
Faster 0-1-Knapsack via Near-Convex
Min-Plus-Convolution
Karl Bringmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Alejandro Cassis
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We revisit the classic 0-1-Knapsack problem, in which we are given n items with their weights and
profits as well as a weight budget W , and the goal is to find a subset of items of total weight at
most W that maximizes the total profit. We study pseudopolynomial-time algorithms parameterized
by the largest profit of any item pmax, and the largest weight of any item wmax. Our main result are
algorithms for 0-1-Knapsack running in time Õ(nwmaxp

2/3
max) and Õ(npmaxw

2/3
max), improving upon an

algorithm in time O(npmaxwmax) by Pisinger [J. Algorithms ’99]. In the regime pmax ≈ wmax ≈ n

(and W ≈ OPT ≈ n2) our algorithms are the first to break the cubic barrier n3.
To obtain our result, we give an efficient algorithm to compute the min-plus convolution of

near-convex functions. More precisely, we say that a function f : [n] 7→ Z is ∆-near convex with
∆ ≥ 1, if there is a convex function f̆ such that f̆(i) ≤ f(i) ≤ f̆(i) + ∆ for every i. We design an
algorithm computing the min-plus convolution of two ∆-near convex functions in time Õ(n∆). This
tool can replace the usage of the prediction technique of Bateni, Hajiaghayi, Seddighin and Stein
[STOC ’18] in all applications we are aware of, and we believe it has wider applicability.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Knapsack, Fine-Grained Complexity, Min-Plus Convolution

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.24

Related Version Full Version: https://arxiv.org/abs/2305.01593

Funding This work is part of the project TIPEA that has received funding from the European Re-
search Council (ERC) under the European Unions Horizon 2020 research and innovation programme
(grant agreement No. 850979).

1 Introduction

In the 0-1-Knapsack problem, we are given a set of n items I = { (p1, w1), . . . , (pn, wn) },
where item i has a profit pi ∈ N and a weight wi ∈ N, as well as a weight budget W ∈ N.
The goal is to compute OPT := max

∑n
i=1 pixi subject to the contraints

∑n
i=1 wixi ≤ W

and x ∈ { 0, 1 }n. This classic and fundamental problem in computer science and operations
research has been studied for decades (see e.g. [29] for a book on the topic and related
problems). Knapsack is weakly NP-hard, and the textbook dynamic programming algorithm
due to Bellman [5] solves it in time O(n ·min{W, OPT }).

Recent works have studied the fine-grained complexity of Knapsack and related problems,
where the goal is to give best-possible pseudopolynomial-time algorithms with respect to
different parameters, see Table 1 and [7, 27, 12, 2, 15, 22, 30, 23, 26]. In this work we study
the complexity of 0-1-Knapsack in terms of two natural parameters: the largest weight among
the items denoted by wmax, and the largest profit denoted by pmax. Note that we can assume

© Karl Bringmann and Alejandro Cassis;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 24;
pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ESA.2023.24
https://arxiv.org/abs/2305.01593
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

without loss of generality that wmax ≤W and pmax ≤ OPT. Therefore, a small polynomial
dependence on these parameters can lead to faster algorithms compared to the standard
dynamic programming algorithm on certain instances.

This parameterization has been studied by several previous works, see Table 1. To
compare these running times, note that since any feasible solution includes at most all items,
we can assume without loss of generality that W ≤ nwmax and OPT ≤ npmax. Note that
when pmax ≈ wmax ≈ n (and W ≈ OPT ≈ n2), all known algorithms require time Ω(n3). In
particular, in this regime the algorithm in time O(nwmaxpmax) of Pisinger from ’99 [34] is
still the best known. In this paper we overcome this cubic barrier :

▶ Theorem 1. There is a randomized algorithm for 0-1-Knapsack that runs in time1

Õ((pmaxW)2/3(nwmax)1/3 + nwmax) and succeeds with high probability. Using the bound
W ≤ nwmax, this running time is at most Õ(n wmax p

2/3
max).

Symmetrically, we obtain the following:

▶ Theorem 2. There is a randomized algorithm for 0-1-Knapsack that runs in time
Õ((wmaxOPT)2/3(npmax)1/3 + npmax) and succeeds with high probability. Using the bound
OPT ≤ npmax, this running time is at most Õ(n pmax w

2/3
max).

Table 1 Pseudopolynomial-time algorithms for 0-1 Knapsack.

Reference Running Time

Bellman [5] O(n · min{W, OPT})

Pisinger [34] O(n · pmax · wmax)

Kellerer and Pferschy [28], also [4, 3] Õ(n + wmax · W)

Bateni, Hajiaghayi, Seddighin and Stein [4] Õ(n + pmax · W)

Axiotis and Tzamos [3] Õ(n · min{ w2
max, p2

max })

Bateni, Hajiaghayi, Seddighin and Stein [4] Õ((n + W) · min{ wmax, pmax })

Polak, Rohwedder and Węgrzycki [35] O(n + min{ w3
max, p3

max })

Bringmann and Cassis [8] Õ(n + (W + OPT)1.5)

Theorem 1 Õ(n · wmax · p
2/3
max)

Theorem 2 Õ(n · pmax · w
2/3
max)

Min-Plus Convolution. Given functions f, g : [n] 7→ Z, their min-plus convolution is
the function h : [2n] 7→ Z defined as h(x) = minx′ f(x′) + g(x − x′) for x ∈ [2n]. This
can be trivially computed in time O(n2), and the best known algorithm for it runs in
time n2/2Ω(

√
log n) [6, 36, 17]. The lack of faster algorithms has led to the Min-Plus

Convolution Hypothesis, which postulates that there is no truly subquadratic algorithm for
this problem [20, 32]. Despite this hypothesis, there are structured instances of min-plus
convolution that can be solved faster [1, 4, 13, 16, 18]. These improvements have been key
to obtain the Knapsack algorithms listed in Table 1 (the only exception being Bellman’s and
Pisinger’s algorithms [5, 34]):

1 We use Õ(·) to supress polylogarithmic factors in the input size and the largest input number.

K. Bringmann and A. Cassis 24:3

When one of the functions is convex, their min-plus convolution can be computed in time
O(n) using the SMAWK algorithm [1]. This has been used for Knapsack indirectly2 by
Kellerer and Pferschy [28], and explicitly by Axiotis and Tzamos [3] and Polak, Rohwedder
and Węgrzycki [35].
When the functions are monotone and have bounded entries, their min-plus convolution
can be computed in time Õ(n1.5) by an algorithm due to Chi, Duan, Xie and Zhang [18].
This has been used for Knapsack by Bringmann and Cassis [8].
Bateni, Hajiaghayi, Seddighin and Stein [4] introduced the prediction technique to show
that the min-plus convolution of certain instances arising from Knapsack can be computed
efficiently. More precisely, let h be the min-plus convolution of two given functions
f, g : [n] 7→ Z. They show that if one is given n intervals [xi . . yi] for i ∈ [n] satisfying
(i) |h(i + j)− (f(i) + g(j))| ≤ ∆ for every i ∈ [n] and j ∈ [xi . . yi], (ii) for every output
h(k) there exists at least one i such that f(i) + g(k − i) = h(k) and k − i ∈ [xi . . yi]
and (iii) 0 ≤ xi, yi < n for all intervals and xi ≤ xj , yi ≤ yj for all i < j; then h can
be computed in time Õ(n ·∆). They showed that this is applicable in the context of
Knapsack.

