
An Efficient Algorithm for Power Dominating Set
Thomas Bläsius #

Karlsruhe Institute of Technology (KIT), Germany

Max Göttlicher #

Karlsruhe Institute of Technology (KIT), Germany

Abstract
The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement
units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes
all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold.
First, we determine the parameterized complexity of PDS by proving it is W [P ]-complete when
parameterized with respect to the solution size. We note that it was only known to be W [2]-hard
before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical
instances.

Our algorithm consists of two complementary parts. The first is a set of reduction rules for
PDS that can also be used in conjunction with previously existing algorithms. The second is an
algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation
on a set of power grid instances from the literature shows that our solver outperforms previous
state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our
algorithm can solve previously unsolved instances of continental scale within a few minutes.
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1 Introduction

Monitoring power voltages and currents in electric grids is vital for maintaining their stability
and for cost-effective operation. The sensors required to obtain high-resolution measurements,
so-called phasor measurement units, are expensive pieces of equipment. The goal to place
as few of those sensors as possible to minimize cost is called the Power Dominating Set
problem (PDS). It was first posed by Mili, Baldwin and Adapa. [16] and formalized by
Baldwin et al. [2]. In its basic form, the problem asks whether the graph of a power grid can
be observed by exhaustively applying two observation rules [7]: First, every sensor observes
its vertex and all neighbors. Secondly, if a vertex is observed and has only one unobserved
neighbor, that neighbor becomes observed, too.

PDS is unfortunately NP-complete [7, 11, 14], i.e., we cannot expect there to be an
algorithm that performs reasonably on all inputs. Moreover, the problem remains hard for
a wide range of different graph classes [7, 8, 11, 14, 20, 9, 15]. In terms of parameterized
complexity, PDS is known to be W [2]-hard [9] when parameterized by solution size.
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On the positive side, various approaches for solving PDS have been proposed. Theoretic
results show that PDS can be solved in linear time in graphs with fixed tree-width [14, 9].
However, those algorithms have, to the best of our knowledge, never been implemented and
are probably infeasible in practice due to their bad scaling with respect to the tree-width.
Several exponential-time algorithms have been presented [7, 3] but those algorithms have
not been implemented and evaluated either.

Practically feasible approaches using an MILP formulation have been proposed by
Aazami [1]. This formulation was later improved upon by Brimkov, Mikesell, and Smith [6]
and most recently Jovanovic and Voss [13]. A different approach is to reduce PDS to the
hitting set problem [5, 18]. This approach is based on the observation that one can determine
so-called forts, which are subsets of vertices that prevent propagation if none of them is
selected. A set of vertices is a valid solution for PDS if and only if at least one vertex is
selected for each fort, i.e., if it is a hitting set for the collection of all forts. Graphs may
contain an exponential number of forts, so this hitting set instance is not computed explicitly.
Instead, one can use the so-called implicit hitting set approach, where one starts with a
subset of all forts, computes a hitting set for this subset, and then validates whether this
is already a solution for the PDS instance. If not, one obtains at least one new fort that
can be added to the set of considered forts. This is iterated until a solution is found. This
implicit hitting set approach has been used for other problems, e.g., for MaxSAT [17] and
TQBF [12]. For PDS, it has been introduced by Bozeman et al. [5]. The strategy of finding
forts has been later improved by Smith and Hicks [18], providing the current state-of-the-art
for solving PDS in practice.

Our contribution is threefold. First, we study the parameterized complexity of PDS
parameterized by the solution size. Though it is known to be W [2]-hard [9], it was unknown
whether PDS is also contained in W [2]. We show that PDS is W [P ]-complete via a reduction
from Weighted Circuit Satisfiability for circuits of arbitrary weft. This completely
determines its parameterized complexity and in particular shows that it is not in W [2]
unless W [2] = W [P ]. In our second contribution, we propose a set of reduction rules for
pre-processing PDS instances. Our reduction rules aim to produce equivalent instances that
are smaller and annotated with partial decisions, i.e., some vertices are marked as selected
or as forbidden-to-select. Though these annotations lead to a more general problem than
the basic PDS, we show that existing approaches for solving PDS can be easily adapted to
solve the annotated instances. Moreover, we show that their performance greatly benefits
from our reduction rules. Finally, our third contribution is an improved heuristic for finding
forts for the implicit hitting set formulation. This improved heuristic together with our
reduction rules beats the current state of the art solvers by more than one order of magnitude.
Moreover, our approach can solve previously unsolved instances of continental scale.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the basic concepts and notation used throughout this paper. In Section 3, we show that
PDS is W [P ]-complete. Our reduction rules and the heuristic for extending the hitting set
instance are presented in Section 4. Section 5 contains our experimental evaluation of the
new method using a set of benchmark instances.

