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Abstract
In the dynamic approximate maximum bipartite matching problem we are given bipartite graph
G undergoing updates and our goal is to maintain a matching of G which is large compared the
maximum matching size µ(G). We define a dynamic matching algorithm to be α (respectively
(α, β))-approximate if it maintains matching M such that at all times |M | ≥ µ(G) · α (respectively
|M | ≥ µ(G) · α − β).

We present the first deterministic (1 − ε)-approximate dynamic matching algorithm with
O(poly(ε−1)) amortized update time for graphs undergoing edge insertions. Previous solutions either
required super-constant [Gupta FSTTCS’14, Bhattacharya-Kiss-Saranurak SODA’23] or exponential
in 1/ε [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA’19] update time. Our imple-
mentation is arguably simpler than the mentioned algorithms and its description is self contained.
Moreover, we show that if we allow for additive (1, ε · n)-approximation our algorithm seamlessly
extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one
of the few small update time algorithms for (1 − ε)-approximate dynamic matching allowing for
updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph
(EDCS) datastructure introduced by [Bernstein-Stein ICALP’15]. As far as we are aware we introduce
the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly
simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to
[Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover
defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings
such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent
research interest outside of the dynamic setting.
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1 Introduction

Matchings are fundamental objects of combinatorical optimization with a wide range of
practical applications. The first polynomial time algorithm for finding a maximum matching
was published by Kuhn1 [39] in 1955 which ran in O(n4) time. A long line of papers have
focused on improving this polynomial complexity. Notably Edmonds and Karp [30] showed
the first O(n3) time algorithm for the problem which was later improved to O(n2.5) [36].
Mucha and Sankowski [40] showed maximum matching can be solved in matrix multiplication
time, that is in O(nω) where ω is currently around 2.38. In the very recent breakthrough result
of Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva [29], they showed an O(m1+o(1)) time
algorithm for the maximum flow problem (which generalizes bipartite matching) providing
the first near-linear time algorithm, essentially settling the problem in the sequential setting.

Dynamic Model. This paper focuses on the matching problem in the dynamic model where
it has received extensive research attention in recent years, see e.g [1, 2, 10,14,17,20,22,28,
41, 43, 45, 47] and many more. In this setting our task is to maintain a large matching as the
graph undergoes updates. We will refer to updates being fully dynamic if they concern both
insertions and deletions and partially dynamic if only one of the two is allowed. The objective
is to minimize the time spent maintaining the output after each update. Throughout the
paper we will always refer to update time in the amortized sense – averaged over the sequence
of updates. In [45] Sankowski has shown the fist improvement for the fully dynamic maximum
matching problem in terms of update time (O(n1.45)) compared to static recomputation
after each update. Unfortunately, based on well accepted hardness conjectures no dynamic
algorithm for the maximum matching problem may achieve update time sub-linear in n [35].
Most works focused on the relaxed approximate version of the problem where the goal is
to maintain a large matching in G with respect to the maximum matching size µ(G). We
will refer to matching algorithms as α-approximate (respectively (α, β)-approximate) if it
maintains matching M such that at all times |M | ≥ µ(G) ·α (respectively |M | ≥ µ(G) ·α−β).

Fully Dynamic Approximate Matching. The holy grail of dynamic algorithm design is to
achieve an update time of O(polylog(n)) or ideally even constant. For the fully dynamic
approximate matching problem, a long line of research [6, 9, 18, 19, 21, 26, 42, 46] has lead
to algorithms achieving ≈ 1

2 -approximation with O(polylog(n)) and constant update time.
No fully dynamic algorithm has been found achieving better than 1

2 -approximation in
O(polylog(n)) update time for the problem, and this challenge appears to be one of the
most celebrated problem within the dynamic matching literature. A set of interesting papers
focused on ≈ 2

3 -approximation in Õ(
√

n) update time [16,17,32,38] and other approximation-
ratio to polynomial-update-time trade-offs in the better-than- 1

2 -approximation regime were
achieved by [10, 11, 44]. Note that through periodic recomputation of the matching (roughly
every εµ(G) updates) we can achieve fully dynamic (1− ϵ)-approximation in Õ(n) update
time [34]. Very recently [12] has shown that (1 − ε)-approximation is possible in slightly
sublinear update time O(n/ log∗(n)O(1)) suggesting that there might exist efficient non-trivial
algorithms for the problem. Note that very recently [8, 25] have independently shown that if
our goal is to maintain the size of the maximum matching (and not the edge-set) then sub- 1

2
approximation is achievable in polylogarithmic update time.

1 However, this result is usually attributed to Kőnig and Egerváry.
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Partially Dynamic Matching Algorithms. For small approximation ratios, achieving poly-
logarithmic update time for fully dynamic matching seems far out of reach with current
techniques, or perhaps even impossible. Hence, a long line of papers have focused on main-
taining a (1 − ε)-approximate matching in partially dynamic graphs: either incremental
(edge insertions) or decremental (edge deletions). The first O(poly(log(n), ε−1)) algorithm
for maintaining a (1− ε)-approximate matching under edge insertions is due to Gupta [33],
with amortized update time O(log2(n)/ε4). Their algorithm models the bipartite match-
ing problem as a linear program, and uses the celebrated multiplicative-weights-updates
framework. Generalizing the result of [33] recently Bhattacharya-Kiss-Saranurak [23] has
shown that an arbitrarily close approximation to the solution of a linear program undergoing
updates either relaxing or restricting (but not both) its solution polytope can be maintained
in O(poly(log n, ε−1)) update time. Hence, the algorithm of [23] shows how to maintain a
(1− ε)-approximate matching under either decremental or incremental updates with a unified
approach. As both of these papers rely on static linear program solver sub-routines their
update times inherently carry log(n) factors, and it seems implausible that these techniques
can achieve constant update time independent of n.

The decremental algorithms of [15,37] focus on maintaining “evenly spread out” fractional
matchings so that they are robust against edge-deletions. These algorithms rely on either
maximum-flow computation or convex optimization sub-routines which similarly to LP-solvers
carry log(n)-factors into the update time.

The first constant time2 partially dynamic matching algorithm is due to [31] who solve
(1 − ε)-approximate matching in incremental graphs with an update time of (1/ε)O(1/ε).
Their solution relies on augmenting path elimination, a technique used commonly for the
matching problem in the static setting. However, enumerating augmenting paths seems to
inherently carry an exponential dependency on 1/ε due to the number of possible such paths
present in the graph.

