This problem can be solved for all k in time O(nm), e.g. by running an APSP algorithm,
and in subquadratic O(m2−1/k) for any fixed k [8]. Breaking the quadratic barrier for
super-constant k has been a longstanding open question; we hypothesize that it is impossible.

▶ Hypothesis 3. No algorithm can solve the All-Nodes k-Cycle problem in sparse directed
graphs for all k ≥ 3 in O(n2−δ) time, with δ > 0.

Similar hypotheses have been used in recent works [5, 37, 10, 40]. The main difference
is that we require all nodes in V1 to be in cycles; such variants of hardness assumptions
that are obtained by changing a quantifier in the definition of the problem are popular, see
e.g. [4, 16, 1].

▶ Theorem 4. Under Hypothesis 3, for all ε, δ > 0, no algorithm can 5/3 − ε approximate
the roundtrip diameter of a sparse directed unweighted graph in O(n2−δ) time.

We are thus left with a gap between the linear time factor-2 upper bound and the
subquadratic factor-5/3 lower bound. A related problem with a similar situation is the
problem of computing the eccentricity of all nodes in an undirected graph [4]; there, 5/3
is the right number because one can indeed compute a 5/3-approximation in subquadratic
time [19]. Could it be the same here?

Alas, our final result is a reduction from the following classical problem in geometry to
roundtrip diameter, establishing a barrier for any better-than-2 approximation in subquadratic
time.

▶ Definition 5 (Approximate ℓ∞ Closest-Pair). Let α > 1. The α-approximate ℓ∞ Closest-
Pair (CP) problem is, given n vectors v1, . . . , vn of some dimension d in Rn, determine if
there exists vi and vj with ∥vi − vj∥∞ ≤ 1, or if for all vi and vj, ∥vi − vj∥∞ ≥ α.

Closest-pair problems are well-studied in various metrics; the main question being whether
the naive n2 bound can be broken (when d is assumed to be no(1)). For ℓ∞ specifically, a
simple reduction from OV proves a quadratic lower bound for (2 − ε)-approximations [31];
but going beyond this factor with current reduction techniques runs into a well-known
“triangle-inequality” barrier (see [42, 33]). This leaves a huge gap from the upper bounds that
can only achieve O(log log n) approximations in subquadratic time [31]. Cell-probe lower
bounds for the related nearest-neighbors problem suggest that this log-log bound may be
optimal [11]; if indeed constant approximations are impossible in subquadratic time then the
following theorem implies a tight lower bound for roundtrip diameter.

▶ Theorem 6. If for some α ≥ 2, ε > 0 there is a 2 − 1
α − ε approximation algorithm in

time O(m2−ε) for roundtrip diameter in unweighted graphs, then for some δ > 0 there is an
α-approximation for ℓ∞-Closest-Pair with vectors of dimension d ≤ n1−δ in time Õ(n2−δ).

ESA 2023
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Figure 3 Roundtrip Diameter algorithms and hardness. All tradeoffs hold for both weighted and
unweighted graphs (though citations may differ for weighted vs. unweighted). The previously best
hardness results were those inherited from undirected diameter.

In particular, a 2−ε approximation for roundtrip diameter in subquadratic time implies an
α-approximation for the ℓ∞-Closest-Pair problem in subquadratic time, for some α = O(1/ε).
Thus, any further progress on the roundtrip diameter problem requires a breakthrough on
one of the most basic algorithmic questions regarding the ℓ∞ metric (see Figure 3).

1.1 Related Work
Besides the diameter and the roundtrip diameter, there is another natural version of the
diameter problem in directed graphs called Min-Diameter [4, 27, 24]. The distance between
u, v is defined as the min(d(u, v), d(v, u)).3 This problem seems to be even harder than
roundtrip because even a 2-approximation in subquadratic time is not known.

The fine-grained complexity results on diameter (in the sequential setting) have had
interesting consequences for computing the diameter in distributed settings (specifically in
the CONGEST model). Techniques from both the approximation algorithms and from the
hardness reductions have been utilized, see e.g. [39, 2, 9]. It would be interesting to explore
the consequences of our techniques on the intriguing gaps in that context [29].