2 Preliminaries

Graphs and Neighborhoods. Let G = (V, E) be an undirected graph with vertices V and
edges E. For v ∈ V , let N(v) = {u ∈ V | uv ∈ E} be the open neighborhood of v. Similarly,
N [v] = N(V ) ∪ {v} is the closed neighborhood of v. Given a set S ⊆ V we denote by N(S)
and N [S] the union of all open and closed neighborhoods of the vertices in S.
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Power Dominating Set. For a given graph G, the problem Power Dominating Set
(PDS) is to find a minimum vertex set S ⊆ V of selected vertices such that all vertices of the
graph are observed. We call such set a power dominating set. The size of a minimum power
dominating set of a given graph G is called the power dominating number γP (G). Whether
a vertex is observed is determined by the following rules, which are applied iteratively. We
note that for the second rule, vertices can be marked as propagating, i.e., the input of PDS
is not just a graph but a graph together with a set of propagating vertices.

Domination rule. A vertex is observed if it is in the closed neighborhood of a selected vertex.
Propagation rule. Let u ∈ V be a propagating vertex. If u is observed and v ∈ N(u) is the

only neighbor of u that is not yet observed, then v becomes observed1. If the propagation
rule is applied to an observed vertex u, we say it propagates its observation status.

The special case where we have no propagating vertices yields the well known Dominating
Set (DS) problem. Moreover, the special case where all vertices are propagating is called
simple-PDS. In addition to the above Dominating Set variants, we also consider the
extension variant Dominating Set Extension. For DS-Extension, the input consists of
the graph G = (V, E), a set X ⊆ V of pre-selected and a set Y of excluded vertices; vertices
in V \X \Y are called undecided. DS-Extension asks whether there exists a solution S ⊂ V

such that S includes all selected and excludes all excluded vertices, i.e., X ⊆ S and Y ∩S = ∅.
The problems PDS-Extension and simple-IPDS-Extension are defined analogously.

Hitting Set. Let V be a set and let F ⊆ 2V be a family of subsets. A set H ⊆ V is a hitting
set if it hits every set F ∈ F , i.e., F ∩ H ̸= ∅ for all F ∈ F . The problem Hitting Set
is to find a hitting set of minimum size. Note that the extension variant of Hitting Set
reduces to an instance of Hitting Set itself, as one can simply remove excluded elements
and remove the sets containing pre-selected elements.

3 Power Dominating Set is W [P ]-Complete

We prove W [P ]-completeness via a chain of parameterized reductions from the Weighted
Monotone Circuit Satisfiability (WMCS) problem. WMCS has a monotone Boolean
circuit as input and asks whether it can be satisfied by setting at most k inputs to true,
where k is the parameter. We assume familiarity with the W -hierarchy and parameterized
reductions.We start by introducing a variant of the PDS problem that we use as an interme-
diate problem in our chain of reductions. For brevity, we only sketch an outline of the proof
in this section; for the full proof see [4].

The input of the problem Implicating Power Dominating Set (IPDS) is an instance
of PDS with the following additional information. First, edges of the graph G = (V, E) can
be marked as booster edges. Secondly, we are given a set of implication arcs A ⊆ V × V . We
interpret A as a set of directed edges on V but perceive them as separate from the graph G,
i.e., they do not affect the neighborhood. In addition to the domination and propagation
rule introduced in Section 2, we define the following to observation rules.

Booster rule. Let uv ∈ E be a booster edge. If u is observed, then v becomes observed and
vice versa.

Implication rule. Let (u, v) ∈ A be an implication arc and let u be observed. Then v also
becomes observed.

1 The propagation rule is motivated by Kirchoff’s law and Ohm’s law in electric networks. Propagating
vertices are also called zero-injection vertices. In electric networks, they refer to buses in substations
that have no attached loads.
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WMCS IPDS-e PDS-e s-PDS-e

IPDS PDS s-PDS

Lemma 7

Lemma 6
Lemma 5 Lemma 2

Figure 1 Reduction steps to show that PDS and its variants are W [P ] hard. The solid arrows
indicate our parameterized reductions described in this section. The hardness of the extension
problems follows from the hardness of their basic problem, indicated by the dashed arrows.

We note that IPDS is a generalization of PDS in the sense that every PDS instances
is an instance of IPDS with no booster edges and an empty set of implication arcs. The
extension variant IPDS-Extension is defined analogously to PDS-Extension. Proving
containment of IPDS-Extension in W [P ] is straight forward by giving an appropriate
non-deterministic Turing machine. We note that the analogous statement has been observed
before for PDS by Kneis et al. [14]. Note that this implies containment in W [P ] for all other
problem variants we defined.

▶ Lemma 1. Implicating Power Dominating Set Extension is in W [P ].

As all other variants of the power dominating set problem we consider are special cases
of IPDS-Extension, this also proves containment in W [P ] for the other variants.

Power Dominating Set to Simple Power Dominating Set. Our chain of reductions to
prove W [P ]-hardness is illustrated in Figure 1. We start with the reduction from PDS to
Simple PDS, which is similar to the proof of W [2] hardness of PDS [14, 9]. The core idea
is to simulate a non-propagating vertex with a propagating vertex with an additional leaf
attached.