Our Theorems 1 and 2 fall into the same category of improvements, as we design an
efficient algorithm for a new class of structured instances of min-plus convolution, namely
near convex functions: We say that f : [n] 7→ Z is ∆-near convex, if there is a convex function
f̆ : [n] 7→ Q such that f̆(i) ≤ f(i) ≤ f̆(i) + ∆ for all i ∈ [n]. Our theorem reads as follows:

▶ Theorem 3 (Near Convex MinPlus Convolution). Let f : [n] 7→ [−U . . U], and g : [m] 7→
[−U . . U] be given as inputs where n, m, U ∈ N. Let ∆ ≥ 1 such that both f and g are ∆-near
convex. Then the min-plus convolution of f and g can be computed in time Õ((n + m) ·∆).

We view our Theorem 3 as a replacement for the prediction technique by Bateni et al. [4].
Indeed, all uses of the prediction technique exploit near-convexity to ensure its preconditions,
and thus all uses that we are aware of can be replaced by our Theorem 3. Since the prediction
technique is both difficult to state and difficult to apply, we view our Theorem 3 as replacing
the prediction technique by an easily applicable tool with a concise statement. Moreover,
Theorem 3 provides a new tool for structured instances of min-plus convolution, which we use
in this paper to make progress on 0-1-Knapsack, and which we believe has wider applicability.

Our Techniques. Our approach to prove Theorem 3 is as follows. Let f, g : [n] 7→ Z be
the input functions, and let h be their min-plus convolution, which we aim to compute.
First we observe that we can obtain the convex approximations f̆ , ğ witnessing the ∆-near
convexity of f and g, and compute their min-plus convolution h̆ efficiently. By exploiting
h̆ and the convexity of f̆ and ğ, we identify a structured set R ⊆ [n]2 with the property
that any (i, j) ∈ [n]2 \ R satisfies f(i) + g(j) > h(j). Then, we give a simple recursive
algorithm to cover R with a collection C of disjoint dyadic boxes I × J , where (I, J) ∈ C
satisfies I, J ⊆ [n] and I × J ⊆ R. Thus, we can infer h by computing the sumset
A := { (i, f(i)) | i ∈ I } + { (j, g(j)) | j ∈ J } and taking h(k) = min{ y | (k, y) ∈ A } for
every (I, J) ∈ C. To do this efficiently we observe that inside I and J , the functions f [I]
and g[J] are close to linear functions with the same slope up to an additive error of ±O(∆)
(which follows from their ∆-near convexity). This implies that their sumset is small; more

2 Kellerer and Pferschy did not use SMAWK, but gave a different algorithm for computing the min-plus
convolution of these instances in time O(n log n).

ESA 2023

24:4 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

precisely it has size O((|I|+ |J |)∆). Finally, we make use of known tools that can compute a
sumset in time proportional to its size. The idea of identifying a covering with small sumsets
to efficiently compute the min-plus convolution is inspired by Chan and Lewenstein’s [16]
algorithm for bounded monotone sequences (in which they do not use convexity in any form).
Our algorithm shares some similarities with the prediction technique by Bateni et al. [4]. In
particular, the covering by dyadic boxes where functions are near-linear resembles the way in
which they exploit the intervals [xi . . yi] required by their algorithm.

To obtain Theorems 1 and 2, we follow the partition and convolve paradigm that has
been used in many recent algorithms for Subset Sum and Knapsack, see e.g. [7, 4, 8, 26, 14,
31, 21, 11]. Specifically, we randomly split the items into q groups. In each group, we use
the standard dynamic programming algorithm to compute for each weight i, the maximum
profit f(i) attainable with weight at most i using items from that group. Then we combine
the functions f over all groups by min-plus convolution. The crucial observation is that due
to the random splitting we only need to compute the values f(i) in a small weight interval.

Further Related Work. Cygan et al. [20] and Künnemann et al. [32] showed that under the
Min-Plus Convolution Hypothesis, there is no truly subquadratic algorithm for Knapsack on
instances with wmax, W = Θ(n) and pmax, OPT = Ω(n2), and symmetrically, on instances
with pmax, OPT = Θ(n) and wmax, W = Ω(n2). This implies that Bellman’s dynamic
programming algorithm is conditionally optimal in these settings.

Pseudopolynomial-time algorithms parameterized by pmax and wmax have also been
studied for the closely related Unbounded Knapsack problem. Here, the setup is the same as
for 0-1 Knapsack but now a solution might include an arbitrary number of copies of each
item. Chan and He [15] gave an algorithm for this problem in time Õ(n ·min{ pmax, wmax }),
which is optimal under the Min-Plus Convolution Hypothesis. Bringmann and Cassis [8]
gave an algorithm in time Õ(n + (pmax + wmax)1.5) which is better when wmax ≈ pmax ≈ n.

Outline. The paper is organized as follows. In Section 2 we give some formal preliminaries
and establish some notation. In Section 3 we give our algorithm for Knapsack proving Theor-
ems 1 and 2, assuming Theorem 3. In Section 4 we will then give our algorithm for min-plus
convolution, proving Theorem 3.

2 Preliminaries

We write N = { 0, 1, 2, . . . }. For t ∈ N, we define [t] := { 0, 1, . . . , t }. Let A ∈ Zn+1

be an integer sequence, i.e., A[i] ∈ Z for i ∈ [n]. Sometimes we will refer to such a
sequence as a function A : [n] 7→ Z. With this in mind, we use the notation −A to
denote the entry-wise negation of A. Given a, b ∈ R with a ≤ b, we define [a . . b] :=
{max(0, ⌊a⌋), max(0, ⌊a⌋) + 1, . . . , ⌈b⌉ − 1, ⌈b⌉ }. The non-standard rounding and capping at
0 in the definition of [a . . b] is useful to index a subsequence A[a . . b] when a and b might
not be non-negative integers.

The max-plus convolution of two sequences A[0 . . n] ∈ Zn+1, B[0 . . m] ∈ Zm+1, denoted
by MaxConv(A, B), is a sequence of length n + m + 1 where for each k ∈ [n + m] we have
MaxConv(A, B)[k] := maxi+j=k A[i] + B[j]. The min-plus convolution MinConv(A, B) is
defined analogously, but replacing max by a min. Note that by negating the entries of the
sequences, these two operations are equivalent.

▶ Fact 4. For any A ∈ Zn+1, B ∈ Zm+1, we have MaxConv(A, B)=−MinConv(−A,−B).