1.2 Organization
In this extended abstract, we highlight the key ideas in some of our main results (Theorem 1
and Theorem 6) by proving an “easy version” of each theorem. The full proofs of all the
results are in the full version of our paper. First, we establish some preliminaries in Section 2.
In Section 3, we prove the special case of Theorem 1 when t = 0, giving a 7/4-approximation

3 Note that the Max-Diameter version where we take the max rather than the min is equal to the one-way
version.
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of the diameter in directed unweighted graphs in time O(m1.458). In Section 4.1 we give an
overview of the hardness reductions. In Section 4.2, we prove a weakening of Theorem 6 that
only holds for weighted graphs.

2 Preliminaries

All logs are base e unless otherwise specified. For reals a ≥ 0, let [±a] denote the real interval
[−a, a]. For a boolean statement φ, let 1[φ] be 1 if φ is true and 0 otherwise.

For a vertex v in a graph, let deg(v) denote its degree. For r ≥ 0, let Bin
r (v) = {u :

d(u, v) ≤ r} be the in-ball of radius r around v, and let Bout
r (v) = {u : d(v, u) ≤ r} be the

out-ball of radius r around v. For r ≥ 0, let Bin+
r (v) be Bin

r (v) and their in-neighbors, and
let Bout+

r (v) be Bout
r (v) and their out-neighbors.

Throughout, let ω ≤ 2.3728596 denote the matrix multiplication constant. We use the
following lemma which says that we can multiply sparse matrices quickly.

▶ Lemma 7 (see e.g. Theorem 2.5 of [32]). We can multiply a a × b and a b × a matrix, each
with at most ac nonzero entries, in time O(ac · a

ω−1
2 ).4

We repeatedly use the following standard fact.

▶ Lemma 8. Given two sets B ⊂ V with B of size k and V of size 2m, a set of 4(m/k) log m

uniformly random elements of V contains an element of B with probability at least 1 − 1
m2 .

Proof. The probability that B is not hit is (1 − k
2m )4m/k log m ≤ e−2 log m = 1

m2 . ◀

3 7/4-approximation of directed (one-way) diameter

In this section, we prove Theorem 1 in the special case of t = 0 and unweighted graphs. That
is, we give a 7/4-approximation of the (one-way) diameter of a directed unweighted graph in
O(m1.4575) time. For the rest of this section, let α = ω+1

ω+5 ≤ 0.4575.
Before stating the algorithm and proof, we highlight how our algorithm differs from

the undirected algorithm of [17]. At a very high level, all known diameter approximation
algorithms compute some pairs of distances, and use the triangle inequality to infer other
distances, saving runtime. Approximating diameter in directed graphs is harder than in
undirected graphs because distances are not symmetric, so we can only use the triangle
inequality “one way.” For example, we always have d(x, y) + d(y, z) ≥ d(x, z), but not
necessarily d(x, y) + d(z, y) ≥ d(x, z). The undirected algorithm [17] crucially uses the
triangle inequality “both ways,” so it was not clear whether their algorithm could be adapted
to the directed case. We get around this barrier using matrix multiplication together with
the triangle inequality to infer distances quickly. We consider the use of matrix multiplication
particularly interesting because, previously, matrix multiplication had only been used for
diameter in dense graphs, but we leverage it in sparse graphs.

▶ Theorem 9. Let α = ω+1
ω+5 . There exists a randomized 7/4-approximation algorithm for

the diameter of an unweighted directed graph running in Õ(m1+α) time.

4 In [32], this runtime of O(ac · a
ω−1

2 ) is stated only for the case ac > a(ω+1)/2. However, the runtime
bound for this case works for other cases as well so the lemma is correct for all matrices.