▶ Lemma 2. There is a parameterized reduction from Power Dominating Set to Simple
Power Dominating Set.

Proof Sketch. Similar to the proof of W [2] hardness of Power Dominating Set [14, 9],
we can attach a leaf to each non-propagating vertex. Selecting the leaf as part of a solution
is never optimal: one can instead choose its neighbor. Then, a vertex with an attached leaf
can never propagate to any vertex except the leaf. ◀

Implicating Power Dominating Set to Power Dominating Set. The reduction from IPDS
to PDS, works in two steps. First, we show that we can eliminate implicating arcs by
replacing each of them with the small gadget show in Figure 2a. Using another gadget, we
eliminate booster edges in a similar way, yielding the reduction.

▶ Lemma 3. Every instance of Implicating Power Dominating Set can be reduced to
an equivalent instance with no implication arcs without changing the parameter.

Proof Sketch. Given an IPDS-instance G, we replace all implication arcs a = (x, y) with
the gadget depicted in Figure 2a. To see why the gadget works as desired, consider the
implication gadget and first assume that x is observed. By applying the booster and the
propagation rules, one can verify that all vertices introduced in the gadget and y become
observed. Conversely, if only y is observed, c becomes observed by the booster rule but
cannot propagate due to its two unobserved neighbors. Thus, the gadget mimics the behavior
of an implication arc. ◀
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x c y

(a) Gadget simulating an implication arc from x
to y using booster edges (marked with green dia-
monds).

∧
∧

(b) A gadget for simulating an and gate. The
bottom ∧-node is observed iff all input nodes are
observed.

Figure 2 Gadgets for implication arcs and and gates.

Our gadget for simulating booster edges requires adding a globally unique non-propagating
vertex b to which all such gadgets are connected. The gadget in turn replaces a booster edge
between x and y with a new vertex vxy which is connected to x, y and b. We enforce that b

is selected by attaching a leaf.

▶ Lemma 4. Every IPDS-instances with booster edges can be reduced to an equivalent
instance without booster edges.

Proof Sketch. One can verify that the booster gadget works as intended as follows: by the
domination rule, b observes vxy. If now either of x or y becomes observed, we can apply the
propagation rule on vxy, observing the other. Note that the inserted vertex b is the same for
all booster gadgets. ◀

▶ Lemma 5. There is a parameterized reduction from Implicating Power Dominating
Set to Power Dominating Set.

Extension to Non-Extension (for IPDS). For the IPDS-Extension to IPDS, the core
difficulty comes from enforcing the excluded vertices to not be selected. We already saw
how to enforce the selection of vertices in the construction of the booster gadget. The basic
idea for excluding vertices from the solution is to make the selection of certain vertices very
expensive.

▶ Lemma 6. There is a parameterized reduction from Implicating Power Dominating
Set Extension to Implicating Power Dominating Set.

Proof Sketch (Vertex Exclusion). Let G = (V, E) be an IPDS-Extension-instance where
the vertices Y ⊆ V are excluded from a solution. We construct an equivalent instance
without excluded vertices. We achieve this by creating a new graph G′, consisting of |V | + 1
copies of G and a clique C of |V \ Y | non-propagating vertices. Each copy G(i) has a fresh
set of vertices representing the vertices in G and there is an edge between two vertices in a
copy if there is an edge between their counterparts in G. There are no edges between vertices
in different copies. The vertices in C represent the vertices not excluded from a solution.
For each vertex in C we add edges to the closed neighborhoods of their counterparts in each
of the copies.

Given a power dominating set S of G, selecting the corresponding vertices in C yields a
power dominating set for G′. Conversely, the construction ensures that vertices selected in
one of the copies never observe any vertices in another copy. Thus, and because all copies
are identical, if a minimum power dominating set contains a vertex in one of the copies, it
must contain a vertex in all other copies, too. Hence, a minimum power dominating set of
size less then |V | cannot contain any vertices outside C. As the vertices in C correspond to
the selectable vertices in G, we obtain a power dominating set of G. ◀

ESA 2023
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WMCS to IPDS-Extension. Finally, for the reduction from WMCS to IPDS-Extension,
the core idea is to replace the arcs in the directed acyclic graph describing the circuit with
implication arcs and to model and-gates as show in Figure 2b.

▶ Lemma 7. There is a parameterized reduction from Weighted Monotone Circuit
Satisfiability to Implicating Power Dominating Set Extension.

Proof Sketch. We construct an equivalent IPDS-Extension-instance G from a given mono-
tone circuit C = (V, E) as follows. In this construction, we interpret true values in the
circuit as a node being observed. We thus interpret all directed edges in the circuit as
implication arcs and add further implication arcs from the output to every input. The input
nodes become propagating vertices, all other vertices in G are non-propagating. The or-gates
are simulated by the implication rule without further adaptation.

