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Abstract

We study the problem of k-means clustering in the space of straight-line segments in R2 under
the Hausdorff distance. For this problem, we give a (1 + ϵ)-approximation algorithm that, for
an input of n segments, for any fixed k, and with constant success probability, runs in time
O(n + ε−O(k) + ε−O(k) · logO(k)(ε−1)). The algorithm has two main ingredients. Firstly, we express
the k-means objective in our metric space as a sum of algebraic functions and use the optimization
technique of Vigneron [40] to approximate its minimum. Secondly, we reduce the input size by
computing a small size coreset using the sensitivity-based sampling framework by Feldman and
Langberg [21, 22]. Our results can be extended to polylines of constant complexity with a running
time of O(n + ε−O(k)).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases k-means clustering, segments, polylines, Hausdorff distance, Fréchet mean

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.28

Related Version Full Version: https://arxiv.org/abs/2305.10922

Funding Sergio Cabello: Research partially supported by the Slovenian Research Agency (P1-0297,
J1-2452, N1-0218, N1-0285).

1 Introduction

The k-means clustering problem is as follows: Given a point set in a metric space, find
a set of points, called centers, such that the sum of the squared distances from each
input point to its closest center is minimized (over all possible choices of centers). It is
a fundamental algorithmic problem with a ubiquitous role in data analysis in numerous
application domains. As such, it has been studied extensively in geometric and general
metric spaces, under various constraints on the objective and the choice of centers, and
with a focus on complexity lower and upper bounds and the quality of the (approximate)
solution [1, 2, 3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 25, 28, 31, 34].

In geometric settings, almost all previous work involves clustering points in some low- or
high-dimensional Euclidean space. Notable exceptions include the work on k-means clustering
for lines with point centers [32], and the works on k-center [5] and k-median [6, 10, 19, 37]
clustering for polygonal curves with respect to the Fréchet distance; for k-center, one seeks
to minimize the maximum distance to the closest center, while for k-median, one seeks to
minimize just the sum of the distances (instead of the sum of the squares) to the closest
centers. In this paper, we consider the k-means problem in the space of segments and of
polylines of constant complexity in the plane with respect to the Hausdorff distance.
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28:2 On k-Means for Segments and Polylines

1.1 Formalization of the problem
Let (S, dH) be the metric space of closed straight-line segments in R2, where dH is the
Hausdorff distance. Given a set S of n weighted segments, where each s ∈ S has an
associated positive weight ws ∈ R>0, and for any k segments s1, . . . , sk playing the role of
“centers” of the clusters, we define the objective function

costS({s1, . . . , sk}) :=
∑
s∈S

ws · min{d2
H(s1, s), . . . , d2

H(sk, s)}

and define the k-means problem as the problem of finding a minimizer, i.e., a set of segments
S∗ = {s∗

1, . . . , s
∗
k} that minimizes the above cost. Note here that quite often we deal with

unweighted input segments. However, for technical reasons (made clear later in our discussion)
in order to incorporate coresets in our algorithm, we have to consider the more general case
of weighted segments. Also note that we study the continuous version of the problem, where
the solution segments can come from anywhere in (S, dH). This is harder than the so-called
discrete version, where the solution segments have to be selected among the input segments.

We also consider the k-means problem for polylines, each with a bounded number of
segments, under the Hausdorff distance, where the definition of the problem is analogous.

We remark here on an interesting connection to the older and closely related concept of
the Fréchet mean [24]. This is a generalization of the classic notion of mean or average to any
abstract metric space. For a finite point set P in a metric space (M, d), a Fréchet mean is any
minimizer of the so-called Fréchet variance costP (q) :=

∑
p∈P d

2(q, p), taken over all q ∈ M.
For Euclidean spaces, the Fréchet mean is the usual arithmetic mean. (Other usual means
can be recovered as Fréchet means by considering other distances.) The Fréchet mean is a
well-studied concept in Statistics and in Riemannian spaces, where sometimes it is known as
Karcher mean, see [38] for a general, comprehensive treatment. Computing a Fréchet-mean
is precisely the 1-means clustering problem while the k-means is the generalization where
the cost of each cluster is given by the functional defining the Fréchet mean.

1.2 Results
Our main result is a (1 + ε)-approximation algorithm for the k-means problem in (S, dH).
The algorithm runs in O

((
n+ ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
(log(1/δ)

)
time, for any

fixed k, any η > 0, and with success probability at least 1 − δ (the constant hidden in the
O-notation depends on η and k).

There are two main ingredients in our algorithm. For the first one, described in Section 2,
we express the k-means objective in the space (S, dH) as a sum of algebraic functions of
constant description complexity. This algebraic approach allows us to use the optimization
technique of Vigneron [40] for approximating the minimum. This is, to the best of our
knowledge, the first application of this technique in the context of clustering. While this
technique is very expensive when applied directly to the entire set of input segments, we can
decrease the running time dramatically by combining it with coresets. This is the second
ingredient of our algorithm, described in Sections 3 and 4 namely, we use the sensitivity
framework of Feldman and Langberg [21, 22] to compute a small coreset of the input and
then we apply the former algebraic approach to the coreset.