As far as we are aware partially dynamic (1− ϵ)-approximate matching algorithms with
update time independent of n and faster than some exponential in ϵ are all restricted to a
relaxed version of the problem where the graph may undergo vertex insertions/deletions.
Such an algorithm can simply be obtained through straightforward periodic rebuilds (if we
allow for additive ϵ ·n slack) or as shown by Zheng-Henzinger [48]3. Hence, it we can observe
the following apparent gap in the literature of partially dynamic matching algorithms:

▶ Question 1. Can we maintain a (1−ε)-approximate maximum matching of a partially
dynamic bipartite graph in O(poly(ε−1)) update time?

Based on the current landscape of the dynamic algorithms literature, achieving (1− ε)-
approximation under fully dynamic updates in small update times seems to be far out of reach.
Contrary to the extensive research effort, no fully dynamic algorithm with poly(log(n), ε−1)
has been found for maintaining matchings with better than 1

2 -approximation. This apparent
difficulty proposes the research of dynamic models somewhere between fully and partially
dynamic updates. The previously mentioned paper by Zheng-Henzinger [48] implements a

2 That is constant-time whenever ε is constant, i.e. the update time should be independent of n.
3 A very recent paper of Zheng-Henzinger [48] has initially claimed an algorithm which can maintain a

(1 − ϵ)-approximate matching in O(1/ε) update time under edge deletions. However, the authors have
found a mistake in their paper and claim that their algorithm only works under specific vertex updates

ESA 2023
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(1− ϵ)-approximate algorithm with O(1/ε)-update time which can support vertex insertions
and deletions on separate sides of the bipartition. The existence of this new result proposes
the following natural question:

▶ Question 2. Under what kind of non-partially dynamic updates can we maintain a
(1− ε)-approximate maximum matching of a bipartite graph?

1.1 Our Contribution
In this paper we provide a positive answer to Question 1 and make progress towards
understanding Question 2. Our main result is the first O(poly(1/ε)) update time (1− ε)-
approximate dynamic matching algorithm for bipartite graphs undergoing edge insertions:

▶ Theorem 1. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a bipartite graph
undergoing edge insertions in total update time O(n/ε6 + m/ε5).

Previous algorithms for (1−ε) approximate dynamic matching under edge updates required
update times which were either super-constant [23, 33] or had an exponential dependency
on ε−1 [31]. Furthermore, our algorithm is arguably simpler then previous implementations
and it is self contained (except for the static computation of (1− ε)-approximate maximum
matchings) where as most dynamic matching algorithms either rely on heavy machinery from
previous papers or use black-box tools like multiplicative weight updates or flow-subroutines.

We further show that if we allow for (additive) (1, ε · n)-approximation4 our algorithm
seamlessly extends to a wider range of updates:

▶ Theorem 2. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a bipartite graph
undergoing edge insertions and vertex deletions in total update time of O(n/ε8 + m/ε5).

In contrast to the similar update time result of [48] which allows for edge deletions and
vertex insertions on one side of the bipartition our algorithm allows from arbitrary vertex
deletions. Our algorithm maintains a (1− ε)-approximate maximum matching of the graph
throughout updates which can both increase and decrease the maximum matching size of
the graph. Hence, we hope our techniques provide useful insight towards fully dynamizing
(1− ε)-approximate algorithms for the matching problem.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-
Subgraph (EDCS) matching sparsifier. The unweighted EDCS (first introduced by Bernstein-
Stein [16]) has found applications in a number of different computational settings: streaming
[3,4, 13], stochastic, one way communication, fault tolerant [5], sub-linear [8, 12,24,25] and
dynamic [8,16,17,32,38]. On the other hand the weighted EDCS variant which provides a
tighter approximation has only found applications in small arboricity graphs [16]. Hence, we
initiate the study of the weighted EDCS in dense graphs.

Furthermore, we show a significantly simplified proof for the approximation ratio of the
weighted EDCS datastructure with respect to the maximum matching size. In our proof, we
identify simple and explicit descriptions of a fractional matching and fractional vertex covers

4 Recall that this means that we maintain a matching of size at least µ − εn, as opposed to µ − εµ, where
µ denotes the size of the maximum matching.
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defined on top of the weighted EDCS, which might be of independent interest. Moreover, we
show that the dependence on the slack parameter on the maximum degree of the weighted
EDCS is exactly quadratic. This in sharp contrast to the unweighted EDCS where the same
relationship have been proven to be linear [7]. While within the dynamic matching algorithm
literature papers don’t tend to focus on exact ϵ complexities but rather n dependence, in
models such as semi-streaming and distributed the ϵ dependency usually gains more focus.
Our hard example (most likely) rules out applications of weighted EDCS in these models
for obtaining sub ϵ−2 round/pass complexity algorithms. We hope that these observations
will be of independent research interest due to the wide-spread popularity of the EDCS
datastructure for solving matching problems.

1.2 Our Techniques
Assume H is a multi-graph defined on the vertex set of G and let degH(v) stand for the
degree of vertex v in H. We define the degree of an edge to be the sum of the degrees of its
endpoints.5

▶ Definition 3 (Weighted EDCS [16]). Given a graph G = (V, E), a multiset H is called
a weighted EDCS with parameter β ifa:

(i) degH(u) + degH(v) ≤ β for all edges (u, v) ∈ H.
(ii) degH(u) + degH(v) ≥ β − 1 for all edges (u, v) ∈ E.

If H is not a weighted EDCS, we call an edge e ∈ H overfull if it violates (i), and an
edge e ∈ E underfull if it violates (ii).
a Some authors use an additional parameter β− < β which replaces the “β − 1” in the degree-

constraint. For our purposes, we will always have β− = β − 1.

If β = Ω(ε−2) and H is a β-WEDCS of G then µ(H) ≥ µ(G)·(1−ε) ( [16], Theorem 13). In
order to derive our incremental result we show that a β-WEDCS can be efficiently maintained
greedily under edge insertions. In turn we can efficiently maintain a (1 − ϵ)-approximate
matching within the support of H through periodic recomputation.

Define a valid update of H to be one of the following: (i) and edge e ∈ H which is overfull
with respect to H gets deleted from H; and (ii) a copy of an edge e ∈ E which is underfull
with respect to H is added to H. In Lemma 7 (slightly improving on the similar lemma’s
of [5, 13,16]) we show that if H is initialized as the empty graph and only undergoes valid
updates, then it there are at most O(µ(G) · β2) many updates.