ESA 2023
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Figure 4 Steps 5 and 6. If d(a, b) ≥ D and Steps 2, 3, and 4 do not accept, with high probability,
set Ŝ hits the D/7 out- and in- neighborhoods of a and b at vertices s and s′, respectively, that
must have distance at least 5D/7 by the triangle inequality. Thus, checking all pairs of distances in
Sout × Sin, which can be done quickly with sparse matrix multiplication, distinguishes at Step 6
whether the diameter is at least D or less than 4D/7.

Proof. It suffices to show that, for any positive integer D > 0, there exists an algorithm AD

running in time Õ(m1+α) that takes as input any graph and accepts if the diameter is at
least D, rejects if the diameter is less than 4D/7, and returns arbitrarily otherwise. Then,
we can find the diameter up to a factor of 7/4 by running binary search with AD,5 which at
most adds a factor of O(log n).

We now describe the algorithm AD. The last two steps, illustrated in Figure 4 contain
the key new ideas.
1. First, we apply a standard trick that replaces the input graph on n vertices and m edges

with an 2m-vertex graph of max-degree-3 that preserves the diameter: replace each vertex
v with a deg(v)-vertex cycle of weight-0 edges and where the edges to v now connect to
distinct vertices of the cycle. From now on, we work with this max-degree-3 graph on 2m

vertices.
2. Sample 4mα log m uniformly random vertices and compute each vertex’s in- and out-

eccentricity. If any such vertex has (in- or out-) eccentricity at least 4D/7 Accept.
3. For every vertex v, determine if |Bout

D/7(v)| ≤ mα. If such a vertex v exists, determine if
any vertex in Bout+

D/7 (v) has eccentricity at least 4D/7, and Accept if so.
4. For every vertex v, determine if |Bin

D/7(v)| ≤ mα. If such a vertex v exists, determine if
any vertex in Bin+

D/7(v) has eccentricity at least 4D/7, and Accept if so.
5. Sample 4m1−α log m uniformly random vertices Ŝ. Let Sout = {s ∈ Ŝ : |Bout

2D/7(s)| ≤
m1−α} and Sin = {s ∈ Ŝ : |Bin

2D/7(s)| ≤ m1−α}. Compute Bout
2D/7(s) and Bout+

2D/7(s) for
s ∈ Sout, and Bin

2D/7(s) and Bin+
2D/7(s) for s ∈ Sin.

6. Let Aout ∈ RSout×V be the |Sout| × n matrix where As,v = 1[v ∈ Bout
2D/7(s)]. Let

Ain ∈ RV ×Sin be the n×|Sin| matrix where Ain
v,s = 1[v ∈ Bin

2D/7(s)] if ⌊4D/7⌋ = 2⌊2D/7⌋
and Ain

v,s = 1[v ∈ Bin+
2D/7(s)] otherwise. Compute Aout · Ain ∈ RSout×Sin using sparse

matrix multiplication. If the product has any zero entries, Accept, otherwise Reject.

5 We have to be careful not to lose a small additive factor. Here are the details: Let D∗ be the true
diameter. Initialize hi = n, lo = 0. Repeat until hi − lo = 1: let mid = ⌊(hi + lo)/2⌋, run Amid, if
accept, set lo = mid, else hi = mid. One can check that hi ≥ D∗ + 1 and lo ≤ 7D∗/4 always hold. If
we return lo after the loop breaks, the output is always in [D∗, 7D∗/4].
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Runtime. Computing a single eccentricity takes time O(m), so Step 2 takes time Õ(m1+α).
For Step 3 checking if |Bout

D/7(v)| ≤ mα takes O(mα) time for each v via a partial Breadth-
First-Search (BFS). Here we use that the max-degree is 3. If |Bout

D/7(v)| ≤ mα, there are at
most 3mα eccentricity computations which takes time O(m1+α). Step 4 takes time O(m1+α)
for the same reason. Similarly, we can complete Step 5 by running partial BFS for each
s ∈ Ŝ until m1−α vertices are visited. This gives Sout and Sin and also gives Bout

2D/7(s) and
Bout+

2D/7(s) for s ∈ Sout and Bin
2D/7(s) and Bin+

2D/7(s) for s ∈ Sin. For Step 6, the runtime
is the time to multiplying sparse matrices. Matrix Aout has at most |Ŝ| ≤ 4m1−α log m

rows each with at most maxs∈Sout |Bout
2D/7(s)| ≤ m1−α entries, and similarly Ain has at most

4m1−α log m columns each with at most maxs∈Sin |Bin+
2D/7(s)| ≤ 3m1−α entries. The sparse

matrix multiplication takes time Õ(m(2−2α) · m(1−α) ω−1
2 ) = Õ(m1+α) by Lemma 7 with

a = m1−α, b = n, c = m1−α.