We then extend this result to polylines of description complexity at most ℓ = O(1); this
is given in Section 5. In this context, each input polyline and each solution polyline has at
most ℓ segments, but we may put in the solution polylines that are not part of the input.
The running time becomes O

((
n+ ε−O(kℓ)) log(1/δ)

)
.
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As a side-result, in the full version of this paper, we consider the Fréchet mean (or
1-means) problem in a concrete example with two perpendicular segments that intersect at
their centers. We show that even in this simple setting the set of Fréchet means is surprisingly
complex. The optimum is attained in a 3-dimensional subset of the 4-dimensional parameter
space needed to model the space of candidate segments. This example also prompts to the
benefit of looking into an algebraic approach for the general setting.

1.3 Related work
For general metric spaces, k-means (as well as k-median) clustering is APX-hard (when
k is part of the input) [15, 26]. Several polynomial-time, constant factor approximation
algorithms are known for both the continuous and discrete versions of the problem [1, 8]. For
the discrete version, there even exist algorithms that achieve factors arbitrarily close to the
lower bound [26] and run in FPT-time with respect to k and the approximation error ε [17].

The Euclidean k-means, where the input is a set of points in Rd, is NP-hard for d = 2 [34]
and APX-hard when d = ω(logn) [2]. The problem admits EPTASs with respect to k and
ε [31] and with respect to d and ε [11, 13].

As for the Fréchet mean, it has been considered for persistence diagrams [36, 39], point
sets on the unit circle [7], and in the space of graphs [23, 30, 35], to name a few metric spaces
far from the Euclidean setting.

1.4 Definitions and notation
For each point p ∈ R2, we use x(p) and y(p) for its two coordinates. Thus, p = (x(p), y(p)).
For any two points p, q ∈ R2, we denote by pq the segment with endpoints p and q, and
by |pq| the Euclidean distance between them: |pq|2 = (x(p) − x(q))2 + (y(p) − y(q))2. For
simplicity we assume that all input segments have positive length.

Recall that the Hausdorff distance dH(A,B) between any two compact subsets A,B ⊂ R2

is defined by

dH(A,B) = max
{

max
a∈A

min
b∈B

|ab|, max
b∈B

min
a∈A

|ab|
}
.

Define δ(a,B) = minb∈B |ab| for the (directed) distance from a point a to a closed set B. It
is well known and easy to see that for any two segments s1 = a1b1 and s2 = a2b2 in S

dH(s1, s2) = max{δ(a1, s2), δ(b1, s2), δ(a2, s1), δ(b2, s1)}. (1)

2 An algebraic approach to k-means in (S, dH)

We use the following adaptation of the definition of a nice family of functions by Vigneron [40,
Section 2.1]. Let F = {fi : Rd → R | i ∈ I} be a finite family of functions, where I is some
index set. We say that F is nice if there exists a constant λ > d > 0 such that:

each fi ∈ F is nonnegative and bounded;
for each fi ∈ F , there exists a semialgebraic set supp(fi) ⊆ Rd and an algebraic function
gi of degree at most λ with fi(x) = gi(x) for x ∈ supp(fi) and fi(x) = 0 for x /∈ supp(fi);
for each fi ∈ F , the semialgebraic set supp(fi) ⊆ Rd is a boolean combination of at most
λ subsets of Rd, each of them defined by an polynomial inequality of degree at most λ;
for each fi ∈ F , the restriction of fi to supp(fi) is continuous.

ESA 2023



28:4 On k-Means for Segments and Polylines

Note that the definition allows that the sets supp(fi) are open, closed or mixed. It also
allows that fi is discontinuous in Rd \ supp(fi), which may include the boundary of supp(fi)
in some cases.

Our use of this concept will be through the following result for computing an approximation
to the minimum of the function

∑
i fi.

▶ Theorem 1 (Adaptation of Theorem 3.4 in Vigneron [40]). Assume that ε ∈ (0, 1). Let
F = {fi : Rd → R | i ∈ I} be a nice family of m functions. Define g =

∑
i∈I fi and

assume that minx∈Rd g(x) exists. Then we can compute a point x′
ε ∈ Rd such that g(x′

ε) ≤
(1 + ε) minx∈Rd g(x) in time O(m2d−2+η + (m/ε)d+1 logd+1(m/ε)) for any η > 0.1 The
constant hidden in the O-notation depends on η and on d.

Let us first consider the simpler case of two segments and how their Hausdorff distance
is defined. We parameterize a segment ab as the point (x(a), y(a), x(b), y(b)) in R4. Note
that in this parameterization we have the artifact that the segments ab and ba give different
points in R4.