Fix some β = Θ(ε−2). Assume G is initially empty and initialize H to be an empty edge
set (note that by definition initially H is a β-WEDCS of G). Assume edge e is inserted
into G. If at this point e is not underfull with respect to H there is nothing to be done as
H remained a valid WEDCS of G. If e is underfull with respect to H we add copies of it
to H until it is not. This process of adding e to H has increased the edge degree of edges
neighbouring e in H and some of them might have became overfull. To counteract this we
iterate through the neighbours of e in an arbitrary order and if we find an overfull edge e′

we remove it from H. This edge removal decreases the edge degrees in the neighbourhood
of e′. To counteract this we recurse and look for underfull edges in the neighbourhood of

5 Note that we are sticking to the notation weighted-EDCS instead of multi-EDCS to be in line with the
naming convention of [16] which defined H to be a weighted graph with integer edge weights.

ESA 2023
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e′. If such an edge e′′ is found we add copies of it to H until e′′ is not underfull and repeat
the same steps as if e′′ was just inserted into G. This defines a natural recursive process for
restoring the WEDCS properties after each edge insertion in a local and greedy way.

Whenever we have to explore the neighbourhood of an edge in O(∆) time (where ∆ is the
max-degree) to either check for underfull or overfull edges we do so because H underwent a
valid update. By Lemma 7 this may only happen at most O(µ(G) · β2) times. Hence, naively
the total work spent greedily fixing the WEDCS properties is O(µ(G) ·∆ · β2). For some
graphs this value might be significantly larger then m. In order to improve the update time
to Oβ(m) we assign a counter cv to each vertex v measuring the number of valid updates of
H the neighbourhood of v has underwent. Once cv grows to Ω(β2 · ε−1) we mark v dirty and
ignore further edges inserted in the neighbourhood of v. By marking a single vertex dirty and
ignoring some edges incident on it we may loose out only on a single edge of any maximum
matching. However, whenever we mark a vertex dirty we can charge Ω(β2 ·ε−1) valid updates
of H to that vertex. As there may be at most O(µ(G) · β2) valid updates of H in total we
may only mark O(µ(G) · ε) vertices dirty hence we will only ignore an O(ϵ)-fraction of any
maximum matching within the graph through ignoring edges incident on dirty vertices. As
we may scan the neighbourhood of vertex v at most O(β2 · ε−1) = poly(ε−1) times until v

is marked dirty we ensure that each edge is explored poly(ε−1) times guaranteeing a total
running time of O(m · poly(ε−1)). Full details can be found in Section 3.

Towards Full Dynamization. The algorithm almost seamlessly adopts to vertex deletions if
we allow for (1, ε · n)-approximation6. Whenever a vertex gets deleted from the graph our
WEDCS H might be locally affected. This means that over the full run of the algorithm, H

may undergo further valid updates then the O(µ(G) · β2) bound provided by Lemma 7. A
potential function based argument allows us to claim that each vertex deletion may increase
the total number valid updates H may undergo by O(β2). As each vertex may be deleted at
most once this means that the total number of valid updates we might make to restore H is
O(n · β2), each update requiring O(∆) time if naively implemented. By marking vertices as
dirty as before we can guarantee amortized O(poly(1/ε)) update time. However, now we
must mark up to ≈ ε · n vertices as dirty (as opposed to ≈ ε · µ(G) like before), which means
we may miss out on ε · n edges of the maximum matching.

2 Preliminaries

Matching Notation. Let NE(v) stand for the edges neighbouring vertex v in E. A fractional
matching f of a graph G is an assignment of the edges of G to values in the range [0, 1] such
that for all vertices v ∈ V it holds that

∑
e∈NE(v) fe ≤ 1. The size of a fractional matching is

simply the sum of the fractional values over its edges. That is a maximum fractional matching
is the solution to the linear program max{

∑
e∈E fe :

∑
e∈NE(v) fe ≤ 1 for all v ∈ V , f ≥ 0}.

A solution x to the dual of this program min{
∑

v∈V xv : xu +xv ≥ 1 for all (u, v) ∈ E, x ≥ 0}
is a fractional vertex cover.

6 Readers may reasonable argue that the additive slack is not necessary as a number of vertex-sparsification
techniques exist in literature allowing us to improve the approximation to purely multiplicative slack in
the dynamic setting. Unfortunately, these techniques don’t appear to be robust against vertex-wise
updates.
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Approximation with respect to a fractional matching is defined simmilarly as with respect
to integral matchings. For a graph G = (V, E) we use µ(G) to denote the size of the
maximum matching in G. Likewise, we use µ∗(G) to denote the size of the maximum
fractional matching. It is well-known that µ(G) ≤ µ∗(G) ≤ 3

2 µ(G) for any graph, and that
µ∗(G) = µ(G) in bipartite graphs.

▶ Theorem 4 (Hopcroft-Karp [36]). There exists a deterministic static algorithm which finds
a (1− ε)-approximate maximum matching of a graph G on m edges in O(m/ε) time.

3 Incremental Approximate Matching

We start by showing our incremental fractional matching algorithm, and then show how to
extend it (for bipartite graphs) to also maintain an integral matching.

3.1 Weighted EDCS & Fractional Matchings

In this section we show our algorithm to (almost7) maintain a weighted EDCS H in an
incremental graph. It is well-known that such an H will be a (1− ε)-matching sparsifier on
bipartite graphs, that is a “sparse” subgraph with µ(H) ≥ (1− ε)µ(G) [16].

As we show later in Section 5.1 (Theorem 13), we even known something stronger: there
is an explicit fractional matching in H of size at least (1− ε)µ∗(G), defined as

f(u,v) = min
(

1
degH(v) ,

1
degH(u)

)
on each (u, v) ∈ H. (1)

Note that [17] similarly (implicitly) defines a large fractional matching on the support of a
weighted EDCS, however our construction and analysis are arguably simpler. This fractional
matching is also valid for general (non-bipartite) graphs. Hence our incremental algorithm
will also maintain this explicit (1− ε)-approximate fractional matching (even in non-bipartite
graphs). Formally we prove the following theorem.