To simulate the and-gates, we use the gadget in Figure 2b. We replace every and-gate v

by two new connected vertices x and y where all outgoing edges of v are instead outgoing
implication arcs of y. For every incoming edge of v from u, we place a new proxy vertex
xu and add an edge xux and an implication arc (u, xu). Then, the gate output y becomes
observed by the propagation rule from x if and only if all proxy vertices xu are observed, i.e.
if all inputs of the and-gate are true.

We need the implication arcs back from the output to the inputs to ensure all vertices
become observed if the corresponding truth assignment is satisfying. ◀

▶ Corollary 8. Power Dominating Set is W[P] complete.

4 Solving Power Dominating Set

In this section, we give an algorithm for solving PDS-Extension. Our algorithm consists of
different phases. In the first phase, we apply the reduction rules described in Section 4.1.
Each rule either shrinks the graph or decides for a vertex that it should be pre-selected or
excluded. We prove that the rules are safe, i.e., they yield equivalent instances. Afterwards,
in Section 4.2 we split the instance into several components that can be solved independently.
Finally, each of the subinstances is solved exactly using the implicit hitting set approach [5]
with our improved strategy for finding new sets that need to be hit; see Section 4.3.

We note that these phases are somewhat modular in the sense that one could easily
add further reduction rules or that one can replace the algorithm for solving the kernel in
the final step. In our experiments in Section 5, we also use an MILP for this step. This
MILP formulation is based on the formulation for PDS by Jovanovic and Voss [13] with the
adjustments from [4, Appendix A]. Moreover, instead of solving the subinstances optimally,
one can instead use a heuristic solver. The preceding application of our reduction rules and
splitting into subinstances then helps to find better solutions rather than improving the
running time of exact solvers. This is used in our experiments to find upper bounds on the
power domination number before we have an exact solution.

4.1 Reduction Rules
Many of our reduction rules are local in the sense that they transform one substructure into
a different substructure. Most of our local reduction rules are illustrated in Figure 3. In the
following, we specify additional reduction rules that are either non-local or otherwise difficult
to illustrate. For more details and proofs of safeness, see [4, Appendix B].



T. Bläsius and M. Göttlicher 21:7

(a) Deg1a: If an undecided leaf is attached to a non-excluded vertex, the reduction rule excludes the leaf.

(b) Deg1b: Two cases of excluded leaves attached to a vertex. On the left, the parent vertex is propagating
and becomes non-propagating. On the right, the parent vertex is non-propagating and becomes pre-selected.
The attached leaf is removed in both cases.

x v y

(c) Deg2a: A vertex v of degree two can safely be excluded if it has an undecided neighbor.
x v y

(d) Deg2b: The neighbors x and v of degree two can be merged if x is not adjacent to v’s other neighbor y.
x v y z

(e) Deg2c: If v is observed and has two non-adjacent unobserved neighbors of degree two, x and y, with
y being excluded, then we remove y and the edge xv and connect x to the other neighbor z of y.

(f) Tri: We pre-select the undecided and remove the two vertices of degree two in the triangle.

(g) OnlyN: If an excluded vertex is surrounded by non-propagating vertices, only one of which is not
excluded, we pre-select the non-excluded vertex.

(h) ObsE: An edge with two observed endpoints is replaced by edges to an arbitrary pre-selected vertex.
This leads to fewer applications of the propagation rule by replacing them with the domination rule.
Together with Deg1b, Deg2a and Deg2b this also helps reduce the graph size.

Figure 3 Illustrated overview of the local reduction rules. Round vertices are propagating,
triangular vertices are non-propagating, square vertices may be propagating or non-propagating.
Hollow vertices are excluded from a solution, vertices filled black are undecided, red triangular
vertices are pre-selected. Vertices filled gray may be undecided, excluded or pre-selected. Green
vertices are observed but not pre-selected. The absence of an edge is indicated in red .

▶ Reduction ObsNP (Observed Non-Propagating). Let v be an observed, non-propagating and
excluded vertex. Then delete v.

▶ Reduction Isol (Isolated). Let v be an undecided isolated vertex. Then pre-select v.

For the next two reduction rules, we introduce the concept of observation neighborhood.
For a set of vertices U ⊆ V the observation neighborhood is the set of vertices that is observed
when selecting U in addition to all pre-selected vertices and applying the observation rules
exhaustively. For convenience, we define the observation neighborhood of a single vertex v

to be the observation neighborhood of the single element set {v}.

▶ Reduction Dom (Domination). If the closed neighborhood of some undecided vertex w is
contained in the observation neighborhood of some other undecided vertex v, exclude w.

▶ Reduction NecN (Necessary Node). Let v be an undecided vertex. If the observation
neighborhood of all undecided vertices except v does not contain all vertices in G, select v.

ESA 2023
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We note that Binkele-Raible and Fernau [3] already introduced reduction rules for their
exponential-time algorithm. We do not use them in our algorithm as they are not generally
applicable but rather require a specific situation. The only exception [3, “isolated”] is
superseded by our reduction rules.