K. Bringmann and A. Cassis 24:5

We will use the following handy notation: Given sequences A[0 . . n], B[0 . . n] and
intervals I, J ⊆ [n] and K ⊆ [2n], we denote by C[K] := MaxConv(A[I], B[J]) the
computation of C[k] := max{A[i] + B[j] : i ∈ I, j ∈ J, i + j = k} for each k ∈ K.

We say that a function f : [n] 7→ Q is convex if f(i)− f(i− 1) ≤ f(i + 1)− f(i) holds
for every i ∈ [1 . . n− 1]. We say that f is concave if −f is convex.

▶ Definition 5 (Near Convex and Near Concave Functions). For ∆ ≥ 0, we say that a
function f : [n] 7→ Z is ∆-near convex, if there is a convex function f̆ : [n] 7→ Q such that
f̆(i) ≤ f(i) ≤ f̆(i) + ∆. We say that f is ∆-near concave if −f is ∆-near convex.

If the input consists of N numbers in [−U . . U], we denote Õ(T) =
⋃

c≥0 O(T logc(NU)).

3 Faster 0-1 Knapsack Algorithm

In this section we prove Theorem 1. Let (I, W) be a 0-1 Knapsack instance. Throughout,
we denote the number of items by n := |I|. We identify the item set I with { 1, . . . , n }.
We represent a solution to the knapsack instance (i.e., a subset of I), by an indicator
vector x ∈ { 0, 1 }n. For a subset of the items J ⊆ I, we put wJ (x) :=

∑
i∈J wixi and

pJ (x) :=
∑

i∈J pixi. We define the profit sequence PI [·], where for each j ∈ N we have

PI [j] = max{ pI(x) | x ∈ { 0, 1 }n, wI(x) ≤ j }.

Observe that PI is monotone non-decreasing, and that OPT = PI [W]. The textbook way
to compute PI [0 . . j] is to use dynamic programming:

▶ Fact 6. For any j ∈ N the sequence PI [0 . . j] can be computed in time O(nj).

Before presenting the algorithm, we make two simple observations about the given
Knapsack instance (I, W). First, by ignoring items with weight larger than the capacity W ,
we can assume without loss of generality that wmax ≤W . Now every single item is a feasible
solution, so we have pmax ≤ OPT. Second, observe that if W ≥ n · wmax, then the instance
is trivial since we can pack all items. Thus, we can assume without loss of generality that
W ≤ n · wmax. Moreover, since any feasible solution consists of at most all the n items, it
follows that OPT ≤ n · pmax.

The Algorithm

We now describe the algorithm. Set parameters q :=min{(n/pmax)2/3(W/wmax)1/3, W/wmax }
rounded down to the closest power of 2, ∆ := wmaxW/q and η := 11 log n. For each ℓ ∈ [log q]
we define the interval Jℓ := [W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη].

We start by splitting the items I into q groups I0
1 , . . . , I0

q uniformly at random. The idea
will be to compute an array C0

j associated to each I0
j , and then combine them in a tree-like

fashion. A crucial aspect for the running time is that we only compute |Jℓ| entries of each
array Cℓ

j . In detail, we proceed as follows:

Base Case. For each I0
j , we use Fact 6 to compute PI0

j
[0 . . W

q +
√

∆η] and define the
subarray C0

j [J0] := PI0
j
[J0].

Combination. Iterate over the levels ℓ = 1, . . . log(q). For j ∈ [1 . . q/2ℓ] we set Iℓ
j :=

Iℓ−1
2j−1 ∪ I

ℓ−1
2j . Then, compute the subarray Cℓ

j [Jℓ] by taking the relevant entries of the
max-plus convolution of Cℓ−1

2j−1[Jℓ−1] and Cℓ−1
2j [Jℓ−1].

Returning the answer. (Note that when ℓ = log(q), it holds that I log q
1 = I.) We return the

value C log q
1 [W]. See Algorithm 1 for the pseudocode.

ESA 2023

24:6 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

Algorithm 1 Knapsack Algorithm. Given a set of items I and a weight budget W , the algorithm
computes the maximum attainable profit.

1: q ← min{ (n/pmax)2/3(W/wmax)1/3, W/wmax } rounded down to the closest power of 2
2: ∆← wmaxW/q

3: η ← 11 log n

4: I0
1 , . . . , I0

q ← random partitioning of I into q groups
5: for i = 1 . . . q do
6: Compute PI0

j
[0 . . W

q +
√

∆η] using standard dynamic programming (Fact 6)
7: J0 ← [W

q −
√

∆η . . W
q +
√

∆η]
8: C0

j [J0]← PI0
j
[J0]

9: for ℓ = 1 . . . log(q) do
10: Jℓ ← [W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη]

11: for j = 1, . . . , q/2ℓ do
12: Iℓ

j ← I
ℓ−1
2j−1 ∪ I

ℓ−1
2j

13: Compute Cℓ
j [Jℓ]←MaxConv(Cℓ−1

2j−1[Jℓ−1], Cℓ−1
2j [Jℓ−1]) using Theorem 3

14: return C log q
1 [W]

Correctness

We start by analyzing the correctness of the algorithm. The following lemma shows that the
weight of any solution restricted to one of the sets Iℓ

j is concentrated around its expectation.

▶ Lemma 7 (Concentration, proof deferred to the full version). Let x ∈ { 0, 1 }n be a solution
to the given Knapsack instance. Fix a level ℓ ∈ [0 . . log q] and j ∈ [1 . . q/2ℓ]. Then, with
probability at least 1− 1/n4 it holds that:∣∣∣∣wIℓ

j
(x)− wI(x) · 2ℓ

q

∣∣∣∣ ≤ √∆2ℓ · 10 log n.

Using Lemma 7, we can argue that at level ℓ it suffices to compute a subarray of length
Õ(
√

∆2ℓ) around W2ℓ/q. The following lemma makes this precise:

▶ Lemma 8 (Proof deferred to the full version). Let x ∈ { 0, 1 }n be a solution to the given
Knapsack instance satisfying wI(x) ∈ [W − wmax . . W]. With probability at least 1− 1/n2,
for all levels ℓ ∈ [0 . . log q] and all j ∈ [1 . . q/2ℓ] it holds that:

wIℓ
j
(x) ∈ Jℓ = [W

q 2ℓ −
√

∆2ℓη . . W
q 2ℓ +

√
∆2ℓη], and

Cℓ
j [wIℓ

j
(x)] ≥ pIℓ

j
(x).

▶ Lemma 9 (Correctness of Algorithm 1). Let x∗ ∈ { 0, 1 }n be an optimal solution to the
given Knapsack instance. Then, for every i ∈ [wI(x∗) . . W], it holds that C log q

1 [i] = PI [i]
with probability at least 1− 1/n2.