▶ Theorem 5. For any ε ∈ (0, 1), there is an algorithm (Algorithm 1) that maintains a
(1− ε)-approximate maximum fractional matching in an incremental graph in total update
time O(n/ε6 + m/ε5). Additionally, this fractional matching is always supported on a set of
edges H of size |H| ≤ Θ(µ(G)/ε2) and maximum degree O(1/ε2).

First we need two standard facts about weighted EDCS. For completeness, we prove these
in Section 7. Lemma 7 has only been shown before for unweighted EDCS [5,13, 16] and not
weighted (but the arguments are very similar).

▶ Lemma 6. In a β-WEDCS H, the maximum degree is at most β and |H| ≤ βµ∗(G).

▶ Lemma 7. If a multiset of edges H is only ever changed by removing overfull edges and
adding underfull edges, then there are at most β2µ∗(G) such insertions/deletions to H.

7 As we will see later in this section, our sparsifier H will be a weighted EDCS for G \ R, where R is a
subgraph of G with very small maximum matching size µ(R) = O(εµ(G)).

ESA 2023



22:8 Incremental (1−ε)-Approximate Dynamic Matching in O(poly(1/ε)) Update Time

Overview. Our algorithm (see Algorithm 1) will maintain a weighted EDCS H with
β = Θ(1/ε2). We also maintain the (1 − ε)-approximate fractional matching f as in
Equation (1) and Theorem 13.

When we get an edge-insertions (u, v), we need to reestablish the property that H is an
EDCS. If (u, v) is underfull (degH(u) + degH(v) < β − 1), we add it (maybe multiple times)
to H. This means that degH(u) (similarly degH(v)) increases, which can potentially make
some incident edge (u, w) ∈ H overfull (degH(u) + degH(w) > β), so we must remove one
such edge. This might in turn lead to some edge (w, z) ∈ E being underfull (as now degH(w)
decreased), so we add this edge to H. This process continues, so both from u and v we need
to search for alternating paths of underfull and overfull edges (as is standard in EDCS-based
algorithms). In total, Lemma 7 says there are O(n/ε4) updates to H over the full run of the
algorithm.

We note that searching for an overfull edge is cheap: the maximum degree in H is just
O(β) (Lemma 6), so we can afford to, in Θ(1/ε2) time, check all incident edges. However,
searching for underfull edges is more expensive: this time we cannot afford to just go through
all neighboring edges in E, as we no longer have a bound on the maximum degree.

To overcome this we use an amortization trick which allows us to ignore a vertex if we
touched it too many times. There are only β2µ∗(G) updates to H in total (Lemma 7), so
there will only be εµ∗(G) many vertices incident to more than 2β2/ε of these updates. Any
edges incident to these “update-heavy” vertices we may ignore, as this may only decrease
the maximum matching size by an ε fraction. We thus only need to check each edge a total
of O(1/ε5) times over the run of the algorithm, except when it is in H already. Note that H

is no longer a weighted EDCS of G = (V, E), but rather of G′ = (V, (E \R) ∪H) where R is
this set of edges we ignored (with µ∗(R) ≤ εµ∗(G)).

Algorithm 1 Incremental Weighted EDCS & Frasctional Matching.

// Initially E = H = ∅ and degH(v) = visits[v] = 0 for all v ∈ V .
// When an edge insertion e appears, add it to E and call FixEdge(e).

1 function FixEdge(e = (u, v))
2 if degH(u) + degH(v) > β and (u, v) ∈ H then // overfull
3 Remove (one copy of) the edge (u, v) from H

4 if degH(u) + degH(v) < β − 1 then // underfull
5 Add (one copy of) the edge (u, v) to H

6 if the edge was added or removed then
7 Update degH(u), degH(v), and the fractional matching accordingly
8 FixVertex(u), FixVertex(v)

9 function FixVertex(v)
10 visits[v]← visits[v] + 1
11 if visits[v] < 2β2/ε then
12 for edge e ∈ E incident to v do
13 FixEdge(e)

14 else
15 for edge e ∈ H incident to v do
16 FixEdge(e)
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Running Time. We analyse the total update time spent in different parts of our algorithm.
We first note that FixEdge runs in constant time whenever it does not update H. It is
called once for each edge-insertion (total O(m) times), and also some number of times
from FixVertex.
Now consider the case when FixEdge does update H (which happens at most β2µ∗(G)
times per Lemma 7). Now the algorithm uses O(β) time for the update of the fractional
matching and insertion/removal in H, in addition to exactly two calls to FixVertex.
Except for these calls to FixVertex, over the run of the algorithm we hence spend a total
of O(µ(G)β3) = O(n/ε6) time.
By the previous point, we will call FixVertex at most 2β2µ∗(G) times. In each call,
we either loop through all incident edges in H or E. If we loop through H, we visit
β many edges (by Lemma 6). Either these FixEdge calls take constant time, or they
are already accounted for in the previous point. In total, this thus accounts for another
O(µ(G)β3) = O(n/ε6) running time.
We account for the case when FixVertex loops through all incident edges in E differently.
Consider how often a specific edge e appears in the for-loop at line 13. Each endpoint
vertex of e will reach this line at most O(β2/ε) times. Hence, in total for all edges, line 13
is run at most O(mβ2/ε) = O(m/ε5) times.

Approximation Guarantee. We now argue the approximation ratio. We will show that
the fractional matching supported on H is a (1− 2ε)-approximation of maximum fractional
matching in G. If one want a (1− ε′)-approximation, then one can run the algorithm in the
same asymptotic update time setting ε = ε′/2, and changing β accordingly.

Define RV to be the set of “dirty”/“update-heavy” vertices: that is vertices v for which
FixVertex(v) has been called at least 2β2/ε many times (i.e. visits[v] ≥ 2β2/ε). By a
counting argument |RV | ≤ 2β2µ∗(G)/(2β2/ε) = εµ∗(G), since by Lemma 7 in total there are
only β2µ∗(G) many updates to H, each issuing exactly two calls to FixVertex. If RE is the
set of edges incident to RV , then µ∗(RE) ≤ |RV | ≤ εµ∗(G) since RV is a vertex cover of RE .