Let ℓab be the line supporting a segment ab. For a point p, the distance δ(p, ab) is given
by one of the three terms |pa|, |pb|, or δ(p, ℓab). For a point q ∈ R2 and a segment ab,
let ℓ⊥(q, ab) be the line perpendicular to ℓab through q. The lines ℓ⊥(a, ab) and ℓ⊥(b, ab)
partition the plane into three 2-dimensional faces (Figure 1) with closures

σ(ab) = the closed slab between ℓ⊥(a, ab) and ℓ⊥(b, ab),
τ(a, ab) = the closed halfspace defined by ℓ⊥(a, ab) that does not contain b,

τ(b, ab) = the closed halfspace defined by ℓ⊥(b, ab) that does not contain a.

We then have

δ(p, ab) =


|pa| if p ∈ τ(a, ab),
|pb| if p ∈ τ(b, ab),
δ(p, ℓab) if p ∈ σ(ab).

From Equation (1), we conclude that, for any two segments ab and a′b′, the distance
dH(ab, a′b′) is given by one of the functions in the family

F(ab, a′b′) :=
{

|aa′|, |ab′|, |ba′|, |bb′|, δ(a, ℓa′b′), δ(b, ℓa′b′), δ(a′, ℓab), δ(b′, ℓab)
}
.

We next argue that all the expressions involved are algebraic. A point p lies on the line
ℓ⊥(a, ab) if and only the scalar product of the vectors a⃗p and a⃗b is zero. This is equivalent to(
x(p), y(p), x(a), y(a), x(b), y(b)

)
being a zero of the algebraic (actually polynomial) function

ψ(x, y, xa, ya, xb, yb) := (x− xa)(xb − xa) + (y − ya)(yb − ya).

The sign of this expression also tells us which side of ℓ⊥(a, ab) the point p lies on. Note that
this function is linear in x and y, while it is quadratic in xa and ya. Symmetrically, the sign
of ψ

(
x(p), y(p), x(b), y(b), x(a), y(a)

)
tells us which side of ℓ⊥(b, ab) point p lies on.

In the following, we will treat the segment a′b′ as variable, identified with R4, while the
segment ab will be fixed. We will show that the space R4 can be decomposed into cells such
that, within a cell, the distance dH(ab, a′b′) is defined always by the same function from

1 As noted in Vigneron [40], one needs to assume either the Real-RAM model of computation (which is
standard in computational geometry) or a model where we can choose the precision of the intermediate
computations, and then the computational complexity of the algorithm depends on the desired precision.
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σ(ab)

τ(a, ab)

τ(b, ab) ℓab

ℓ⊥(a, ab)ℓ⊥(b, ab)

b
a

Figure 1 The regions σ(ab), τ(a, ab) and τ(b, ab).

F(ab, a′b′). Such a decomposition is given by the eight algebraic hypersurfaces describing
the conditions

a′ ∈ ℓ⊥(a, ab), b′ ∈ ℓ⊥(a, ab), a′ ∈ ℓ⊥(b, ab), b′ ∈ ℓ⊥(b, ab),
a ∈ ℓ⊥(a′, a′b′), b ∈ ℓ⊥(a′, a′b′), a ∈ ℓ⊥(b′, a′b′), b ∈ ℓ⊥(b′, a′b′),

together with a set of hypersurfaces, “bisectors”, each defined by the set of points where two
appropriate functions from F(ab, a′b′) meet; this will become clear shortly. Finally, we note
that each function in F(ab, a′b′) is algebraic of constant degree; for example, elementary
algebra shows that

δ2(a′, ℓab) =

((
x(b) − x(a)

)(
y(a) − y(a′)

)
−
(
x(a) − x(a′)

)(
y(b) − y(a)

))2

(
x(a) − x(b)

)2 +
(
y(a) − y(b)

)2 .

We parameterize the space of (sequences of) k segments a1b1, . . . , akbk (the k candidate
cluster centers) by the point(

x(a1), y(a1), x(b1), y(b1), . . . , x(ak), y(ak), x(bk), y(bk)
)

∈ R4k.

Similarly, each z ∈ R4k defines a k-tuple of segments with s1(z) = a1(z)b1(z), . . . , sk(z) =
ak(z)bk(z) by taking the inverse of the parameterization.

▶ Theorem 2. Let k be a fixed, positive integer and let s be a segment in the plane. In O(1)
time we can construct a nice family Fs = {f : R4k → R} of O(1) functions such that

∀z ∈ R4k :
∑

f∈Fs

f(z) = min
i∈[k]

d2
H(s, si(z)).

Proof. Let s = ab be the fixed segment. For each index i ∈ [k], we consider the set Σ(i) of 8
hypersurfaces in R4k, each of them given by one of the following conditions

ai ∈ ℓ⊥(a, ab), bi ∈ ℓ⊥(a, ab), ai ∈ ℓ⊥(b, ab), bi ∈ ℓ⊥(b, ab),
a ∈ ℓ⊥(ai, aibi), b ∈ ℓ⊥(ai, aibi), a ∈ ℓ⊥(bi, aibi), b ∈ ℓ⊥(bi, aibi).