Proof. We can check in linear time O(n) whether the optimal solution consists of all items,
in which case the instance is trivial. Thus, we can assume without loss of generality
that x∗ does not include all items. In particular, x∗ leaves at least one item out and
therefore its weight satisfies wI(x∗) ∈ [W − wmax . . W]. By Lemma 8, it holds that
C log q

1 [wI(x∗)] ≥ pI(x∗) = PI [wI(x∗)] with probability at least 1− 1/n2. From now on we
condition on this event. We will use the following auxiliary claim:

K. Bringmann and A. Cassis 24:7

▷ Claim 10. The sequence C log q
1 [J log q] is monotone non-decreasing, and satisfies C log q

1 [i] ≤
PI [i] for all i ∈ J log q.

Proof. First we argue monotonicity by induction. Note that in the base case ℓ = 0, the
sequence C0

j [J0] = PI0
j
[J0] is monotone non-decreasing due to the definition of PI0

j
. For

level ℓ > 0, the sequence Cℓ
j is computed by taking the max-plus convolution of sequences of

level ℓ− 1. The result follows by observing that the max-plus convolution of two monotone
non-decreasing sequences is monotone non-decreasing.

The second part of the claim follows since (inductively) every entry C log q
1 [i] for i ∈ J log q

corresponds to the profit of a subset of items of I of weight at most i. ◁

Since x∗ is an optimal solution, it holds that PI [i] = pI(x∗) for all i ∈ [wI(x∗) . . W].
Thus Claim 10 yields that C log q

1 [i] = PI [i] for all i ∈ [wI(x∗) . . W], completing the proof. ◀

Running Time

Now we analyze the running time of Algorithm 1. The key speedup comes from the
computation in Algorithm 1, where we use Theorem 3 to perform the max-plus convolution.
Since Theorem 3 is phrased in terms of min-plus convolution of near-convex functions, we
will use the following corollary:

▶ Corollary 11. Let f : [n] 7→ [−U . . U] and g : [m] 7→ [−U . . U] be given as inputs, where
U ∈ N. Let ∆ ≥ 1 be such that both f and g are ∆-near concave. Then, MaxConv(f, g)
can be computed in time Õ((n + m)∆)

Proof. Noting that −f and −g are ∆-near convex (Definition 5), the result follows from
Theorem 3 and Fact 4. ◀

▶ Lemma 12 (Near Concavity, proof deferred to the full version). For every level ℓ ∈ [1 . . q]
and every j ∈ [1 . . q/2ℓ], it holds that Cℓ

j [Jℓ] is pmax-near concave.

▶ Lemma 13. Fix a level ℓ ∈ [1 . . q] and an iteration j ∈ [1 . . q/2ℓ]. The computation of
Cℓ

j in Algorithm 1 takes time Õ(pmax
√

∆2ℓ)

Proof. By Lemma 12, the sequences Cℓ−1
2j−1[Jℓ−1], Cℓ−1

2j [Jℓ−1] are pmax-near concave. Thus,
by Corollary 11, their max-plus convolution can be computed in time Õ(pmax|Jℓ|) =
Õ(pmax

√
∆2ℓ), where we used η = Õ(1). ◀

▶ Lemma 14 (Running Time of Algorithm 1). Algorithm 1 runs in time

Õ((pmaxW)2/3(nwmax)1/3 + nwmax).

Proof. Recall that q = min{ (n/pmax)2/3(W/wmax)1/3, W/wmax } (up to a factor of 2). Since
W ≤ nwmax, we have that q ≤ n. Moreover, since we assume without loss of generality that
wmax ≤ n, note that q < 1 if and only if q = (n/pmax)2/3(W/wmax)1/3 < 1. This implies that
pmax > n

√
W/wmax. But in this case, the claimed running time is Ω(nW), so the standard

O(nW) dynamic programming algorithm (Fact 6) already achieves our time bound. Thus,
we can assume without loss of generality that 1 ≤ q ≤ n, i.e., q is a valid choice for the
number of groups in which we split the item set I.

ESA 2023

24:8 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

We start bounding the running time of the base case, i.e., the computation of the arrays
C0

j for j ∈ [1 . . q] in Algorithm 1. By Fact 6, and the definition ∆ = wmaxW/q this takes
time

O

 q∑
j=1
|I0

j |(W
q +
√

∆η)

 = O
(

n(W
q +
√

∆η)
)

= Õ
(

n W
q + n

√
wmaxW

q

)
. (1)

Now we bound the time of the combination step done in Algorithms 1–1. At level
ℓ ∈ [1 . . q] and iteration j ∈ [1 . . q/2ℓ] the execution of Algorithm 1 takes time Õ(pmax

√
∆2ℓ)

by Lemma 13. Thus, we can bound the overall time as

log q∑
ℓ=1

q/2ℓ∑
j=1

Õ(pmax
√

∆2ℓ) =
log q∑
ℓ=1

q

2ℓ
Õ

(
pmax

√
wmaxW

q 2ℓ
)

=
log q∑
ℓ=1

Õ

(
pmax

√
qwmaxW

2ℓ

)
,

since this is a geometric series, it is bounded by the first term Õ(pmax
√

qwmaxW). Combining
this with (1), we obtain overall time

Õ
(

pmax
√

qwmaxW + n W
q + n

√
wmaxW

q

)
.

Recalling that q = Θ(min{ (n/pmax)2/3(W/wmax)1/3, W/wmax }), we obtain overall time

Õ((pmaxW)2/3(nwmax)1/3 + nwmax + (pmaxW)1/3(nwmax)2/3).

Finally, using that √xy ≤ (x + y)/2 for all x, y ≥ 0, we have that

(pmaxW)1/3(nwmax)2/3 =
√

(pmaxW)2/3(nwmax)1/3nwmax

≤ O((pmaxW)2/3(nwmax)1/3 + nwmax).

Thus, the overall running time is Õ((pmaxW)2/3(nwmax)1/3 + nwmax), as claimed. ◀

Proof of Theorem 1. Run Algorithm 1. By Lemma 9, we obtain that I log q
1 [W] = OPT

with probability at least 1− 1/n2, which proves correctness. The running time is immediate
from Lemma 14. Observe that we can obtain success probability 1− 1/nc for any constant
c ≥ 2 by repeating the algorithm c/2 times. Finally, note that Algorithm 1 only computes
the optimal profit of the given instance. In the full version of the paper we describe how to
reconstruct the set of items in an optimal solution with no overhead in the running time. ◀

Proof Sketch of Theorem 2. Our presentation focused on proving Theorem 1. The proof of
the symmetric variant stated in Theorem 2 is very similar, thus we only sketch the required
changes. Essentially, we need to exchange profits with weights everywhere, which in turn
means exchanging max-plus convolutions by min-plus convolutions. In more detail: Instead
of working with the profit sequence PI , we work with the weight sequence WI , where the
entry WI [j] stores the minimum weight of a solution with profit at least j. We do not know
OPT, but we can compute an approximation Ṽ satisfying Ṽ − pmax ≤ OPT ≤ Ṽ in linear
time (see e.g. [29, Theorem 2.5.4]). In the algorithm, we exchange all ocurrences of wmax by
pmax and all ocurrences of W by Ṽ . With these changes, the functions Cℓ

j are now wmax-near
convex (instead of pmax-near concave) so we use Theorem 3 directly instead of Corollary 11.
In this way, we obtain the array C log q

1 [Ṽ − pmax . . Ṽ] =WI [Ṽ − pmax . . Ṽ]. Then, we can
infer OPT as the largest i ∈ [Ṽ − pmax . . Ṽ] such that WI [i] ≤W . ◀

K. Bringmann and A. Cassis 24:9

4 MinPlus Convolution for Near-Convex Sequences

In this section we prove Theorem 3.