Define G′ = (V, E \ (RE \H)). By the above, µ∗(G′) ≥ (1− ε)µ∗(G). We will finish the
proof by arguing that H is a weighted EDCS of G′, and thus that our fractional matching
is of value at least (1 − ε)µ∗(G′) ≥ (1 − ε)2µ∗(G) ≥ (1 − 2ε)µ∗(G). Whenever an edge is
added or removed to H, we call FixVertex on its endpoints, and no other degrees degH

have changes. Every time FixVertex(v) is called for v ̸∈ RV , we make sure that all edges
e ∈ E incident to it satisfy the definition of an EDCS, and when FixVertex(v) is called
for some v ∈ Rv, we check the edges incident to H. We note that when a vertex becomes
“update-heavy” (added to Rv), then we do not immediately remove all incident edges from H

(as then we no longer have the same bound on the number of updates to H since Lemma 7
no longer applies).

▶ Remark 8. We note that our algorithm runs in time O(nβ3 + mβ2/ε), and a valid question
is whether setting β = Θ(1/ε2) is actually necessary? Recently it was shown that for
unweighted EDCS β = Θ(1/ε) is enough [7]. However, for weighted EDCS the ε2 dependency
is indeed necessary, as we show by an example where this is asymptotically tight in Section 5.2
(Theorem 16).

3.2 Integral Matchings in Bipartite Graphs
In this section we argue how to extend our fractional matching algorithm (Theorem 5) to
maintain an integral matching instead (for bipartite graphs), in the same asymptotic update
time. We cannot use known dynamic rounding techniques [23, 47], since all these incur
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polylog(n) factors or require randomization, and we are aiming for update time independent
of n. In fact, our technique is simple and combinatorial; and only relies on the standard
Hopcroft-Karp algorithm for finding a (1− ε)-approximate matching in the static setting [36].

▶ Theorem 1. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a bipartite graph
undergoing edge insertions in total update time O(n/ε6 + m/ε5).

▶ Remark 9. Before proving the above theorem, we briefly explain how to achieve a slightly
less efficient version (amortized O(1/ε8) update time) by using the fully dynamic (1− ε)-
approximate matching algorithm of Gupta-Peng [34] as a black box. The idea is to run the
fully dynamic algorithm on our sparsifier – the weighted EDCS H. This way we maintain a
matching M of size |M | ≥ (1− ε)µ(H) ≥ (1− ε)2µ(G) ≥ (1− 2ε)µ(G).

Gupta-Peng [34] state that their algorithm runs in O(
√

m/ε2) time per update. However,
as previously pointed out by e.g. [16, Lemma 1], it is in fact more efficient when the max-
degree ∆ is low, in which case the update time is only O(∆/ε2). Since H always has
max-degree β = Θ(1/ε2), we can maintain the integral matching M in O(1/ε4) time per
update to H. Over the run of the algorithm, we only perform O(µ(G)/ε4) updates to H (see
Lemma 7), hence the total additional update time spent maintaining the integral matching
will be O(n/ε8).

Proof of Theorem 1. To prove Theorem 1, we need a slightly more refined analysis than
the one above. We still run our incremental algorithm (Algorithm 1 and Theorem 5) to
maintain a weighted EDCS H together with a fractional matching supported on H. Similarly
to above, we additionally maintain an (1− ε)-approximate (integral) matching M of H.

The main idea of the fully dynamic algorithm of Gupta-Peng [34] is to lazily recompute
(in O(|H|/ε) time via Hoproft-Karp Theorem 4) M every ≈ εµ updates to H (indeed, during
this few updates, the matching size cannot change its value by more than εµ). There are
two observations which helps us to do better:

(i) The graph G (but not the sparsifier H) is incremental, so µ(G) can only grow.
(ii) We know a good estimate of µ(G), namely the size of our fractional matching. Denote

by µ̃ the value of the maintained fractional matching, so that (1− ε)µ(G) ≤ µ̃ ≤ µ(G).
The above two observations mean that we only need to recompute the matching M whenever
µ(G) actually have increased significantly (namely by a (1 + Θ(ε))-factor), and not just every
εµ updates.

Formally, whenever |M | ≥ (1−ε)2µ̃ we know that M is still a (1−3ε)-approximation since
then |M | ≥ (1− ε)2µ̃ ≥ (1− ε)3µ(G) ≥ (1− 3ε)µ(G). Conversely, whenever |M | < (1− ε)2µ̃,
we recompute M in time O(|H|/ε) (Theorem 4) so that it is a (1− ε)-approximation of the
maximum matching in H (and thus also a (1− 2ε)-approximation of the maximum matching
in G).

Let us now bound the total time spent recomputing M . Let M1, M2, . . . , Mt be the
different approximate matchings we compute during the run of the algorithm. We first note
that at the time when we compute Mi+1:

|Mi| ≤ (1− ε)2µ̃ ≤ (1− ε) ((1− ε)µ(H)) ≤ (1− ε)|Mi+1| (2)

This in turn means that |Mi| ≤ (1− ε)t−i n (since |Mt| ≤ n), and hence that
∑t

i=1 |Mi| ≤
n

∑∞
i=0(1− ε)i ≤ n/ε, by a geometric sum.

Finally we note that we spend O(|Mi|/ε3) time in order to compute Mi. Indeed, when
we compute Mi, we did so in O(|H|/ε) time, and |H| = O(µ(G)/ε2) by Lemma 6. This
means that in total, over the run of the algorithm, we spend O(

∑
|Mi|/ε3) = O(n/ε4) time
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maintaining the integral matchings Mi. This is in addition to the time spent maintaining the
weighted EDCS H and the fractional matching (see Theorem 5). This concludes the proof of
Theorem 1. ◀

4 Vertex Deletions

In this section we will observe that our algorithm can also handle vertex deletions (simul-
taneously to handling edge insertions) in similar total update time. However, this comes
with one caveat: we instead get additive approximation error proportional to εn (that is we
maintain a matching of size µ∗(G)− εn, instead of µ∗(G)− εµ∗(G) as before).

▶ Theorem 10. For any ε ∈ (0, 1), there is an algorithm that maintains a fractional matching
of size at least µ∗(G)− εn in an graph G undergoing edge insertions and vertex deletions.
The total update time is O(n/ε6 + m/ε5).

Proof. The algorithm (Algorithm 1) remains the same as in Section 3.1. When a vertex is
deleted, we simply remove all it’s incident edges from E and H, and call FixVertex on all
neighboring vertices (in H) who now changed their degree. The only thing which changes
in the analysis is the β2µ∗(G)-bound on the number of updates to H (Lemma 7), which
no longer applies. However, we can still get a weaker version of Lemma 7 with a β2n total
update bound instead:

▶ Lemma 11. If a multiset of edges H is only ever changed by (i) removing overfull edges,
(ii) adding underfull edges, and (iii) removing all edges incident to a vertex when no edges
are underfull or overfull, then there are at most 3β2n insertions/deletions to H.