If the Diameter is less than 4D/7, we always reject. Clearly every vertex has eccentricity
less than 4D/7, so we indeed do not accept at Steps 2, 3, and 4. In Step 5, we claim for
every s ∈ Sout, s′ ∈ Sin there exists v such that Aout

s,v = Ain
v,s′ = 1, so that (Aout · Ain)s,s′ ≥ 1

for all s ∈ Sout and s′ ∈ Sin and thus we reject. Fix s ∈ Sout and s′ ∈ Sin. By the
diameter bound, d(s, s′) ≤ ⌊4D/7⌋. Let v be the last vertex on the s-to-s′ shortest path
such that d(s, v) ≤ ⌊2D/7⌋, and, if it exists, let v′ be the vertex after v. Clearly Aout

s,v = 1.
We show Ain

v,s′ = 1 as well. If v = s′, then clearly v ∈ Bin
2D/7(s′) so Ain

v,s′ = 1 as desired.
Otherwise d(s, v) = ⌊2D/7⌋. If ⌊4D/7⌋ = 2⌊2D/7⌋, then d(v, s′) ≤ d(s, s′) − d(s, v) ≤
⌊4D/7⌋ − ⌊2D/7⌋ = ⌊2D/7⌋, so v ∈ Bin

2D/7(s′) and Ain
v,s′ = 1, so again Ain

v,s′ = 1. If
⌊4D/7⌋ = 2⌊2D/7⌋+1, then d(v′, s′) ≤ d(s, s′)−d(s, v′) ≤ ⌊4D/7⌋−(⌊2D/7⌋+1) = ⌊2D/7⌋,
so v′ ∈ Bin

2D/7(s′) and thus v ∈ Bin+
2D/7(s′) and Ain

v,s′ = 1, as desired. This covers all cases, so
we’ve shown we reject.

If the Diameter is at least D, we accept with high probability. Let a and b be vertices
with d(a, b) ≥ D.

If |Bout
3D/7(a)| > m1−α, Step 2 computes the eccentricity of some v ∈ Bout

3D/7(a) with high
probability (by Lemma 8), which is at least d(v, b) ≥ d(a, b) − d(a, v) ≥ 4D/7 by the triangle
inequality, so we accept. Similarly, we accept with high probability if |Bin

3D/7(b)| > m1−α.
Thus we may assume that |Bout

3D/7(a)|, |Bin
3D/7(b)| ≤ m1−α for the rest of the proof.

If |Bout
D/7(v)| ≤ mα for any vertex v, then either (i) d(v, b) ≥ 4D/7, in which case v has

eccentricity at least 4D/7 and we accept at Step 3, or (ii) d(v, b) ≤ 4D/7, in which case
there is a vertex u ∈ Bout+

D/7 (v) on the v-to-b path with d(u, b) ≤ 3D/7 (take the u ∈ Bout+
D/7 (v)

closest to b on the path). Then d(a, u) ≥ 4D/7 by the triangle inequality and we accept in
Step 3 as we perform a BFS from u. Thus we may assume |Bout

D/7(v)| > mα for all vertices v.
Similarly, because of Step 4, we may assume |Bin

D/7(v)| > mα for all vertices v.
In particular, we may assume |Bout

D/7(a)| > mα and |Bin
D/7(b)| > mα. Figure 4 illustrates

this last step. Then Ŝ hits Bout
D/7(a) with high probability (by Lemma 8), so Bout