4.1.1 Order of Application
In a first step, use a depth first search and process the vertices in post-order to apply the
rules Deg1a, Deg1b, and Deg2a. The order in which we process the vertices is important here,
as it makes sure that attached paths are properly reduced. This is only relevant for this first
application of the reduction rules and in later applications, we process the vertices and edges
in arbitrary order. After this initial application, we iterate the following three steps until
no reduction rules can be applied. (i) Iterate the application of the local reduction rules
(Deg1a, Deg1b, Deg2a, Deg2b, Tri, Deg2c, OnlyN, ObsNP, ObsE) until no local reduction rule
is applicable. (ii) Apply the non-local rule Dom. (iii) Apply the non-local rule NecN.

We note that applying Dom once to all vertices is exhaustive in the sense that it cannot
be applied again immediately afterwards. It can, however, become applicable again after
rerunning the other reduction rules. The same is true for NecN.

Our reasoning for this sequence of application is that the local rules are more efficient
than the non-local ones. Thus, we first apply the cheap rules exhaustively before resorting
to the expensive ones. Preliminary experiments showed that further tweaking the order of
application has only minor effect on the kernel size and run time.

4.1.2 Implementation Notes
The naïve implementation of the reduction rules can be very slow, in particular for the
non-local rules. The costly operation in those rules is the computation of the observation
neighborhood. We thus use a specialized data structure that allows us to pre-select and
deselect vertices in arbitrary order. Each time we pre-select a vertex, we also update the
observed vertices and keep track of which vertex propagates to which other vertex. For
de-selecting vertices, we only mark vertices as unobserved, that were directly or indirectly
observed by the deselected vertex. Being able to select and deselect arbitrary vertices allows
a straightforward implementation of the non-local rules.

4.2 Split into Subinstances
While the propagation rule may have non-local effects within the whole graph, propagation
cannot pass through selected vertices. This is formalized by the following theorem.

▶ Theorem 9. Let G = (V, E) be the graph with pre-selected vertices X ⊆ V and let
C1, . . . , Cℓ ⊆ V be the vertices in the connected components of the sub-graph of G induced by
V \ X. Further let S1, . . . , Sℓ be minimum power dominating sets of the subgraphs induced
by N [C1], . . . , N [Cℓ]. Then S = S1 ∪ · · · ∪ Sℓ is a minimum power dominating set of G.

These sub-problems can be identified in linear time using a depth-first search restarting
at unexplored non-active nodes while ignoring outgoing edges of active nodes.

4.3 Solving the Kernel Via Implicit Hitting Set
We briefly describe the implicit hitting set approach. Compared to how Bozeman et al. [5]
introduced it, we allow non-propagating vertices. However, this does not change any of the
proofs and thus the approach directly translates to this slightly more general setting.
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In a graph G, a fort is a non-empty subset of vertices F ⊆ V (G) such that no propagating
vertex outside F is adjacent to precisely one vertex in F . A power dominating set must
be a hitting set of the family of all fort neighborhoods in G, i.e., if F is a fort and S is a
power dominating set, then N [F ] ∩ S ̸= ∅. Conversely, if a hitting set for a family F of
fort neighborhoods is not a power dominating set, then one can find an additional fort of G

whose neighborhood is not in F .
This yields the following algorithm. Start with some set F of fort neighborhoods. Compute

a minimum hitting set H for F . If H is already a power dominating set, we have found the
optimum. Otherwise, we construct at least one new fort neighborhood and add it to F .

One core ingredient of this approach is the choice of which fort neighborhoods to add
to F . Previous approaches [18, 5] aimed at finding forts or fort neighborhoods that are as
small as possible. The reasoning behind this is that the set of all fort neighborhoods can be
exponentially large (even when restricted to those that are minimal with respect to inclusion)
and thus it makes sense to add sets that are as restrictive as possible, hoping that only few
sets suffice before the Hitting Set solution yields a PDS solution. However, finding forts
of minimum size or minimum size fort neighborhoods is difficult while just finding any fort is
easy. Moreover, if we add only few forts in every step, we have to potentially solve more
Hitting Set instances. We thus propose to instead find multiple forts at once and to add
them all to the Hitting Set instance. Our method of finding forts is based on the following
lemma.

▶ Lemma 10. Let G = (V, E) be a graph and let S ⊆ V be a set of selected vertices. Let
further be R the set of vertices observed by exhaustive application of the observation rules
with respect to S. Then the set of unobserved vertices V \ R is a fort.

Proof. Assume V \ R is not a fort. Then there exists a propagating vertex v in R that is
adjacent to precisely one vertex w in V \ R, i.e., v has precisely one unobserved neighbor
w. This constradicts the exhaustive application of the propagation rule and thus the set of
unobserved vertices is a fort. ◀

By Lemma 10, whenever we have a candidate solution that does not yet observe all
vertices, we obtain a new fort and can add its neighborhood to the Hitting Set instance
F . For the new forts, we have two objectives. First, we want the new fort neighborhood to
actually provide new restrictions, i.e., it should not be already hit by the minimum hitting
set H of F . This is achieved by making sure that the candidate solution S is a superset
of the hitting set H. Secondly, we want the resulting forts (i.e., the number of unobserved
vertices) to be small. We achieve this heuristically by greedily considering large candidate
solutions.