▶ Theorem 3 (Near Convex MinPlus Convolution). Let f : [n] 7→ [−U . . U], and g : [m] 7→
[−U . . U] be given as inputs where n, m, U ∈ N. Let ∆ ≥ 1 such that both f and g are ∆-near
convex. Then the min-plus convolution of f and g can be computed in time Õ((n + m) ·∆).

4.1 Preparations
Throughout this section, fix the functions f : [n] 7→ [−U . . U], g : [m] 7→ [−U . . U]. Recall
that we say that f : [n] 7→ Z is ∆f -near convex, if there is a convex function f̆ : [n] 7→ Q such
that f̆(i) ≤ f(i) ≤ f̆(i) + ∆f for all i ∈ [n] (see Definition 5). First observe that the lower
convex hull of the points { (i, f(i)) | i ∈ [n] } gives the pointwise maximal convex function f̆

with f̆ ≤ f . This can be computed in time O(n) by Graham’s scan [25], since the points
are already sorted by x-coordinate. Then, we can infer ∆f = max{ 1, maxi∈[n] f(i)− f̆(i) }.
Thus, from now on we assume that we know f̆ , ∆f , ğ, ∆g. Set ∆ := max{∆f , ∆g }. Let
h̆ := MinConv(f̆ , ğ) and h := MinConv(f, g). The goal is to compute h.

We start by introducing some notation. We call (i, j) ∈ [n]× [m] a point. We visualize
a point (i, j) as lying on the i-th row and j-th column of an n×m grid, where (0, 0) is on
the bottom-left corner and (n, m) on the top right corner. A point (i, j) lies on diagonal
i + j. For any δ ≥ 0, a point (i, j) is δ-relevant if f̆(i) + ğ(j) ≤ h̆(i + j) + δ. We denote by
Rδ the set of all δ-relevant points.

Points that are 0-relevant are important because of the following observation: We call i a
witness for h̆(k) if f̆(i) + ğ(k − i) = h̆(k). Thus, observe that i is a witness for h̆(k) if and
only if (i, k − i) is a 0-relevant point.

The importance of 2∆-relevant points is captured by the following lemma:

▶ Lemma 15. If (i, j) /∈ R2∆ then f(i) + g(j) > h(i + j).

That is, points that are not 2∆-relevant can be ignored for the purpose of computing h.

Proof. Since (i, j) is not 2∆-relevant, it holds that f(i) + g(j) ≥ f̆(i) + ğ(j) > h̆(i + j) + 2∆.
Let k := i + j, and let i∗ be a witness for h̆(k), i.e., f̆(i∗) + ğ(k − i∗) = h̆(k). Then,

h(k) ≤ f(i∗) + g(k − i∗) ≤ f̆(i∗) + ∆ + ğ(k − i∗) + ∆ = h̆(k) + 2∆ < f(i) + g(j). ◀

We say that a set of points P is a monotone path if for every k ∈ [n + m] P contains
exactly one point (ik, jk) on diagonal k, and we have (ik+1, jk+1) ∈ { (ik + 1, jk), (ik, jk + 1) }
for every k ∈ [n + m− 1], see Figure 1a for an illustration. For any δ > 0, we let

P +
δ := { (i, k − i) | k ∈ [n + m], i ∈ [n] is maximal s.t. (i, k − i) is δ-relevant },

P −
δ := { (i, k − i) | k ∈ [n + m], i ∈ [n] is minimal s.t. (i, k − i) is δ-relevant }.

The next two lemmas show that P +
δ , P −

δ are monotone paths and that P +
δ , P −

δ form the
boundary of Rδ, see Figure 1c for an illustration. This establishes structure of Rδ that we
will be exploit later.

▶ Lemma 16 (Monotone Paths, proof deferred to the full version). For any δ ≥ 0, P −
δ , P +

δ

are monotone paths.

Let (i, j) be a point and P a monotone path. Let (a, b) ∈ P be the unique point on the
same diagonal as (i, j), i.e., a + b = i + j. We say that (i, j) is below P if i < a, above P if
i > a, and on P if i = a, see Figure 1b for an illustration.

ESA 2023

24:10 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

(0, 0)

(n,m)

P

(a) A monotone path P .

(0, 0)

(n,m)

P

above

below

(b) Points above and below P .

P+
δ

P−
δ

(0, 0)

(n,m)

Rδ

(c) Rδ is between P +
δ and P −

δ .

Figure 1 Visualizations for concepts used in Section 4.

▶ Lemma 17. For any δ ≥ 0, Rδ consists of all points (i, j) that are on or below P +
δ and on

or above P −
δ .

Proof. Fix k ∈ [n + m] and let (i+, k − i+), (i−, k − i−) be the point on diagonal k in P +
δ

and P −
δ , respectively. Consider any (i, j) ∈ Rδ on diagonal k. By maximality of i+ we have

i ≤ i+, and similarly i ≥ i− by the minimality of i−. Thus, no point in Rδ is above P +
δ

or below P −
δ . It remains to show that for any i− ≤ i ≤ i+ we have (i, k − i) ∈ Rδ. Note

that the function r(i) := f̆(i) + ğ(k − i) is convex (since it is the sum of convex functions).
Since (i+, k − i+) is δ-relevant, we have r(i+) ≤ h̆(k) + δ. Similarly, since (i−, k − i−) is
δ-relevant, we have r(i−) ≤ h̆(k) + δ. By convexity of r, we obtain that r(i) ≤ h̆(k) + δ for
all i− ≤ i ≤ i+. Hence, we conclude that for each i− ≤ i ≤ i+ we have (i, k − i) ∈ Rδ. ◀

Finally, we need some background on sumsets. Given A, B ⊆ [−U . . U]2 where U ∈ N,
we define A + B = { a + b | a ∈ A, b ∈ B } as their sumset, where the addition a + b is done
componentwise. The naive way to compute A+B takes time O(|A| · |B|). For our application,
we want to compute the sumset in time near linear in its size |A + B|. For this end, we will
use the following tool to compute sparse non-negative convolution. Given vectors P, Q ∈ Nn,
their convolution P ⋆Q ∈ N2n−1 is defined coordinate-wise by (P ⋆Q)[k] =

∑
i+j=k P [i] ·Q[j].