Note that here x(a), y(a), x(b) and y(b) are input data while x(ai), y(ai), x(bi) and y(bi)
are variables defining coordinates in the parameter space R4k.

ESA 2023



28:6 On k-Means for Segments and Polylines

Set Σ := ∪i∈[k]Σ(i) and let AΣ be the arrangement in R4k defined by Σ. From the foregoing
discussion, we have the following property: for each cell c of AΣ and each index i ∈ [k], the set
of functions F(s, aibi) stays the same and each of the distances δ(a, aibi), δ(b, aibi), δ(ai, ab),
and δ(bi, ab), is given by the same function from F(s, aibi). Thus, for all z ∈ c, the distance
dH(s, si(z)) is described by the maximum among the same four functions from F(s, aibi).

In order to make clear that only the coordinates of ai and bi are relevant in the functions
in F(s, aibi), we change the notation to Gi and take each function g of Gi to map from R4k to
R. Formally, for each function f ∈ F(s, aibi) we put into Gi the function g(z) := f(ab, si(z)).

We next define a set Λ of algebraic hypersurfaces in R4k playing the role of “bisectors”.
For each i, j ∈ [k] with i ≤ j, we define Λ(i, j) as the hypersurfaces given by equating each
function of Gi to each function of Gj . Note that each hypersurface is defined by a polynomial
equality of degree at most 6. Since Gi has 8 functions for each i ∈ [k], the set Λ(i, j) has at
most 82 = 64 hypersurfaces (it is 32 for Λ(i, i)).

Set Λ := ∪i∈[k] ∪j∈[k],i≤j Λ(i, j) and let AΛ be the arrangement in R4k induced by Λ. For
each cell c ∈ AΛ the sign of each function g(z) − g′(z) remains constant for g ∈ Gi, g′ ∈ Gj

and z ∈ c.
Finally, let A be the arrangement in R4k induced by the hypersurfaces in Σ ∪ Λ. Note

that this is a refinement of AΣ and AΛ, meaning that each cell of A is contained in a cell of
AΣ and a cell of AΛ.

Consider a cell c ∈ A. Since c is contained in a cell of AΣ, for each i ∈ [k], each function
in the set ∆i(c) = {δ(a, si(z)), δ(b, si(z)), δ(ai(z), ab), and δ(bi(z), ab)} is given by the same
function of Gi for all z ∈ c. Moreover, since c is contained in a cell of AΛ, for every two
distinct functions δ, δ′ ∈ ∆i(c) the sign of δ − δ′ is constant for all z ∈ c. From these
two facts we conclude that, for each i ∈ [k], there is some function gc,i(z) ∈ Gi such that
dH(s, si(z)) = gc,i(z) for all z ∈ c. This function can be easily determined in O(1) time per
cell by evaluating each function in ∆i(c) at some arbitrary point in c.

Similarly, since c is contained in a cell of AΛ, we have that for each distinct i, j ∈ [k] the
sign of

dH(s, si(z)) − dH(s, sj(z)) = gc,i(z) − gc,j(z)

is constant for all z ∈ c. This implies that, for each cell c ∈ A, there exists some index
ι(c) ∈ [k] with the following property:

∀j ∈ [k], z ∈ c : dH(s, sι(c)(z)) ≤ dH(s, sj(z)).

In other words, the segment sι(c)(z) is a closest one to s among s1(z), . . . , sk(z) and moreover
the distance dH(s, sι(c)(z)) is given by a single function gc,ι(c) from Gι(c). Thus, for each z ∈ c

it holds mini∈[k] dH(s, si(z)) = gc,ι(c)(z). As before, the function gc,ι(c)(z) can be determined
in O(k) time per cell by evaluating each dH(s, si(z)) at some arbitrary point in c.

For any set A, let 1A be the function with 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
For each cell c ∈ A, define the function hc : R4k → R by hc(z) = 1c(z) · g2

c,ι(c)(z). Finally,
set Fs := {hc | c ∈ A}. We can then express the function

z ∈ R4k 7→ min
i∈[k]

d2
H(s, si(z))

as

min
i∈[k]

d2
H(s, si(z)) =

∑
c∈A

1c(z) g2
c,ι(c)(z) =

∑
c∈A

hc(z) =
∑

h∈Fs

h(z).
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Since Σ ∪ Λ has O(k2) = O(1) hypersurfaces, the arrangement A has O(O(k2)4k) = O(1)
cells, each of them described by O(k2) = O(1) algebraic inequalities of constant description
complexity and the family of functions Fs has the desired properties, where the constant
λ used to define the niceness is O(k8k). Constructing A (i.e., with algebraic descriptions
for each cell) takes O(O(k2)4k+16O((4k)4)) = O(1) [4, Chapter 16]. The family Fs can be
constructed in this time as well. ◀

We can now apply Theorem 1 combining all the functions Fs for s ∈ S and compute a
set of k segments whose cost approximates that of an optimal set of segments.