Given Lemma 11 (which we prove in Section 7), we see that the running time analysis of
Algorithm 1 can remain exactly the same! In the approximation guarantee analysis, we now
have more “update-heavy” vertices |RV | ≤ 6β2n/(2β2/ε) = 3εn, which is why we now can
lose up to O(nε) edges from the matching. Otherwise, the approximation guarantee analysis
remains the same, and so does the rest of the analysis of the algorithm. ◀

Rounding in Bipartite Graphs. Similar as in Section 3.2, we can round the fractional
matching to an integral one in bipartite graphs, also while supporting edge-insertions and
vertex-deletions simultaneously.

▶ Theorem 2. There exists a deterministic dynamic algorithm which for arbitrary small
constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a bipartite graph
undergoing edge insertions and vertex deletions in total update time of O(n/ε8 + m/ε5).

Proof. Unlike in Section 3.2, we cannot argue that µ(G) is increasing when we have vertex
deletions. So instead we resort to the Gupta-Peng [34] framework discussed in Remark 9
(together with Lemma 11), which has the additional cost of O(n/ε8) total update time to
maintain an approximate integral matching on our sparsifier H. ◀

▶ Remark 12. We note that normal vertex-sparsification techniques (such as the one shown
in [38] against oblivious adversaries) do not apply here in order to assume n = Θ̃(µ(G)) so
that the additive error becomes multiplicative again. This is because vertex deletions in the
original graph might become edge deletions in the vertex-sparsified graph. We also note
that one can achieve similar guarantees of supporting vertex deletions with additive εn slack
using any edge-incremental algorithm (also for non-bipartite graphs) as a black-box: see
Section 6 for a discussion on how this can be done. The general approach in Section 6 will
give worse dependency on 1/ε (for dense graphs), compared to Theorems 2 and 10 above.
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5 Tight Bounds of the of Approximation Ratio of a Weighted EDCS

5.1 Explicit Fractional Matching
In this section, we give explicit formulas only based on the degrees in H, for a (1 − ε)-
approximate fractional matching. We prove this by also providing an explicit approximate
fractional vertex cover, and showing that these satisfy approximate complimentary slackness.
This also significantly simplifies the previous proof [16] that H is (1− ε)-matching sparsifier
in bipartite graphs.

▶ Theorem 13. Suppose H is a weighted EDCS of a graph G, with parameter β ≥ 25/ε2.
Let f(u,v) = min{ 1

degH (v) , 1
degH (u)} for each8 (u, v) ∈ H. Then f is a (1 − ϵ)-approximate

fractional matching of G.

Define rv := degH(v)− β−1
2 for a vertex v ∈ H. We define the fractional matching f as in

the statement of the theorem, together with the fractional vertex cover x:

f(u,v) = min
(

1
degH (u) , 1

degH (v)

)
for edge (u, v) ∈ H (3)

xv =
{

min(1, 1
2 + r2

v

β ) if rv ≥ 0
max(0, 1

2 −
r2

v

β ) if rv < 0
(4)

It is now relatively straightforward (albeit a bit calculation-heavy) to argue that f and x are
indeed feasible solutions and that they satisfy approximate complimentary slackness.

▷ Claim 14. Our f is a fractional matching and our x is a fractional vertex cover of G.

Proof. Our f is feasible since no vertex v is overloaded by the matching: at most degH(v)
many incident edges to v contribute at most 1/ degH(v) each.

To argue that x is feasible, consider some edge (u, v) ∈ E. Without loss of generality we
may assume that degH(v) ≥ degH(u) and degH(v) ≥ β−1

2 , i.e. rv ≥ ru and rv ≥ 0 (since
degH(u)+degH(v) ≥ β−1 as H is a weighted EDCS). If r2

v ≥ β/2, xv = 1 so (u, v) is covered.
In the case r2

v < β/2, we instead have xv = 1
2 + r2

v

β . It is always the case that xu ≥ 1
2 −

r2
u

β .
Additionally we note that ru + rv ≥ 0 (so r2

u ≤ r2
v) since degH(u) + degH(v) ≥ β − 1, so we

conclude that xu + xv ≥ 1, and hence that (u, v) is covered. ◁

▷ Claim 15. The fractional matching f and fractional vertex cover x satisfy
(1− 3√

β
, 1 + 2√

β
+ 2

β )-approximate complementary slackness9; in particular:

(i) Whenever f(u,v) > 0, then xu + xv ≤ 1 + 2√
β

+ 1
β .

(ii) Whenever xv > 0, then
∑

u:(u,v)∈H f(u,v) ≥ 1− 4√
β

.

Proof. We verify (i) and (ii).
(i) Suppose f(u,v) > 0, then (u, v) ∈ H, so degH(u) + degH(v) ∈ {β − 1, β}. This

means that 0 ≤ rv + ru ≤ 1. If both rv and ru are non-negative, we have that
xu + xv ≤ 2( 1

2 + 12

β ) ≤ 1 + 2
β . Now, without loss of generality ru < 0 ≤ rv. In case

8 We note that edges e appearing multiple time in H all contribute towards fe: if e appears ϕe times in
H, the value of fe is naturally scaled by ϕe.

9 For completeness, we define the approximate complimentary slackness conditions in Section 7 and prove
them in Lemma 20.
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r2
u ≥ β/2, we know xu = 0 so xu + xv ≤ 1. In the case when r2

u < β/2, we know
xu = 1

2 + r2
u

β and xv ≤ 1
2 + r2

v

β . Since ru + rv ≤ 1, we known that rv ≤ |ru| + 1.
Concluding:

xv + xu ≤ 1 + (|ru|+ 1)2 − r2
u

β
= 1 + 2|ru|+ 1

β
< 1 + 2

√
β + 1
β

= 1 + 2√
β

+ 1
β

.

(ii) Suppose xv > 0. Hence rv > −
√

β/2 (else xv = 0), that is degH(v) > β−1
2 −

√
β/2.