▶ Theorem 18 (Deterministic Sparse Convolution [10]). There is a deterministic algorithm
to compute the convolution of two nonnegative vectors A, B ∈ Nn in time O(t polylog(n∆)),
where t is the number of non-zero entries in A ⋆ B and ∆ is the largest entry in A and B.

See also [9] for improvements in the log-factors at the cost of randomization and [19, 33, 24]
for prior randomized algorithms with similar guarantees.

▶ Corollary 19 (Output Sensitive Sumset Computation). Given A, B ⊆ [−U . . U]2, with
|A + B| ≤ N , A + B can be computed in time Õ(N).

Proof. Let A′ := { (x+U) ·5U +(y +U) | (x, y) ∈ A } and similarly, let B′ := { (x+U) ·5U +
(y + U) | (x, y) ∈ B }. Observe that this is a one-to-one embedding of A, B ⊆ [−U . . U]2 into
A′, B′ ⊆ [Θ(U2)]. Moreover, one can check that given C ′ := A′ +B′ we can infer C := A+B

(the choice of 5U prevents any interactions between coordinates when summing them up).
Thus, it suffices to compute A′ + B′. To this end, construct their indicator vectors

PA′ , PB′ ∈ NΘ(U2) and compute the convolution PC′ = PA′ ⋆ PB′ . The non-zero entries
in PC′ correspond to the elements of A′ + B′. By Theorem 18, this runs in time O(|A′ +
B′|polylog(N, U)) = Õ(N). ◀

K. Bringmann and A. Cassis 24:11

4.2 Algorithm
We are ready to describe our algorithm. Recall that we have access to the functions f, f̆ , g, ğ

and the value ∆ = max{∆f , ∆g }.

Computing h̆ = MinConv(f̆ , ğ). Consider the pseudocode given in Algorithm 2.

Algorithm 2 Given convex functions f̆ : [n] 7→ Q, ğ : [m] 7→ Q, the algorithm computes h̆ =
MinConv(f̆ , ğ).

1: i∗
0 ← 0, h̆(0)← f̆(0) + ğ(0)

2: for k = 1, . . . , n + m do
3: i∗

k ← argmin{ f̆(i) + ğ(k − i) + i
2n | i ∈ { i∗

k−1, i∗
k−1 + 1 } ∩ [n] }

4: h̆(k)← f̆(i∗
k) + ğ(k − i∗

k)

▶ Lemma 20. Algorithm 2 computes h̆ = MinConv(f̆ , ğ) in time O(n + m).

Proof. The running time is immediate. To see correctness, focus on i∗
k for k ∈ [n + m] as

computed in Algorithm 2. We claim that the path P −
0 equals { (i∗

k, k − i∗
k) | k ∈ [n + m] }.

That is, we want to argue that i∗
k is the minimum witness of h̆(k) for each k ∈ [n + m].

Indeed, by Lemma 16, P −
0 is a monotone path. Thus, i∗

k ∈ { i∗
k−1, i∗

k−1 + 1 }. Observe that in
Algorithm 2 we pick i∗

k as the minimizer of f̆(i) + ğ(k − i) + i
2n where i ∈ { i∗

k−1, i∗
k−1 + 1 }.

Therefore, the algorithm correctly computes i∗
k (the additive term i/(2n) ensures that we

choose the minimal i). Since i∗
k is a minimum witness of h̆(k), the algorithm correctly

computes h̆(k) for all k ∈ [n + m]. ◀

We remark that MinConv(f̆ , ğ) could be computed using the SMAWK algorithm [1].
The reason we give a direct algorithm, is that we will need the witness path P −

0 as computed
by Algorithm 2.

Computing h = MinConv(f, g). Recall that f : [n] 7→ Z and g : [m] 7→ Z. As a final
simplification, we argue that we can assume without loss of generality that n = m, and n + 1
is a power of 2. To this end, let N be the smallest power of 2 greater than max{n, m }.
We pad the functions to length N by setting f(n + j) := 2j ·W for j ∈ [1 . . N − 1 − n]
and g(m + j) := 2j · W for j ∈ [1 . . N − 1 − m], where W is an integer larger than
maxi∈[n] f(i) + maxj∈[m] g(j). Observe that the entries h(0), . . . , h(n + m) of the result
h = MinConv(f, g) are unchanged (due to the choice of sufficiently large W), so we can
read off the original result from the result of the padded functions. Moreover, observe that
the padding does not change the parameters ∆f and ∆g.

Now we can describe the algorithm. After running Algorithm 2 we can assume that we
have computed h̆ and the witness path P −

0 = { (i∗
k, k − i∗

k) | k ∈ [n + m] }. We will make
use of the following subroutines:

Relevant(i, j): returns f̆(i) + ğ(j) ≤ h̆(i + j) + 2∆.
BelowWitnessPath(i, j): returns i < i∗

i+j

AboveWitnessPath(i, j): returns i > i∗
i+j

Now we can compute h = MinConv(f, g) by calling RecMinConv([0 . . n], [0 . . m]).
See Algorithm 3 for the pseudocode.

ESA 2023

24:12 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

Algorithm 3 Given intervals I = [iA . . iB], J = [jA . . jB], the algorithm computes the contribu-
tion of f [I] and g[J] to MinConv(f, g).

1: procedure RecMinConv(I = [iA . . iB], J = [jA . . jB])
2: if AboveWitnessPath(iA, jB) and NotRelevant(iA, jB) then ▷ Case 1
3: return h̃(k) =∞ for all k ∈ [iA + jA . . iB + jB]
4: if BelowWitnessPath(iA, jB) and NotRelevant(iB , jA) then ▷ Case 2
5: return h̃(k) =∞ for all k ∈ [iA + jA . . iB + jB]
6: if Relevant(iA, jB) and Relevant(iB , jA) then ▷ Case 3
7: Compute C ← { (i, f(i)) | i ∈ I }+ { (j, g(j)) | j ∈ J } using Corollary 19
8: Infer h̃(k)← min{ y | (k, y) ∈ C } for all k ∈ [iA + jA . . iB + jB]
9: return h̃

10: else ▷ Case 4
11: Split I into two intervals I1, I2 of equal length, similarly split J into J1, J2
12: Recursively compute g̃i,j ← RecMinConv(Ii, Jj) for i, j ∈ { 1, 2 }
13: return the pointwise minimum of the functions g̃i,j for i, j ∈ { 1, 2 }

Algorithm 3 recursively computes the contribution of f [iA . . iB] and g[jA . . jB] to
h = MinConv(f, g). We next discuss its four cases; see Figure 2 for illustrations of Cases 1-3.
If (iA, jB) is above the witness path P −

0 and is not 2∆-relevant (Case 1), then as we argue
below no point in I×J contributes to the output h, so in this case we return a dummy function
(which is +∞ everywhere). Case 2 is symmetric, where (iB , jA) is above P −

0 and not 2∆-
relevant, and we again return a dummy function. Case 3 applies when (iA, jB) and (iB , jA) are
both 2∆-relevant. In this case, we explicitly compute h̃ = MinConv(f [iA . . iB], g[jA . . jB])
by computing the sumset C = { (i, f(i)) | i ∈ I }+ { (j, g(j)) | j ∈ J } and infering h̃(k) as
the minimum y such that (k, y) ∈ C, which by definition of the sumset equals the minimum
f(i) + g(j) such that i ∈ I, j ∈ J and i + j = k. Note that this step can be done for all
k ∈ [iA + jA . . iB + jB] in total time O(|C|) by once scanning over all elements of C.