▶ Theorem 3. Let k a fixed, positive integer and let ε ∈ (0, 1). Let S be a family of n
segments in the plane with positive weights. We can compute k segments s1,ε, . . . , sk,ε in R2

such that

costS({s1,ε, . . . , sk,ε}) ≤ (1 + ε) min
{

costS({s1, . . . , sk}) | s1, . . . , sk segments
}

in time O(n8k−2+η + (n/ε)4k+1 log4k+1(n/ε)), for any η > 0. The constant hidden in the
O-notation depends on η and on k.

Proof. For each segment s ∈ S we compute the family Fs of Theorem 2. This takes
O(n) · O(1) = O(n) time in total. To account for the weight ws > 0 of the segment s,
we replace in Fs each function f ∈ Fs with ws · f . Define F := ∪s∈SFs and the function
g :=

∑
f∈F f . Note that F is a family of O(1) ·O(n) = O(n) nice functions and

∀z ∈ R4k : g(z) =
∑
s∈S

∑
f∈Fs

f(z) =
∑
s∈S

ws·min
i∈[k]

dH(s, si(z))2 = costS({s1(z), . . . , sk(z)}).

We can then use Theorem 1 to find in time O(|F|2·4k−2+η + (|F|/ε)4k+1 log4k+1(|F|/ε)), for
any η > 0, a point z′

ε ∈ R4k such that

g(z′
ε) ≤ (1 + ε) min

z∈R4k
costS({s1(z), . . . , sk(z)}).

The point z′
ε ∈ R4k defines the segments s1,ε := s1(z′

ε), . . . , sk,ε := sk(z′
ε). As s1(z), . . . , sk(z)

goes over all k tuples of segments when z iterates over all R4k, we have

min
z∈R4k

costS({s1(z), . . . , sk(z)}) = min
s1,...,sk

costS({s1, . . . , sk}).

We conclude that

costS({s1,ε, . . . , sk,ε} = g(z′
ε) ≤ (1 + ε) min

s1,...,sk

costS({s1, . . . , sk}). ◀

3 A coreset for k-means in (S, dH)

We use the sensitivity framework of Feldman and Langberg [21, 22]. Let F be a finite set of
functions, each of them mapping from Rd to R≥0. The sensitivity of f ∈ F with respect to
F is

σ(f, F ) := sup
z∈Rd

f(z)∑
g∈F

g(z)
.

We also consider the following range space

range≥(F ) :=
(
F,
{

{f ∈ F | f(z) ≥ r} | z ∈ Rd, r ∈ [0,∞)
})
.

We will use the following theorem from [22], which we state here adapted to our needs.

ESA 2023



28:8 On k-Means for Segments and Polylines

▶ Theorem 4 (Adaptation of Theorem 31 in Feldman et al. [22]). Let F be a set of n functions
from Rd to [0,∞) with the following properties:

For each choice of weights wf > 0 for f ∈ F , the range space range≥({wf · f | f ∈ F})
has bounded VC-dimension.
For each f ∈ F we are given a value σ̃(f) such that

σ̃(f) ≥ 1
|F |

and σ̃(f) ≥ σ(f, F ).

Set Σ̃(F ) :=
∑

f∈F σ̃(f). Let δ, ε be real values in (0, 1/2). In time O(|F |) we can compute
a subset C ⊆ F of

O

(
Σ̃(F )
ε2

(
log Σ̃(F ) + log 1

δ

))
weighted functions and weights uf > 0 for each f ∈ C such that, with probability at least
1 − δ:

∀z ∈ Rd :

∣∣∣∣∣∣
∑
f∈F

f(z) −
∑
f∈C

uf · f(z)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

f(z).

For each input segment s ∈ S, we define the function fs : R4k → R≥0 with

fs(z) := min{d2
H(s, s1(z)), . . . , d2

H(s, sk(z))} =
(
min{dH(s, s1(z)), . . . , dH(s, sk(z))}

)2
.

Here, the segments s1(z), . . . , sk(z) are the same that were used in the parameterization
before Theorem 2. Set F = {fs | s ∈ S}. In order to use the above theorem, we need
appropriate sensitivity upper bounds σ̃(fs) for each fs ∈ F and a bound on the total
sensitivity Σ̃(F ). Let optk(S) be the cost of an optimal set of segments for k-means, i.e.,
optk(S) = mins1,...,sk

costS({s1, . . . , sk}).

▶ Lemma 5. Let s′
1 . . . , s

′
k′ be a bicriteria (α, β)-approximation for k-means, that is, k′ ≤ βk

and costS({s′
1, . . . , s

′
k′}) ≤ α · optk(S), where α, β ≥ 1. For each i ∈ [k′], let S′

i be the
segments of S closer to s′

i than to any other segment s′
j, j ∈ [k′] \ {i}; ties are solved

arbitrarily so that S′
1, . . . , S

′
k′ is a partition of S. For each segment s ∈ S, let ι(s) ∈ [k′] be

such that s ∈ S′
ι(s). Define for each s ∈ S the value

σ̃(fs) := 32α
|S′

ι(s)|
+

16α · d2
H(s, s′

ι(s))∑
s′∈S′

ι(s)

d2
H(s′, s′

ι(s))
= 32α

|S′
ι(s)|

+
16α · d2

H(s, s′
ι(s))

costS′
ι(s)

(s′
ι(s))

.