D/7(a) has some
s ∈ Ŝ with high probability, and similarly Bin

D/7(b) has some s′ ∈ Ŝ with high probability. The
triangle inequality implies that Bout

2D/7(s) ⊂ Bout
3D/7(a), so |Bout

2D/7(s)| ≤ |Bout
3D/7(a)| ≤ m1−α

and thus s ∈ Sout. Similarly s′ ∈ Sin. By the triangle inequality, we have d(s, s′) ≥
d(a, b) − d(a, s) − d(s′, b) ≥ D − D/7 − D/7 = 5D/7. Then we must have (A · B)s,s′ = 0, as
otherwise there is a v such that d(s, v) ≤ ⌊2D/7⌋ and d(v, s′) ≤ 4D/7−⌊2D/7⌋, contradicting
d(s, s′) ≥ 5D/7. Hence, we accept at step 5, as desired. ◀
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4 Hardness Reductions for Roundtrip

4.1 Overview

In this paper we prove hardness results for roundtrip diameter that go beyond the 2 vs. 3
barrier. Before presenting the proofs, let us begin with an abstract discussion on why this
barrier arises and (at a high level) how we overcome it.

All previous hardness results for diameter are by reductions from OV (or its generalization
to multiple sets). In OV, one is given two sets of vectors of size n and dimension d = poly log n,
A and B, and one needs to determine whether there are a ∈ A, b ∈ B that are orthogonal.
SETH implies that OV requires n2−o(1) time [46]. In a reduction from OV to a problem
like diameter, one typically has nodes representing the vectors in A and B, as well as nodes
C representing the coordinates, and if there is an orthogonal vector pair a, b, then the
corresponding nodes in the diameter graph are far (distance ≥ 3), and otherwise all pairs of
nodes are close (distance ≤ 2). Going beyond the 2 vs. 3 gap is difficult because each node
a ∈ A must have distance ≤ 2 to each coordinate node in C, regardless of the existence of an
orthogonal pair, and then it is automatically at distance 2 + 1 from any node b ∈ B because
each b has at least one neighbor in C. So even if a, b are orthogonal, the distance will not be
more than 3.

The key trick for proving a higher lower bound (say 3 vs. 5) for roundtrip is to have two
sets of coordinate nodes, a Cfwd set that can be used to go forward from A to B, and a Cbwd

set that can be used to go back. The default roundtrip paths from A/B to each of these
two sets will have different forms, and this asymmetry will allow us to overcome the above
issue. This is inspired by the difficulty that one faces when trying to make the subquadratic
3/2-approximation algorithms for undirected and directed diameter work for roundtrip.

Unfortunately, there is another (related) issue when reducing from OV. First notice that
all nodes within A and within B must always have small distance (or else the diameter would
be large). This can be accomplished simply by adding direct edges of weight 1.5 between all
pairs (within A and within B); but this creates a dense graph and makes the quadratic lower
bound uninteresting. Instead, such reductions typically add auxiliary nodes to simulate the
n2 edges more cheaply, e.g. a star node o that is connected to all of A. But then the node o

must have small distance to B, decreasing all distances between A and B.
Overcoming this issue by a similar trick seems impossible. Instead, our two hardness

results bypass it in different ways.
The reduction from ℓ∞-Closest-Pair starts from a problem that is defined over one set

of vectors A (not two) which means that the coordinates are “in charge” of connecting all
pairs within A. We remark that while OV can also be defined over one set (monochromatic)
instead of two (bichromatic) and that it remains SETH hard; that would prevent us from
applying the above trick of having a forward and a backward sets of coordinate nodes. Our
reduction in Section 4.2 is able to utilize the structure of the metric in order to make both
ideas work simultaneously.

The reduction from All-Node k-Cycle relies on a different idea: it uses a construction
where only a small set of n pairs ai ∈ A, bi ∈ B are “interesting” in the sense that we do not
care about the distances for other pairs (in order to solve the starting problem). Then the
goal becomes to connect all pairs within A and within B by short paths, without decreasing
the distance for the (ai, bi) pairs. A trick similar to the bit-gadget [3, 2] does the job. For
the complete reduction see the full version of the paper.
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4.2 Weighted Roundtrip 2 − ε hardness from ℓ∞-CP
In this section, we highlight the key ideas in Theorem 6 by proving a weaker version, showing
the lower bound for weighted graphs. See the full version of the paper for the extension to
unweighted graphs.