Finally, if none of the above cases apply, then we split both intervals I and J into equal
halves and recurse on all 4 combinations of halves. We combine them by taking the pointwise
minimum of all computed functions. This case is essentially brute force.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(a) Case 1.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(b) Case 2.

P+
2∆

P−
0

P−
2∆

(0, 0)

(n,m)

(c) Case 3.

Figure 2 Visualization of Cases 1-3. The green box represents the current subproblem.

Correctness. We start by analyzing the correctness of the algorithm.

▶ Lemma 21 (Correctness of Algorithm 3). RecMinConv([0 . . n], [0 . . m]) (Algorithm 3)
correctly computes h = MinConv(f, g).

K. Bringmann and A. Cassis 24:13

Proof. Let k ∈ [n + m] and consider a point (i∗, j∗) in diagonal k such that f(i∗) + g(j∗) =
h(k), i.e., a witness for h(k). We argue that some recursive call computes f(i∗) + g(j∗). This
is clear in Case 4, as (i∗, j∗) is covered by one recursive subproblem. It is also clear in Case
3, since then f(i∗) + g(j∗) is explicitly computed.

To finish correctness, we argue that (i∗, j∗) can never be in a subproblem to which Case
1 or 2 applies. Recall that Case 1 applies to a subproblem I = [iA . . iB], J = [jA . . jB]
if (iA, jB) is above P −

0 and (iA, jB) is not 2∆-relevant. Since (iA, jB) is not 2∆-relevant,
by Lemma 17 (iA, jB) must be above P +

2∆ or below P −
2∆. Since (iA, jB) is above P −

0 , it
can only be above P +

2∆. Since (iA, jB) is the lower right corner of I × J , it follows that all
points in I × J are above P +

2∆. Thus, by Lemma 17 all points in I × J are not 2∆-relevant.
If we assume for the sake of contradiction that (i∗, j∗) ∈ I × J , then Lemma 15 implies
f(i∗) + g(j∗) > h(k), contradicting the choice of (i∗, j∗) as a witness for h(k). Hence, (i∗, j∗)
can never be in a Case 1 subproblem. Case 2 is symmetric. This finishes the correctness
proof. ◀

Running Time. Next, we analyze the running time. The key insight is that in relevant
regions both functions are essentially linear, with the same slope (see Lemma 22). This
implies that the sumset computed in Case 3 is small (see Lemma 23), so it can be computed
efficiently using Corollary 19. In the following two lemmas, let I = [iA . . iB] ⊆ [n] and
J = [jA . . jB] ⊆ [m] be intervals of the same length |I| = |J |.

▶ Lemma 22 (Near Linearity, proof deferred to the full version). If I × J ⊆ R2∆ then there
are a, b, c ∈ R such that |f(i)− (a · i + b)| ≤ 2∆ for all i ∈ I and |g(j)− (a · j + c)| ≤ 2∆ for
all j ∈ J .

▶ Lemma 23 (Relevant Regions have Small Sumsets). If I × J ⊆ R2∆ then the sumset
{ (i, f(i)) | i ∈ I }+ { (j, f(j)) | j ∈ J } has size O(∆ · (|I|+ |J |)).

Proof. By Lemma 22, for any (i, j) ∈ I × J with i + j = k we have

f(i) + g(j) = (a · i + b) + (a · j + c)±O(∆) = a · k + b + c±O(∆).

Thus, for each of the |I|+ |J |−1 x-coordinates (i.e., choices of i+ j), there are O(∆) different
y-coordinates (i.e., values f(i) + g(j)) in the sumset. ◀

▶ Lemma 24 (Running Time of Algorithm 3). RecMinConv([0 . . n], [0 . . m]) (Algorithm 3)
runs in time Õ(n∆).

Proof. We first analyze the running time of one recursive subproblem, ignoring the cost of
recursive calls. Note that in Cases 1 and 2 it suffices to return a dummy value, i.e., we do
not need to iterate over k ∈ [iA + jA . . iB + jB] to explitly return h̃(k) =∞. Thus, Cases 1
and 2 run in time O(1). We charge this time to the parent of the current subproblem, which
is a Case 4-subproblem.

Consider Case 4. Ignoring the cost of the recursive subproblems, Case 4 runs in time
O(1), which also covers the charging from children which fall in Cases 1 and 2.

Consider Case 3, and let s := iB − iA + 1 = jB − jA + 1 be the current side length.
By Lemma 23, the sumset computed in Algorithm 3 has size O(∆s). Thus, it can be
computed in time Õ(∆s) using Corollary 19, and the function h̃ can be inferred from it in
time O(∆s).

Now we bound the total running time across subproblems. Fix a side length s and
consider all possible subproblems of side length s, i.e., all boxes

Bs
x,y := [x · s . . x · s + s− 1]× [y · s . . y · s + s− 1], where x, y ∈ [n/s].

ESA 2023

24:14 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

Consider a diagonal Ds,d := {Bs
x,x+d | x ∈ [n/s] } of these boxes, see Figure 3a. Note that

a box in Ds,d that lies fully above P +
∆ corresponds to a Case 1-subproblem. A box in Ds,d

that lies fully below corresponds to a Case 2-subproblem. A box that is below or on P +
2∆

and above or on P −
2∆ corresponds to a Case 3-subproblem. The remaining boxes intersect

P +
2∆ or P −

2∆ and correspond to Case 4.
Note that by monotonicity of P +

2∆, P −
2∆, at most two boxes in Ds,d are intersected by P +

2∆
or P −

2∆ and thus at most two boxes in Ds,d can appear as Case 4-subproblems. Thus, Case 4
incurs time O(1) per diagonal. We argue that among the boxes in Ds,d, at most two can
appear as Case 3-subproblems. Indeed, if these would be at least three such boxes, then the
parent of the middle box would also be between P +

2∆ and P −
2∆, and thus the parent would

already be a Case 3-subproblem, see Figures 3b and 3c. Thus, the middle box would not
get split, and it would not become a recursive subproblem. Hence per diagonal Ds,d, Case 3
incurs time Õ(∆s) for each of at most two boxes.