Then σ̃(fs) ≥ σ(fs, F ) and σ̃(fs) ≥ 1
|F | .

(The proof of the above lemma is technical and can be found in the full version of this paper.)
Finally, note that for the sensitivities σ̃(fs) defined in Lemma 5, we have the total

sensitivity

Σ̃(F ) =
∑
s∈S

σ̃(fs) =
∑
s∈S

(
32α

|S′
ι(s)|

+
16α · d2

H(s, s′
ι(s))

costS′
ι(s)

(s′
ι(s))

)

=
∑

i∈[k′]

∑
s∈S′

i

32α
|S′

i|
+
∑
s∈S′

i

16α · d2
H(s, s′

i)
costS′

i
(s′

i)

 =
∑

i∈[k′]

(32α+ 16α)

= O(βαk).

Next, we bound the VC-dimension of the range space associated with the input segments.
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▶ Lemma 6. Assume that we have a weight ws > 0 for each s ∈ S and consider the set of
functions Fw = {ws · fs | s ∈ S}. The range space range≥(Fw) has VC-dimension O(1).

Proof. First note that the range space range≥(Fw) is equivalent to the range space (S,R),
where the ranges are

R =
{

{s ∈ S | (ws · fs)(z) ≥ r} | z ∈ R4k, r ∈ [0,∞)
}

=
{

{s ∈ S | ws · min{d2
H(s, s1(z)) . . . , d2

H(s, sk(z))} ≥ r} | z ∈ R4k, r ∈ [0,∞)
}

=
{

{s ∈ S | ∀i ∈ [k] :
√
ws · dH(s, si(z)) ≥

√
r} | z ∈ R4k, r ∈ [0,∞)

}
.

Setting w′
s = √

ws for each s ∈ S and r′ =
√
r, we get that the ranges are

R =
{

{s ∈ S | ∀i ∈ [k] : w′
s · dH(s, si(z)) ≥ r′} | z ∈ R4k, r′ ∈ [0,∞)

}
.

For each segment s ∈ S, consider the hypersurface λs in R4k+1 given by the graph of the func-
tion z ∈ R4k 7→ w′

s · dH(s, si(z)). This is λs ≡
{(
z, w′

s · dH(s, si(z))
)

∈ R4k × R | z ∈ R4k
}

.
As it has been discussed and used in Section 2 when defining the set F(ab, a′b′), the hyper-
surface λs is contained in the union of 8 algebraic hypersurfaces of bounded degree, each of
them being the graph of a function. Let Λs be the set of those 8 algebraic hypersurfaces for
the segment s ∈ S.

Set Λ := ∪s∈SΛs and let A be the arrangement in R4k+1 induced by Λ. Each point
(z, r′) ∈ R4k × R gives a range to R, and two points in the same cell of A give exactly the
same range to R because, for each s ∈ S, the surface λs is above, below or on all the points
of the cell. It may happen that points in different cells of A give the same range, as one still
has to check the condition ∀i ∈ [k] : w′

s · dH(s, si(z)) ≥ r′. In any case, the number of cells
in A is an upper bound to the number of ranges in R, which is exactly the number of ranges
in range≥(Fw).

Classical results in Real Algebraic Geometry imply that A has |Λ|O(k) cells; see for
example [4, Chapter 7] or [33, Section 6.2]. This implies that the so-called shattering
dimension of range≥(Fw) is O(k) = O(1). (See for example Har-Peled [27, Chapter 5] for the
concept and the next property.) Since a range space has bounded shattering dimension if and
only if it has bounded VC-dimension this implies that the VC-dimension of range≥(Fw) is
O(1). The approach we have used is essentially an application of the methodology discussed
by Matoušek [33, Section 10.3].

Note that in this proof we have not tried to optimize the bound on the VC-dimension
because we assume k is constant. Perhaps a better bound follows from adapting the result of
Driemel at al. [20] to the case of weights. ◀

We can now apply Theorem 4 on F to obtain the coreset.

▶ Theorem 7. Assume that k is a fixed positive integer. Let δ, ε be real values in (0, 1/2).
For any set S of n unweighted segments in the plane, we can compute in time O(n log(1/δ))
a subset T ⊆ S of

O

(
ε−2 log 1

δ

)
segments and weights us > 0 for each s ∈ T such that, with probability at least 1 − δ:

∀ segments s1, . . . , sk : |costS({s1, . . . , sk}) − costT ({s1, . . . , sk})| ≤ ε·costS({s1, . . . , sk}).