Specifically, we choose candidate solutions as follows. Recall, that we consider the exten-
sion problem, i.e., we have sets X and Y of pre-selected and excluded vertices, respectively.
Moreover, let H be a minimum hitting set of the current set of fort neighborhoods. Then V

is partitioned into the four sets X, Y , H, and U = V \ H \ X \ Y . Each candidate solution S

we consider is a superset of H ∪X and a subset of H ∪X ∪U . We randomly order the vertices
in U = {u1, . . . , uℓ} and define a sequence U0, . . . , Uℓ ⊆ U . We then consider the candidate
solutions Si = H ∪ X ∪ Ui for 0 ≤ i ≤ ℓ. As we want to consider large candidate solutions, we
start with U0 = U , which clearly yields a solution as the instance would be invalid otherwise.
We obtain the subset Ui from Ui−1 as follows. If Si−1 was a solution, i.e., there were no
unobserved vertices, then Ui = Ui−1 \ {ui}. Otherwise, Ui = Ui−1 ∪ {ui−1} \ {ui}. Note that
this makes sure that each candidate solution Si we consider is either a solution or barley not
a solution as Si ∪ {ui} is a solution.

ESA 2023



21:10 An Efficient Algorithm for Power Dominating Set

This gives us at least one and up to ℓ new fort neighborhoods. These are not directly
added to the set F . Instead, we first apply a simple local search to make sure that each fort
is minimal with respect to inclusion. To this end, we iteratively re-select vertices from U

that had been removed before and check whether this still results in a non-empty fort.
We note that we only add sets to F . Thus, we have to solve a sequence of increasing

Hitting Set instances as a subroutine. To improve the performance of this, one can use
lower bounds achieved in earlier iterations as lower bounds for later iterations (Hitting Set
is monotone with respect to the addition of sets).

5 Experiments

The goal of this section is threefold. First, we evaluate the performance of our algorithm in
comparison to two previous state-of-the-art approaches. Secondly, we give a more detailed
view on the performance by analyzing how the upper and lower bounds found be the different
algorithms converge to the optimal solution. Thirdly, we evaluate the impact of the different
reduction rules.

Experiment Setup. We implemented our algorithm in C++ 20 and compiled it with clang
15.0.1 with the -O3 optimization flag. Our source code will be made publicly available
on publication. For the comparison with the previous state-of-the-art, we use the MILP
formulation approach by Jovanovic and Voss [13]. In the following, we refer to this algorithm
with MILP. The second solver by Smith and Hicks [18] and is based on the implicit hitting
set approach. Unfortunately, their code is not publicly available, and the paper does not
specify all implementation details. To make a fair (or rather generous) comparison, we
initialized their set of forts with our fort heuristic, which, as far as we can judge, leads to
better results than reported in the original publication [18]. We refer to this algorithm as
MFN (abbreviation for minimum fort neighborhood). For the implicit hitting set approaches,
we use an MILP formulation to solve the Hitting Set instances. All MILP instances are
solved using Gurobi 9.5.2 [10].

The experiments were run on a machine running Ubuntu 22.04 with Linux 5.15. The
machine has two Intel®Xeon®Gold 6144 CPUs clocked at 3.5 GHz with 8 single-thread cores
and 192 GB of RAM.

We used a collection of instances shipped with pandapower [19]. We further use the
Eastern, Western, Texas and US instances from the powersimdata set2 [21] based on the US
electric grids. We interpret the power grids as graphs were buses are vertices and power lines
and transformers are edges. Buses without attached loads or generators yield propagating
vertices. For experiments on the pandapower instances, we used a timeout of 2 h and repeated
each experiment 5 times. On the powersimdata instances, we used a timeout of 10 h and
only repeated the experiments using our solver. For repeated experiments, we report the
median result.

Performance Comparison. We compare the performance of our solver to the MILP and
MFN approach, each with and without preprocessing by the reduction rules. To assess the
performance of our approach with reduction rules, we compute the speedup compared to the
lowest run time of the previous approaches without reduction rules.

2 https://github.com/Breakthrough-Energy/PowerSimData

https://github.com/Breakthrough-Energy/PowerSimData
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Table 1 Run times of different combinations of PDS solvers and reduction rules on the pandapower
data set. Note that |S| differs from the results reported in other literature. This is to be expected
because we include non-propagating vertices from the input. Further observe that some run times
are given in milli- or microseconds.