For any incident edge (u, v) ∈ H, we must have degH(v) + degH(u) ≤ β, so degH(u) ≤
β−1

2 + (1 +
√

β/2). Now, we see that we assign weight at least 1/( β−1
2 + (1 +

√
β/2))

to the edge (u, v) in f . Since this holds for all the degH(v) > β−1
2 −

√
β/2 incident

edges we know that v will in total receive, from the fractional matching f , at least:

∑
u:(u,v)∈H

f(u,v) ≥
β−1

2 −
√

β/2
β−1

2 + 1 +
√

β/2
= 1−

√
8β + 2

β +
√

2β + 1
≥ 1− 3√

β
. ◀

Proof of Theorem 13. By the above claims and approximate complimentary slackness (see
Lemma 20 in Section 7) we know that (1− 3√

β
)|x| ≤ (1 + 2√

β
+ 2

β )|f |. Since (1− 3√
β

)/(1 +
2√
β

+ 2
β ) > 1 − 5√

β
, we get that |f | ≥ (1 − 5√

β
)|x| ≥ (1 − ε)|x| ≥ (1 − ε)µ∗(G) whenever

β ≥ 25/ε2. ◀

5.2 Lower Bound
In this section we show that Theorem 13 is tight up to a constant, i.e. that one must set
β = Θ(1/ε2) in order to guarantee that a weighted EDCS preserves a (1− ε)-fraction of the
matching. This might be a bit surprising, considering that for the unweighted EDCS, it is
known that β = Θ(1/ε) suffices (to preserve a ( 2

3 − ε)-approximation to the matching [7]).

▶ Theorem 16. For any β ≥ 2, there exists a (bipartite) graph G together with a weighted
EDCS H for which µ(H) = (1−Θ(1/

√
β))µ(G).

We show our construction in Figure 1, and also describe it here formally in words. For
simplicity, we will assume that β = 2γ2 for some integer γ (but it is not difficult to adapt the
proof for when β is not twice a square). In our construction, each edge appears at most once
in H, and all edges e ∈ H have degH(e) = β; all edges e ∈ E \H have degH(e) = β − 1.

Define the gadget Gi = (Si, Li, Ei) to be a complete bipartite graph in which |Si| = γ2 + i

and |Li| = γ2 − i (S is for vertices with small degree, and L for vertices with large degree).
The subgraph H will consist of many of these gadgets Gi, so we start by noting a few
properties about them. Firstly, vertices in Li have degree β

2 + i while those in Si have degree
β
2 − i. This means that any edge in (u, v) ∈ Ei has degree exactly degGi

(u) + degGi
(v) = β.

We also note that the maximum matching inside Gi is of size |Li| = γ2 − i.

Subgraph H. We begin by describing how the weighted EDCS H looks like, and later we
will define what additional edges are also in the full graph G. The subgraph H will exactly
consist of:

One copy of G0.
Two copies each of G1, G2, . . . , Gγ−1. Call the copies G

(1)
i and G

(2)
i .

2γ copies of Gγ . Call the copies G
(1,j)
γ and G

(2,j)
γ for j = 1, 2, . . . , γ.

▷ Claim 17. µ(H) = 4γ3 − 4γ2 + γ.
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L0 L
(1)
1S

(1)
1 L

(1)
2S

(1)
2 L

(1)
γ−1S

(1)
γ−1

L
(1,1)
γS

(1,1)
γ

L
(1,2)
γS

(1,2)
γ

L
(1,γ)
γS

(1,γ)
γ

S0 L
(2)
1S

(2)
1 L

(2)
2S

(2)
2 L

(2)
γ−1S

(2)
γ−1

L
(2,1)
γS

(2,1)
γ

L
(2,2)
γS

(2,2)
γ

L
(2,γ)
γS

(2,γ)
γ

Figure 1 The lower bound construction. The blue edges are part of H, while the yellow are not.
We have γ =

√
β/2, and each set Si, Li indicates an independent set of vertices of size |Si| = γ2 + i

and |Li| = γ2 − i (so in H they have degrees β
2 − i and β

2 + i respectively). The maximum matching
in H matches all vertices in Li to the corresponding Si. The maximum matching in G however,
matches Li to Si+1 (and S0 to S

(2)
1 ), in addition to Lγ which can also be matched to Sγ .

Proof. Since the maximum matching size in Gi is |Li| = γ2 − i we get:

µ(H) = |L0|+ 2γ|Lγ |+ 2(|L1|+ |L2|+ · · ·+ |Lγ−1|)

= γ2 + 2γ(γ2 − γ) + 2
γ−1∑
i=1

(γ2 − i)

= 4γ3 − 4γ2 + γ ◁

Full graph G. Now we describe the additional edges which are part of G but not already
in H (see also Figure 1):

For k ∈ {1, 2}, we connect G
(k)
1 , G

(k)
2 , . . . , G

(k)
γ−1 in a chain as follows: every pair (u, v)

with u ∈ L
(k)
i and v ∈ S

(k)
i+1 is an edge (so that the induced subgraph on these two sets of

vertices forms a complete bipartite graph).
At the end of these two chains, we connect all the gadgets G

(k,j)
γ as follows: every pair

(u, v) with u ∈ L
(k)
γ−1 and v ∈ S

(k,j)
γ for some j, is an edge.

Finally we connect these two chains using G0 = (S0, L0, E0) as follows: every pair (u, v)
with u ∈ L0 and v ∈ S

(1)
1 is an edge; and every pair (u, v) with u ∈ S0 and v ∈ S

(2)
1 is an

edge.
We note that G is bipartite and all above edges have degree exactly degH(u)+degH(v) = β−1,
so indeed H is a weighted EDCS of G.

▷ Claim 18. µ(G) ≥ 4γ3 − 3γ2 + γ.

Proof. We argue that a matching of this size exists in G. In fact the only edges of H we will
use as part of this matching are those in the gadgets G

(k,j)
γ .

We pick a matching between L
(k)
i and S

(k)
i+1 of size |L(k)

i | = γ − i for all k ∈ {1, 2} and
i = 1, 2, . . . , γ − 2.
In G

(k,j)
γ we pick a matching of size |L(k,j)

γ | = γ2 − γ. Note that exactly 2γ vertices in
S

(k,j)
γ are left unmatched.
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Denote by U (k) the set of unmatched vertices in S
(k,1)
γ , S

(k,2)
γ , . . . , S

(k,γ)
γ , for k ∈ {1, 2}.

Note that |U (k)| = 2γ2 and that (L(k)
γ−1, U (k)) forms a complete bipartite graph, so we

pick a matching of size |L(k)
γ−1| = γ2 − γ + 1 from there.