The main technical lemma is showing that to α-approximate ℓ∞-Closest-Pair, it suffices
to do so on instances where all vector coordinates are in [±(0.5 + ε)α]. Towards this goal,
we make the following definition.

▶ Definition 10. The α-approximate β-bounded ℓ∞-Closest-Pair problem is, given n vectors
v1, . . . , vn of dimension d in [−β, β]d determine if there exists vi and vj with ∥vi − vj∥∞ ≤ 1,
or if for all vi and vj, ∥vi − vj∥∞ ≥ α.

We now prove the main technical lemma.

▶ Lemma 11. Let ε ∈ (0, 1/2) and α > 1. If one can solve α-approximate (0.5+ε)α-bounded
ℓ∞-CP on dimension O(dε−1 log n) in time T , then one can solve α-approximate ℓ∞-CP on
dimension d in time T + Oε(dn log n), where in Oε(·) we neglect dependencies on ε.

Proof. Start with an ℓ∞ instance Φ = (v1, . . . , vn). We show how to construct a bounded
ℓ∞ instance Φ′ such that Φ has two vectors with ℓ∞ distance ≤ 1 if and only if Φ′ has two
vectors with ℓ∞ distance ≤ 1.

First we show we may assume that v1, . . . , vn are on domain [0, αn]. Suppose that x ∈ [d].
Reindex v1, . . . , vn in increasing order of vi[x] (by sorting). Let v′

1, . . . , v′
n be vectors identical

to v1, . . . , vn except in coordinate x, where instead

v′
i[x] =

i−1∑
j=0

min(α, vj+1[x] − vj [x])

for i = 1, . . . , n, where the empty sum is 0. We have that v′
i[x] ≤ αn for all i, and furthermore

|v′
i[x] − v′

j [x]| ≥ α if and only if |vi[x] − vj [x]| ≥ α and also |v′
i[x] − v′

j [x]| ≤ 1 if and only if
|vi[x] − vj [x]| ≤ 1. Hence, the instance given by v′

1, . . . , v′
n is a YES instance if and only if

the instance Φ is a YES instance, and is a NO instance if and only if the instance Φ is a NO
instance. Repeating this with all other coordinates x gives an instance Φ′ such that Φ′ is a
YES instance if and only if Φ is a YES instance, and Φ′ is a NO instance if and only if Φ′ is
a NO instance, and furthermore Φ′ has vectors on [0, αn].

Now we show how to construct an ℓ∞-CP instance in dimension Oε(d log n) vectors with
coordinates in [±(0.5 + ε)α].

▶ Lemma 12. Let ε ∈ (0, 0.5) and α > 1. For any real number M , there exists two maps
g : [0, M ] → [−(0.5 + ε)α, (0.5 + ε)α]2⌈ε−1⌉+1 and h : [0, M ] → [0, M/2] such that for
all a, b ∈ [0, M ], we have min(|a − b|, α) = min(∥(g(a), h(a)) − (g(b), h(b))∥∞, α). (here,
(g(·), h(·)) is a length 2⌈ε−1⌉ + 2 vector.) Furthermore, g and h can be computed in Oε(1)
time.

Proof. It suffices to consider when ε−1 is an integer. Let fz : R → [−(0.5 + ε)α, (0.5 + ε)α]
be the piecewise function

fz(x) =


−(0.5 + ε)α if x ≤ z − (0.5 + ε)α
(0.5 + ε)α if x ≥ z + (0.5 + ε)α
x − z otherwise.
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For a ∈ [M ], define g(a) ∈ R2ε−1+1 and h(a) ∈ R as follows, where we index coordinates by
−ε−1, . . . , −1, 0, 1, ε−1 for convenience

g(a)i = fM/2+0.5iεα(a) for − ε−1 ≤ i ≤ ε−1

h(a) = |a − M/2|.