instance |S| MILPa) MILP+Ra) MFNa) MFN+Ra) Ours Ours+R Speedup
# s s s s s s

4gs 2 1.41m 2.75m 2.34m 1.89m 513µ 672µ 2.1
5 2 1.06m 840µ 2.24m 1.60m 265µ 254µ 4.2
6ww 1 1.19m 10µ 836µ 6µ 156µ 8µ 104.6
9 2 2.61m 1.23m 4.98m 2.14m 544µ 181µ 14.4
11_iwamoto 2 4.59m 23µ 3.49m 21µ 613µ 17µ 205.5
14 3 1.79m 1.38m 3.82m 2.01m 487µ 522µ 3.4
24_ieee_rts 6 4.19m 4.87m 5.59m 5.50m 1.30m 802µ 5.2
30 6 2.93m 52µ 5.01m 49µ 622µ 45µ 65.1
ieee30 6 3.40m 52µ 6.53m 43µ 669µ 46µ 73.9
33bw 11 1.81m 50µ 8.39m 44µ 551µ 144µ 12.6
39 9 6.60m 112µ 11.95m 104µ 1.76m 116µ 56.9
57 12 9.74m 9.78m 24.94m 13.83m 1.71m 1.75m 5.6
89pegase 13 22.73m 190µ 12.88m 169µ 1.74m 288µ 44.7
118 29 14.26m 12.49m 59.64m 39.27m 7.63m 4.41m 3.2
145 18 123.65m 275µ 19.65m 269µ 2.46m 274µ 71.7
illinois200 39 20.57m 276µ 162.35m 464µ 4.56m 412µ 49.9
300 72 29.66m 2.75m 218.41m 4.70m 7.57m 1.44m 20.6
1354pegase 311 105.77m 2.61m 2.10 2.93m 19.37m 1.89m 56.0
1888rte 375 554.12m 6.82m 6.26 5.80m 40.36m 3.10m 178.7
2848rte 585 603.93m 7.55m 15.77 6.20m 52.60m 4.94m 122.3
2869pegase 612 1.21 221.46m 16.12 1.53 165.41m 96.05m 12.6
3120sp 768 1.36 270.73m 40.29 1.60 310.77m 113.29m 12.0
6470rte 1303 2.94 42.65m 88.96 68.06m 241.73m 27.58m 106.7
6495rte 1314 3.52 45.85m 89.29 91.92m 256.41m 27.12m 129.7
6515rte 1315 3.89 45.88m 89.75 98.39m 231.60m 27.83m 139.9
9241pegase 2010 5.71 1.31 212.93 13.47 1.36 660.18m 8.6

a) numbers here were obtained from our interpretation of the respective approach

Table 1 shows the run times of the solvers on the smaller pandapower instances. Prepro-
cessing significantly reduced the running times of all solvers in most cases, especially for the
larger instances. We found that our solver with reduction rules performs best in 17 out of
26 instances. In 3 further instances, our solver without reduction rules performed best and
the version with reduction rules came second. In particular, our solver performs best on all
instances of more than 300 vertices and all instances that took more than one millisecond
to solve for any solvers. Even in the six instances where our solver was not the fastest, the
other approaches could only compete when combined with the reduction rules.

For the larger powersimdata instances, neither MILP nor MFN were able to compute an
optimal solution without using our reduction rules. Thus, for these instances, we only compare
our solver with MFN+R and MILP+R. Table 2 shows the results. Observe that for Eastern, our
algorithm finished after 16 min while MFN did not finish after more than 6 h, with a lower
bound that was still more than 100 vertices below the optimal solution. Further observe that
the number of fort neighborhoods |F| is lower for MFN. This is to be expected as minimizing
their number is basically the main goal of MFN when finding new fort neighborhoods. However,
this clearly does not show any benefit in the resulting run time.
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Table 2 Comparison between our algorithm and MFN on the larger powersimdata US instances
preprocessed with our reduction rules. n is the number of vertices, |Z| is the number of non-
propagating vertices an |F| is the size of the arising hitting set instance. For the solvers, we report
the power dominating number γP (or the best found lower bound) as well as the number of fort
neighborhoods F and the run time.

Input Our Solver MFN+R MILP+R

Instance n |Z| γP |F| t (s) γP |F| t (s) γP t (s)

Texas 2000 376 411 838 0.98 411 659 17.73 411 1.81
Western 10024 4106 1825 2618 1.55 1825 2010 158.51 1825 2.16
Eastern 70047 30332 12895 27019 552.46 >12789 >15043 >10 h >12890 >10 h
USA 82071 34814 15131 30357 728.62 >14124 >16391 >10 h >15126 >10 h

Lower and Upper Bounds. We note that all three approaches find lower bounds while
solving the instances. In case of the implicit hitting set approach, each time we solve the
current Hitting Set instance, the solution size is a lower bound for a minimum power
dominating set. This yields lower bounds for our approach as well as for MFN. Moreover,
Gurobi also provides lower bounds for MILP. Additionally, Gurobi provides upper bounds.
To also get upper bounds for the implicit hitting set approaches, we use the following greedy
heuristic. Whenever we have computed a hitting set H of the current fort neighborhoods,
we greedily add vertices to H, preferably selecting vertices with many unobserved neighbors,
until we have a power dominating set. Afterwards, we make sure that the resulting solution
is minimal with respect to inclusion.