Finally we pick matchings between L0 and S
(1)
1 (respectively S0 and S

(2)
1 ) of size |L0| = γ

(respectively |S0| = γ).
In total we see that the above matching is exactly |S0| = γ larger than in Claim 17, which
concludes the proof of the claim. ◁

Approximation ratio. To conclude the proof of Theorem 16, we see that µ(G)− µ(H) =
γ2 ≥ 1

4γ µ(G) whenever γ ≥ 1. Hence H preserves at most a (1− 1
4γ ) = (1− 1

2
√

2β
) fraction

of the maximum matching of G.

6 Black-Box Vertex Deletions

Here we briefly explain how one can convert any incremental (1− ε)-approximate maximum
matching algorithm to also support vertex deletions, if allowing additive εn approximation
instead, in a black-box fashion. The reduction is simple and also works in general (non-
bipartite) graphs. Hence, as an immediate application, we can get a (1, εn)-approximate
matching algorithm for general graphs undergoing both edge-insertions and vertex-deletions,
with amortized 1/εO(1/ε) update time, if using the incremental algorithm of [31].

▶ Lemma 19. Suppose A is an algorithm which maintains a (1−ε/2)-approximate maximum
matching for a graph undergoing edge insertions, running in total time T . Then there exists
an algorithm which maintains a (1, εn)-approximate matching, in total time O(T/ε), on a
graph undergoing both edge insertions and vertex deletions.

Proof. We run A, and whenever we get a vertex deletion we ignore it and keep the vertex in
the graph. In the outputted matching from the algorithm we remove any edges incident to
deleted vertices. When εn/2 vertices have been deleted, we actually delete them from the
graph and rerun the algorithm from scratch (starting on the empty graph). This will only
happen 2

ε times, which is the running time blow-up. At each point, the algorithm maintains
a matching of size at least µ− (εn/2 + εn/2) = µ− εn, since only one edge can be removed
per deleted vertex still remaining in the graph. ◀

7 Omitted Proofs

EDCS properties

▶ Lemma 6. In a β-WEDCS H, the maximum degree is at most β and |H| ≤ βµ∗(G).

Proof. If a vertex u has degH(u) > β, then any incident edge (u, v) ∈ H is overfull:
degH(u) + degH(v) > β, leading to a contradiction. Hence the maximum degree is at most
β. Now we construct a fractional matching by assigning a weight of 1/β to every edge in H

(so an edge appearing with multiplicity ϕ in H gets weight ϕ/β). Clearly this is a feasible
fractional matching of G, since no vertex is overloaded. On the other hand, the size of this
fractional matching is |H|/β, implying that |H| ≤ βµ∗(G). ◀

▶ Lemma 7. If a multiset of edges H is only ever changed by removing overfull edges and
adding underfull edges, then there are at most β2µ∗(G) such insertions/deletions to H.
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Proof. We use a potential function argument. Define

Φ(H) := |H|(2β−1)−
∑

(u,v)∈H

(degH(v)+degH(u)) =
∑

(u,v)∈H

(2β−1−degH(u)−degH(v))

We note that if an edge (u, v) appears multiple times in H, it appears multiple times in the
above sum as well. We first note that Φ(∅) = 0 and Φ(H) ≤ β|H| ≤ β2µ∗(G), by Lemma 6
and since (2β − 1− degH(u)− degH(v)) ≤ β when H is a valid EDCS. Now we verify that
updates to H increase the potential by at least 1:

Insertion of an underfull edge (u, v) ∈ E.
That is degH(u) + degH(v) ≤ β − 2 before adding the edge. The term |H|(2β − 1) will
increase by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will increase by at most 2β − 2, since

one term of value degH(v) + degH(v) ≤ β − 2 + 2 (the +2 comes from degH(v) and
degH(u) increasing by one when we add (u, v) to H) is added, and at most β − 2 other
terms decrease in value by one.
Deletion of an overfull edge (u, v) ∈ H.
That is degH(u) + degH(v) ≥ β + 1 before removing the edge. The term |H|(2β − 1) will
decrease by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will decrease by at least 2β, since one

term of value degH(v) + degH(v) ≥ β + 1− 2 (the −2 comes from degH(v) and degH(u)
decreasing when we remove (u, v)) is erased, and at least β + 1 other terms increase in
value by one. ◀

▶ Lemma 11. If a multiset of edges H is only ever changed by (i) removing overfull edges,
(ii) adding underfull edges, and (iii) removing all edges incident to a vertex when no edges
are underfull or overfull, then there are at most 3β2n insertions/deletions to H.

Proof. We continue the potential function argument from the proof of Lemma 7 above. When
we delete, from H, all edges incident to some vertex u, we know that we deleted at most
β many edges from H (as the degree of this vertex was at most β). For each such incident
edge (u, v), we bound how much its deletion could have decreased the potential function.
The |H|(2β − 1) term decreased by exactly 2β − 1, and the −

∑
(u,v)∈H(degH(u) + degH(v))

term can only increase. So the total decrease in potential, over all up to β incident edges
which were deleted, is at most 2β2 − β.

Since we can only delete up to n vertices in total, and the potential is always bounded by
β2µ∗(G) ≤ β2n, it follows that the total increase in the potential function, over the run of the
algorithm, is at most 3β2n− nβ (and thus this many updates to H from insertions/deletions
of underfull/overfull edges). In total we deleted at most nβ edges in H incident to deleted
vertices, so the total number of updates to H is thus bounded by 3β2n−βn+βn = 3β2n. ◀

Approximate Complimentary Slackness

▶ Lemma 20. Suppose we have the primal linear program max{cT x : Ax ≤ b, x ≥ 0}, and
its dual min{bT y : AT y ≥ c, y ≥ 0}. We say that feasible primal solution x and dual solution
y satisfy (α, γ)-approximate complementary slackness (for α ≤ 1 ≤ γ) if: (i) if xi = 0 then
(AT )iy ≤ γci, and (ii) if yj = 0 then (A)jx ≥ αbj . When this is the case, then αbT y ≤ γcT x

(i.e. x and y are γ
α -approximate optimal).

Proof. We see that γcT x − αbT y = xT (γc − AT y) + yT (Ax − αb). Now either xi = 0 or
(γc−AT y)i ≥ 0; and either yj = 0 or (Ax− αb)j ≥ 0. Hence γcT x− αbT y ≥ 0. ◀
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