Clearly g and h have the correct codomain, and they can be computed in Oε(1) time.
Additionally, note that fz(x) and |x − M/2| are 1-Lipschitz functions of x for all z, so g is a
Lipschitz function and thus ∥g(a) − g(b)∥∞ ≤ |a − b|.

Now, it suffices to show that min(∥(g(a), h(a)) − (g(b), h(b))∥∞, α) ≥ min(|a − b|, α). If a

and b are on the same side of M/2, then ∥h(a) − h(b)∥∞ ≥ ||a − M/2| − |b − M/2|| = |a − b|,
as desired. Now suppose a and b are on opposite sides of M/2, and without loss of generality
a < M/2 < b. Let 0 ≤ i ≤ ε−1 be the largest integer such that a ≤ M/2 − iεα (i = 0 works
so i always exists). If i = ε−1, then a < M/2 − α and

∥g(a) − g(b)∥∞ ≥ fM/2−0.5α(b) − fM/2−0.5α(a) ≥ 0.5α − (−0.5α) = α ≥ min(|a − b|, α),

as desired. Now assume i < ε−1. Let z = M/2 + (0.5 − iε)α. By maximality of i, we have
a−z ∈ [−(0.5+ε)α, −0.5α]. We have g(·)ε−1−2i = fz(·) by definition of g. By the definition of
fz(·), since a ∈ [z−(0.5+ε)α, z−0.5α] and b ≥ a, we have min(fz(b)−fz(a), α) = min(b−a, α).
Thus,

min(∥g(a) − g(b)∥∞, α) ≥ min (g(b)ε−1−2i − g(a)ε−1−2i, α)
= min(fz(b) − fz(a), α) = min(b − a, α),

as desired. In either case, we have min(∥g(a) − g(b)∥∞, α) ≥ min(|a − b|, α), so we conclude
that min(∥g(a) − g(b)∥∞, α) = min(|a − b|, α). ◀

Iterating Lemma 12 gives the following.

▶ Lemma 13. Let ε ∈ (0, 1/2). There exists a map g : [0, αn] → [±(0.5 + ε)α]4⌈ε−1⌉ log n such
that for all a, b ∈ [0, αn], we have min(|a − b|, α) = min(∥g(a) − g(b)∥∞, α). Furthermore, g

can be computed in Oε(log n) time.

Proof. For ℓ = 1, . . . , let Mℓ = αn/2ℓ−1, and let g∗
ℓ : [Mℓ] → [±(0.5 + ε)α]2⌈ε−1⌉+1 and

h∗
ℓ : [Mℓ] → [Mℓ+1] be the functions given by Lemma 12. For ℓ = 0, 1, . . . , let gℓ : [0, αn] →

[−(0.5 + ε)α, (0.5 + ε)α]ℓ(2⌈ε−1⌉+1) and hℓ : [0, αn] → [0, αn/2ℓ] be such that g0(x) = () is an
empty vector, h0(x) = x is the identity, and for ℓ ≥ 1, gℓ(x) = (gℓ−1(x), g∗

ℓ (hℓ−1(x))) and
hℓ(x) = h∗

ℓ (hℓ−1(x)). By Lemma 12, we have that

min (∥(gℓ−1(a), hℓ−1(a)) − (gℓ−1(b), hℓ−1(b))∥∞, α)
= min

(
∥
(
gℓ−1(a), g∗

ℓ (hℓ−1(a)), h∗
ℓ (hℓ−1(a))

)
−

(
gℓ(b), g∗

ℓ (hℓ−1(b)), h∗
ℓ (hℓ−1(b))

)
∥∞, α

)
= min

(
∥
(
gℓ(a), hℓ(a)

)
−

(
gℓ(b), hℓ(b)

)
∥∞, α

)
for all ℓ. For ℓ = ⌈log n⌉, the vector g(a) def= (gℓ(a), hℓ(a) − 0.5α) has every coordinate in
[±(0.5 + ε)α], and by (4.2), we have

min(|a − b|, α) = min(|g0(a) − g0(b)|, α)
= min(|gℓ(a) − gℓ(b)|, α) = min(|g(a) − g(b)|∞, α),

as desired. The length of this vector is at most ⌈log n⌉(2⌈ε−1⌉ + 1) + 1, which we bound by
4⌈ε−1⌉ log n for simplicity (and pad the corresponding vectors with zeros). ◀
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Figure 5 The roundtrip diameter instance G for ℓ∞-CP hardness.