With this, we can observe how quickly the different algorithms converge towards the
optimal solution. Figure 4 illustrates the behavior of the bounds with respect to the time for
two of the four powersimdata instances. All three algorithms use our reduction rules (recall
that neither MILP nor MFN were able to solve these instances without them). We clearly
see that, with our approach, the gap between upper and lower bounds shrinks quickly, in
particular compared to MFN. This validates our assumption that adding many – potentially
larger – forts instead of a single minimum size one is highly beneficial. Recall that MFN can
increase its lower bound only by at most 1 after finding a new hitting set while we can
increase the lower by up to one for each undecided unhit vertex.

Interestingly, for MILP+R the gap between upper and lower bound closes much quicker
than for MFN+R. In particular, for the largest USA instance, there is almost no gap left after
little more than 100 s. Gurobi also found an optimal solution, but failed to prove the lower
bound on its size within the timeout of 10 h. Thus, in cases where a good approximation is
acceptable, MILP+R is not much worse than our approach.

Reduction Rules. To evaluate the effect of the reduction rules on the performance of our
algorithm, we let it run on the pandapower instances with different subsets of reduction rules.
Recall that we have several local reduction rules as well was the two non-local rules Dom and
NecN. In addition to using all or no reduction rules, we consider the following subsets. Only
local rules, only non-local rules, all local rules together with Dom, and all local rules together
with NecN.

Figure 5a shows the median running time for each instance in the different settings. In
most instances, the reductions could decrease the running time by an order of magnitude
or more. Moreover, we can see that in most cases all reduction rules are relevant, i.e., we
achieve the lowest run time when using all reduction rules and applying no reduction rules is
usually slower than applying any of the rules.
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Figure 4 Upper and lower bounds on the optimum value on the Texas and USA powersimdata
instances with preprocessing by our reduction rules. We give the bounds reported by our solver and
by MFN, both with added greedy upper bounds, as well as Gurobi for MILP. Lines and shaded areas
each start at the time of the first respective bound. Note that the x axis uses a logarithmic scale.

Figure 5b shows the speedup aggregated over all instances of using reduction rules
compared to using no reduction rules for our solver. We can see that the median speedup
is roughly one order of magnitude when applying all reduction rules. The most interesting
observation here is that local+NecN does not give any improvement compared to just local.
In fact, it is slightly slower. However, when combined with Dom, NecN gives a significant
improvement.

6 Conclusion

We showed that PDS is W [P ]-complete. This closes the gap in the study of its parameterized
complexity. Our reduction uses an auxiliary problem, IPDS, to simulate arbitrary monotone
circuits.

Our second contribution in this paper is a set of new reduction rules for PDS. The rules
yield partially solved instances of PDS-Extension where some vertices are pre-selected for
the power dominating set while other are forbidden from being included. Each rule shrinks
the instance by removing vertices or edges, or pre-selects or excludes vertices from being
selected. Our reduction rules can be used as a pre-processing step to significantly enhance the
performance of existing solvers. Our third and last contribution is a new algorithm for solving
PDS based on the implicit hitting set approach. The core of our algorithm is a new heuristic
to find missing sets for the implicit hitting set instances. We evaluate the effectiveness of our
reduction rules and the performance of our algorithm in experiments on a set of practical
power grid instances from the literature. For comparison, we run the same experiments with
two different approaches from the literature. The comparison shows clearly that our new
heuristic for finding missing fort neighborhoods outperforms the previous approach. Our
algorithm outperforms the reference solvers by more than one order of magnitude. Even
when combining the other approaches with our reduction rules, our algorithm beats them on
most instances. Furthermore, we can solve large instances of continental scale that could not
be solved before. We found that our algorithm finds lower bounds on the power dominating
number more quickly than Gurobi.

A major advantage of our fort heuristic is that it translates easily to other variants
of PDS, as long as it is easy to verify which vertices are observed by a partial solution.
Examples of such variant are the k-Power Dominating Set where propagation is possible
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(a) Median running time on each instance with the
different subsets of reduction rules.
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rules compared to our algorithm without reduction
rules.

Figure 5 Running times and speed-up of our algorithm with different subsets of the reduction
rules on the pandapower instances.

if a vertex has less than k unobserved neighbors or l-Round Power Dominating Set where
the number of propagation steps is limited. Other variants, such as Connected Power
Dominating Set are less straightforward. It might be interesting to see if connectivity can
be efficiently enforced in the implicit hitting set model.

Even though our algorithm shows a significant improvement over the state-of-the-art, there
is still some potential for further engineering. Currently, our implementation of the reduction
rules is optimized for a single execution as a pre-processing step. Further optimization might
make them more efficient, especially when only few vertices have changed between rule
applications. This might be useful in more accurate heuristics solutions on large instances or
for use in a branching algorithm. Further fast high quality heuristics can provide good upper
bounds on the solution size. Such a heuristic, combined with the lower bound provided by
our algorithm, might prove optimality earlier, further reducing the run time. Also, other
hitting set solvers beside Gurobi exist and our algorithm might benefit from using those
instead.
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