Proof. We first compute a bicriteria (α = O(1), β = O(1))-approximation for k-means on S by
using the algorithm of Chen [9, Theorem A.4], which in turn is a modification of the algorithm
by Indyk [29]. For a probability of error δ′ = δ/2, the algorithm takes O(n log(1/δ′)) =
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O(n log(1/δ)) time and succeeds with probability at least 1 − δ′ in finding a set s1, . . . , sk′

of k′ = O(k) segments such that costS({s1, . . . , sk′}) ≤ O(1) · costS({s1, . . . , sk}). Note
that the algorithm of Chen is for the discrete version of k-means, where the centers under
consideration must be a subset of S. However, it is well-known that the triangle inequality
implies that this is a factor 4 off for the continuous k-means version. This factor 4 is then
subsumed by the O(1) approximation factor.

Let F = {fs | s ∈ S}. We use the bicriteria approximation for the sensitivity upper
bounds σ̃(fs), for each fs ∈ F , as defined in Lemma 5. As discussed after Lemma 5, the
total sensitivity Σ̃(F ) is O(1) and, by Lemma 6, the VC-dimension of range≥(F ) is O(1).
The result then follows using Theorem 4 with probability of error δ′ = δ/2. The size of the
set C ⊆ F selected by Theorem 4 is O(Σ̃(F )ε−2(log Σ̃(F ) + log(1/δ′)) = O(ε−2 log(1/δ)),
and each function f ∈ C has a given weight uf > 0. We set T = {s ∈ S | fs ∈ C} and, for
each segment s ∈ T , we define the weight ws := ufs

.
With probability at least 1 − δ′ we have

∀z ∈ R4k :

∣∣∣∣∣∣
∑
f∈F

f(z) −
∑
f∈C

uf · f(z)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

f(z),

which can be rewritten as

∀z ∈ R4k :

∣∣∣∣∣∑
s∈S

fs(z) −
∑
s∈T

ws · fs(z)

∣∣∣∣∣ ≤ ε
∑
s∈S

fs(z).

Since fs(z) = min{d2
H(s, s1(z)), . . . , d2

H(s, sk(z))} and s1(z), . . . , sk(z) goes over all k tuples
of candidate segments when z iterates over all R4k, the last statement is equivalent to

∀ segments s1, . . . , sk : |costS({s1, . . . , sk}) − costT ({s1, . . . , sk})| ≤ ε·costS({s1, . . . , sk}).

The algorithm may fail only if the bicriteria approximation of Chen fails or if the application
of Theorem 4 fails, and each of them separately fails with probability at most δ/2. ◀

4 Putting it all together

Let S be a set of n segments in the plane without weights. We first set a fixed probability of
error δ = 1/2, which means that the terms log(1/δ) become O(1). We keep using ε ∈ (0, 1/2)
as a parameter.

We first compute a weighted coreset T ⊆ S with |T | = O(ε−2)) elements in O(n)
time as described in Theorem 7; for each segment s ∈ T we have a weight ws > 0. If
S∗ = {s∗

1, . . . , s
∗
k} is an optimal set of segments for S, then from Theorem 7 we have that

costT (S∗) ≤ (1 + ε) · costS(S∗) with probability at least 1/2.
We apply the (1 + ε)-approximation algorithm of Theorem 3 on T , taking into account

the weights of the segments. As |T | = O(ε−2) the algorithm runs in time

O
(

(ε−2)8k−2+η + (ε−3)4k+1 log4k+1(ε−3)
)

= O
(
ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
for any η > 0. When k = 1, the second summand dominates. When k ≥ 2 and ε is below
some constant ε0, the first summand dominates.
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Let T ∗ = {t∗1, . . . , t∗k} be an optimal set of segments for k-means of the weighted set T .
The algorithm of Theorem 3 has then provided a set Sε = {s1,ε, . . . , sk,ε} of k segments for
which costT (Sε) ≤ (1 + ε) · costT (T ∗). Note that for the set Sε we also get from Theorem 7
that (1 − ε) · costS(Sε) ≤ costT (Sε). Since costT (T ∗) ≤ costT (S∗), we conclude that

(1 − ε) · costS(Sε) ≤ costT (Sε) ≤ (1 + ε) · costT (T ∗) ≤ (1 + ε) · costT (S∗)
≤ (1 + ε)2 · costS(S∗)

or

costS(Sε) ≤ (1 + ε)2

(1 − ε) · costS(S∗) = (1 +O(ε)) · costS(S∗).

Setting ε = Θ(ε′) appropriately, we get a (1 + ε′)-approximation for any desired ε′.
By independently repeating the algorithm O(log(1/δ)) times and taking the best among

the solutions, we can reduce the probability of error to any given value δ. Because k = O(1),
evaluating each candidate solution with respect to the whole set of segments takes O(n) time.
We summarize in the following.