To finish, let g : [0, αn] → [±(0.5 + ε)α] be given by Lemma 13, and let the original ℓ∞
instance be v1, . . . , vn. Let the new (0.5 + ε)α-bounded ℓ∞ instance be wi = (g(vi[x]))x∈[d]
of length 4d⌈ε−1⌉ log n. ◀

We now prove our goal for this section, Theorem 6 for weighted graphs.

▶ Theorem 14. If for some α ≥ 2, ε > 0 there is a 2 − 1
α − ε approximation algorithm in

time O(m2−ε) for roundtrip diameter in weighted graphs, then for some δ > 0 there is an
α-approximation for ℓ∞-Closest-Pair with vectors of dimension d ≤ n1−δ in time Õ(n2−δ).

Proof. By Lemma 11 it suffices to prove that there exists an O(n2−δ) time algorithm for
α-approximate (0.5 + ε)α-bounded ℓ∞-CP for ε = (4α)−1.

Let Φ be the bounded-domain ℓ∞-CP instance with vectors v1, . . . , vn ∈ [±(0.5 + ε)α]n.
Then construct a graph G (see Figure 5) with vertex set S ∪ X1 ∪ X2 where X1 = X2 = [d]
and S = [n]. We identify vertices with the notations iS , xX1 , and xX2 , for i ∈ [n] and x ∈ [d].
Draw directed edges
1. from iS to xX1 , of weight α + vi[x],
2. from xX1 to iS , of weight α − vi[x],
3. from iS to xX2 , of weight α − vi[x],
4. from xX2 to iS , of weight α + vi[x], and
5. between any two vertices in X1 ∪ X2, of weight α.
Note that all edge weights are nonnegative, and any two vertices in X1 ∪ X2 are roundtrip
distance 2α, and any s ∈ S and x ∈ X1 ∪ X2 are distance 2α. Suppose Φ has no solution,
so that every pair has ℓ∞ distance α. Then for vertices iS , jS , there exists a coordinate x

such that vi[x] − vj [x] is either ≥ α or ≤ −α. Without loss of generality, we are in the case
vi[x] − vj [x] ≥ α. Then the path iS → xX2 → jS → xX1 → iS is a roundtrip path of length

(α − vi[x]) + (α + vj [x]) + (α + vj [x]) + (α − vi[x]) = 4α − 2(vi[x] − vj [x]) ≤ 2α.

So when Φ has no solution, the roundrip diameter is at most 2α.
On the other hand, suppose Φ has a solution i, j such that for all x, |vi[x] − vj [x]| ≤ 1.

Then, as every edge has weight at least (0.5 − ε)α,

d(iS , jS) ≥ min
(

min
x∈[d]

(d(iS , xX1) + d(xX1 , jS), d(iS , xX2) + d(xX2 , jS)) , 4(0.5 − ε)α
)

≥ min
(

min
x∈[d]

(α + vi[x] + α − vj [x], α + vj [x] + α − vi[x]), 2α − 4εα

)
≥ min(2α − 1, 2α − 4αε) = 2α − 1.
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Similarly, we have

d(jS , iS) ≥ 2α − 1,

so we have

dRT (jS , iS) ≥ 4α − 2.

so in this case the RT-diameter is at least 4α − 2. A 2 − α−1 − ε approximation for RT
diameter can distinguish between RT diameter 4α − 2 and RT-diameter 2α. Thus, a 2 − α − ε

approximation for RT diameter solves α-approximate ℓ∞-CP. ◀
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