It remains to sum up over all side lengths 1 ≤ s ≤ n where s = 2ℓ is a power of 2 (recall
that at each recursive level we split the side length in two equal parts), and over all O(n/s)
diagonals d, to obtain total time

∑log n
ℓ=1 O(n/2ℓ) · Õ(∆2ℓ) = Õ(∆n). Note that the sum over

ℓ only adds another log-factor, which is hidden by the Õ-notation. ◀

(0, 0)

(n,m)

(a) A diagonal of boxes Ds,d.

(0, 0)

(n,m)

R2∆

(b) Three boxes inside R2∆.

(0, 0)

(n,m)

R2∆

(c) The parent box is already con-
tained in R2∆.

Figure 3 Visualizations for the proof of Lemma 24.

References

1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

2 Kyriakos Axiotis, Arturs Backurs, Karl Bringmann, Ce Jin, Vasileios Nakos, Christos Tzamos,
and Hongxun Wu. Fast and simple modular subset sum. In SOSA, pages 57–67. SIAM, 2021.
doi:10.1137/1.9781611976496.6.

3 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster Knapsack
and graph algorithms. In ICALP, volume 132 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.

4 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for knapsack via convolution and prediction. In STOC, pages 1269–1282.
ACM, 2018. doi:10.1145/3188745.3188876.

5 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957. doi:10.2307/j.ctv1nxcw0f.

https://doi.org/10.1007/BF01840359
https://doi.org/10.1137/1.9781611976496.6
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1145/3188745.3188876
https://doi.org/10.2307/j.ctv1nxcw0f

K. Bringmann and A. Cassis 24:15

6 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

7 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In SODA,
pages 1073–1084. SIAM, 2017. doi:10.1137/1.9781611974782.69.

8 Karl Bringmann and Alejandro Cassis. Faster knapsack algorithms via bounded monotone
min-plus-convolution. In ICALP, volume 229 of LIPIcs, pages 31:1–31:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.31.

9 Karl Bringmann, Nick Fischer, and Vasileios Nakos. Sparse nonnegative convolution is
equivalent to dense nonnegative convolution. In STOC, pages 1711–1724. ACM, 2021. doi:
10.1145/3406325.3451090.

10 Karl Bringmann, Nick Fischer, and Vasileios Nakos. Deterministic and las vegas algorithms
for sparse nonnegative convolution. In SODA, pages 3069–3090. SIAM, 2022. doi:10.1137/1.
9781611977073.119.

11 Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset sum
and partition. In SODA, pages 1797–1815. SIAM, 2021. doi:10.1137/1.9781611976465.108.

12 Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset sum. In
SODA, pages 1777–1796. SIAM, 2021. doi:10.1137/1.9781611976465.107.

13 Michael R. Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zimmermann. Fast
algorithms for the maximum convolution problem. Oper. Res. Lett., 15(3):133–141, 1994.
doi:10.1016/0167-6377(94)90048-5.

14 Timothy M. Chan. Approximation schemes for 0-1 knapsack. In SOSA, volume 61 of
OASIcs, pages 5:1–5:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/OASIcs.SOSA.2018.5.

15 Timothy M. Chan and Qizheng He. More on change-making and related problems. J. Comput.
Syst. Sci., 124:159–169, 2022. doi:10.1016/j.jcss.2021.09.005.

16 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics.
In STOC, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.

17 Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.
doi:10.1145/3402926.

18 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone
instances. In STOC, pages 1529–1542. ACM, 2022. doi:10.1145/3519935.3520057.

19 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In STOC, pages 592–601. ACM, 2002. doi:10.1145/509907.509992.

20 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:
10.1145/3293465.

21 Mingyang Deng, Ce Jin, and Xiao Mao. Approximating knapsack and partition via dense
subset sums. In SODA, pages 2961–2979. SIAM, 2023. doi:10.1137/1.9781611977554.ch113.

22 Mingyang Deng, Xiao Mao, and Ziqian Zhong. On problems related to unbounded subsetsum:
A unified combinatorial approach. In SODA, pages 2980–2990. SIAM, 2023. doi:10.1137/1.
9781611977554.ch114.

23 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. In SODA, pages 808–816. SIAM, 2018.
doi:10.1137/1.9781611975031.52.

24 Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. Essentially optimal sparse polyno-
mial multiplication. In ISSAC, pages 202–209. ACM, 2020. doi:10.1145/3373207.3404026.

25 Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Inf. Process. Lett., 1(4):132–133, 1972. doi:10.1016/0020-0190(72)90045-2.

ESA 2023

https://doi.org/10.1007/s00453-012-9734-3
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.4230/LIPIcs.ICALP.2022.31
https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1137/1.9781611977073.119
https://doi.org/10.1137/1.9781611977073.119
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1137/1.9781611976465.107
https://doi.org/10.1016/0167-6377(94)90048-5
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1016/j.jcss.2021.09.005
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/3402926
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1145/509907.509992
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1137/1.9781611977554.ch113
https://doi.org/10.1137/1.9781611977554.ch114
https://doi.org/10.1137/1.9781611977554.ch114
https://doi.org/10.1137/1.9781611975031.52
https://doi.org/10.1145/3373207.3404026
https://doi.org/10.1016/0020-0190(72)90045-2

24:16 Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution

26 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In ITCS,
volume 124 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ITCS.2019.43.

27 Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm
for subset sum. In SOSA, volume 69 of OASIcs, pages 17:1–17:6. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.17.

28 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with
an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004. doi:10.1023/B:
JOCO.0000021934.29833.6b.

29 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
doi:10.1007/978-3-540-24777-7.

30 Kim-Manuel Klein. On the fine-grained complexity of the unbounded subsetsum and the
frobenius problem. In SODA, pages 3567–3582. SIAM, 2022. doi:10.1137/1.9781611977073.
141.

31 Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms, 15(3):40:1–40:20, 2019. doi:10.1145/3329863.

32 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In ICALP, volume 80 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
21.

33 Vasileios Nakos. Nearly optimal sparse polynomial multiplication. IEEE Trans. Inf. Theory,
66(11):7231–7236, 2020. doi:10.1109/TIT.2020.2989385.

34 David Pisinger. Linear time algorithms for Knapsack problems with bounded weights. J.
Algorithms, 33(1):1–14, 1999. doi:10.1006/jagm.1999.1034.

35 Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and Subset Sum with small
items. In ICALP, volume 198 of LIPIcs, pages 106:1–106:19. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.106.

36 R. Ryan Williams. Faster All-Pairs Shortest Paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

https://doi.org/10.4230/LIPIcs.ITCS.2019.43
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1137/1.9781611977073.141
https://doi.org/10.1145/3329863
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.1109/TIT.2020.2989385
https://doi.org/10.1006/jagm.1999.1034
https://doi.org/10.4230/LIPIcs.ICALP.2021.106
https://doi.org/10.1137/15M1024524

	1 Introduction
	2 Preliminaries
	3 Faster 0-1 Knapsack Algorithm
	4 MinPlus Convolution for Near-Convex Sequences
	4.1 Preparations
	4.2 Algorithm