▶ Theorem 8. Let k a fixed, positive integer and let δ, ε ∈ (0, 1/2). Let S be a family of n
unweighted segments in the plane. We can compute k segments s1,ε, . . . , sk,ε in R2 such that,
with probability at least 1 − δ,

costS({s1,ε, . . . , sk,ε}) ≤ (1 + ε) min
s1,...,sk

costS({s1, . . . , sk})

in time O
((
n+ ε−16k+4−η + ε−12k−3 log4k+1(ε−1)

)
(log(1/δ)

)
, for any η > 0.

For k = 1, the running time is O
((
n+ ε−15 log5(ε−1)

)
(log(1/δ)

)
, while for k ≥ 2 the

running time is O
((
n+ ε−16k+4−η

)
(log(1/δ)

)
for any η > 0.

5 Extension to polylines

In this section we briefly discuss the extension of our result to the case of polylines of bounded
complexity. To reduce the number of parameters, we assume that each polyline has at most
ℓ segments and we search the k-means among polylines that have at most ℓ segments. (We
can also handle the case where the input and the target centers have different complexities.)
To simplify the discussion, we assume that each input polyline has exactly ℓ segments. We
further assume that ℓ = O(1).

We regard each polyline π as the union of segments and note that the distance between
the polyline π with segments s1, . . . , sℓ and the polyline π′ with segments s′

1, . . . , s
′
ℓ is

dH(π, π′) = max
{

max
i∈[ℓ]

min
j∈[ℓ]

dH(si, s
′
j), max

j∈[ℓ]
min
i∈[ℓ]

dH(s′
j , si)

}
.

Therefore the distance between any two polylines is described as a max-min combination of
O(ℓ2) = O(1) values.

A polyline with ℓ segments is parameterized by 2(ℓ+ 1) real values. Therefore, a sequence
of k polylines with ℓ segments each is parameterized by a point in Rκ for κ = 2k(ℓ + 1).
(Before, for segments, we had κ = 4k.) Each z ∈ Rκ defines k polylines π1(z), . . . , πk(z),
each consisting of ℓ segments.
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Let Π be a set of polylines in the plane, each with ℓ segments. For each π ∈ Π, we define
the function fπ : Rκ → R by

fπ(z) := min{d2
H(π, π1(z)), . . . , d2

H(π, πk(z))} =
(
min{dH(π, π1(z)), . . . , dH(π, πk(z))}

)2

and then define the set of functions F = {fπ | π ∈ Π}.
We first note that the VC-dimension of the range space range≥(Fw) is O(1), where Fw is

obtained from F by scaling each fπ ∈ F with a different scalar wπ > 0. The proof of Lemma 6
readily applies to this case as it only relies on the description complexity of dH(π, πi(z))
being constant, and each patch of the description being an algebraic function.

Next we note that we can use the bicriteria (α = O(1), β = O(1))-approximation for
k-means of Chen, as we did in the proof of Theorem 7. Indeed, this algorithm only requires
that we can compute the distance between any two input objects, which we can do in constant
time. The rest of the proof of Theorem 7 goes unchanged because Lemma 5 and Theorem 4
do not make any assumption related to segments beyond the VC-dimension. We thus obtain
with probability at least 1/2 a coreset Π̃ of O(ε−2) input polylines, each of them with a
positive weight wπ.

It remains to adapt Theorem 3 to the setting of polylines. As we have done in Theorem 2,
for each polyline π we can compute a family Fπ of nice functions such that

fπ(z) =
∑

f∈Fπ

f(z) = min
i∈[k]

d2
H(π, πi(z)) for all z ∈ Rκ.

Indeed, as we did in the proof of Theorem 2, we can break the parameter space Rκ using
O(k2ℓ2) = O(1) algebraic hypersurfaces into O(1) cells such that, within each cell, the
max-max-min expression defining dH(π, πi(z)) is always the same algebraic expression. We
can then apply Theorem 1 to the family of nice functions ∪π∈Π̃Fπ, where each function
in Fπ has been scales with the corresponding weight wπ. Thus, we have an application of
Theorem 1 in Rκ for O(ε−2) functions. The running time is, for any η > 0,

O((ε−2)2κ−2+η + (ε−3)κ+1 logκ+1(ε−3)) = O(ε−4κ+4+η + ε−3κ−3 logκ+1(ε−1))

= O(ε−O(kℓ)).

Like before, we can make O(log(1/δ)) independent repetitions to decrease the probability of
failure to δ. We summarize below.

▶ Theorem 9. Let k and ℓ be fixed, positive integers and let δ, ε ∈ (0, 1/2) be parameters.
Let Π be a family of n unweighted polylines in the plane, each with at most ℓ segments. We
can compute k polylines π1,ε, . . . , πk,ε in R2, each with at most ℓ segments, such that, with
probability at least 1 − δ,

costΠ({π1,ε, . . . , πk,ε}) ≤ (1 + ε) min
π1,...,πk

costΠ({π1, . . . , πk})

in time O
((
n+ ε−O(kℓ)) (log(1/δ)

)
.
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