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Abstract
We study the fundamental problem of finding the best string to represent a given set, in the form
of the Closest String problem: Given a set X ⊆ Σd of n strings, find the string x∗ minimizing the
radius of the smallest Hamming ball around x∗ that encloses all the strings in X. In this paper, we
investigate whether the Closest String problem admits algorithms that are faster than the trivial
exhaustive search algorithm. We obtain the following results for the two natural versions of the
problem:

In the continuous Closest String problem, the goal is to find the solution string x∗ anywhere
in Σd. For binary strings, the exhaustive search algorithm runs in time O(2d poly(nd)) and we
prove that it cannot be improved to time O(2(1−ϵ)d poly(nd)), for any ϵ > 0, unless the Strong
Exponential Time Hypothesis fails.

In the discrete Closest String problem, x∗ is required to be in the input set X. While this
problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be
quadratic time n2±o(1) whenever the dimension is ω(log n) < d < no(1). We complement this
known hardness result with new algorithms, proving essentially that whenever d falls out of this
hard range, the discrete Closest String problem can be solved faster than exhaustive search.
In the small-d regime, our algorithm is based on a novel application of the inclusion-exclusion
principle.

Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest
String problem, called the Remotest String problem, where the task is to find a string maximizing
the Hamming distance to all the strings in X.
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1 Introduction

The challenge of characterizing a set of strings by a single representative string is a fundamental
problem all across computer science, arising in essentially all contexts where strings are
involved. The basic task is to find a string x∗ which minimizes the maximum number of
mismatches to all strings in a given set X. Equivalently, the goal is to find the center x∗

of a smallest ball enclosing all strings in X in the Hamming (or ℓ0) metric. This problem
has been studied under various names, including Closest String, 1-Center in the Hamming
metric and Chebyshev Radius, and constitutes the perhaps most elementary clustering task
for strings.

In the literature, the Closest String problem has received a lot of attention [11, 12, 23,
14, 22, 26, 9, 25, 20, 27, 1], and it is not surprising that besides the strong theoretical
interest, it finds wide-reaching applications in various domains including machine learning,
bioinformatics, coding theory and cryptography. One such application in machine learning
is for clustering categorical data. Typical clustering objectives involve finding good center
points to characterize a set of feature vectors. For numerical data (such as a number of
publications) this task translates to a center (or median) problem over, say, the ℓ1 metric
which can be solved using geometry tools. For categorical data, on the other hand, the points
have non-numerical features (such as blood type or nationality) and the task becomes finding
a good center string over the Hamming metric.

Another important application, in the context of computational biology, is the computer-
aided design of PCR primers [25, 24, 10, 29, 13, 32]. On a high level, in the PCR method the
goal is to find and amplify (i.e., copy millions of times) a certain fragment of some sample
DNA. To this end, short DNA fragments (typically 18 to 25 nucleotides) called primers are
used to identify the start and end of the region to be copied. These fragments should match
as closely as possible the target regions in the sample DNA. Designing such primers is a
computational task that reduces exactly to finding a closest string in a given set of genomes.

The Closest String problem comes in two different flavors: In the continuous Closest
String problem the goal is to select an arbitrary center string x∗ ∈ Σd (here, Σ is the
underlying alphabet) that minimizes the maximum Hamming distance to the n strings in
X. This leads to a baseline algorithm running in exponential time O(|Σ|d poly(nd)). In the
discrete Closest String problem, in contrast, the task is to select the best center x∗ in the
given set of strings X; this problem therefore admits a baseline algorithm in time O(n2d).
Despite the remarkable attention that both variants have received so far, the most basic
questions about the continuous and discrete Closest String problems have not been fully
resolved yet:

Can the O(|Σ|d poly(nd))-time algorithm for continuous Closest String be improved?
Can the O(n2d)-time algorithm for discrete Closest String be improved?

In this paper, we make considerable progress towards resolving both driving questions, by
respectively providing tight conditional lower bounds and new algorithms. In the upcoming
Sections 1.1 and 1.2 we will address these questions in depth and state our results.

Interestingly, in both cases our results also extend, at times even in a stronger sense, to a
natural dual of the Closest String problem called the Remotest String problem. Here, the
task is to find a string x∗ that maximizes the minimum Hamming distance from x∗ to a
given set of strings X. This problem has also been studied in computational biology [22, 21]
and more prominently in the context of coding theory: The remotest string distance is a
fundamental parameter of any code which is also called the covering radius [8], and under this
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name the Remotest String problem has been studied in previous works [28, 15, 6, 17] mostly
for specific sets X such as linear codes or lattices. See Alon, Panigrahy and Yekhanin [6] for
further connections to matrix rigidity.

1.1 Continuous Closest/Remotest String

Let us start with the more classical continuous Closest String problem. It is well-known
that the problem is NP-complete [11, 22], and up to date the best algorithm remains the
naive one: Exhaustively search through all possible strings in time O(|Σ|d poly(nd)). This
has motivated the study of approximation algorithms leading to various approximation
schemes [12, 23, 25, 27], and also the study through the lens of parameterized algorithms [14].
In this work, we insist on exact algorithms and raise again the question: Can you solve the
continuous Closest String problem faster than exhaustive search?

For starters, focus on the Closest String problem for binary alphabets (i.e., for |Σ| = 2)
which is of particular importance in the context of coding theory [20]. From the known
NP-hardness reduction which is based on the 3-SAT problem [11], it is not hard to derive
a 2d/2 lower bound under the Strong Exponential Time Hypothesis (SETH) [18, 19]. This
bound clearly does not match the upper bound and possibly leaves hope for a meet-in-the-
middle-type algorithm. In our first contribution we shatter all such hopes by strengthening
the lower bound, with considerably more effort, to match the time complexity of exhaustive
search:

▶ Theorem 1 (Continuous Closest String is SETH-Hard). The continuous Closest String
problem cannot be solved in time O(2(1−ϵ)d poly(n)), for any ϵ > 0, unless SETH fails.

Interestingly, we obtain this lower bound as a corollary of the analogous lower bound for
the continuous Remotest String problem (see the following Theorem 2). This is because both
problems are equivalent over the binary alphabet. However, even for larger sized alphabet
sets Σ, we obtain a matching lower bound against the Remotest String problem:

▶ Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|Σ|(1−ϵ)d poly(n)), for any ϵ > 0 and |Σ| = o(d), unless
SETH fails.

Theorem 2 gives a tight lower bound for the continuous Remotest String problem in all
regimes where we can expect lower bounds, and we therefore close the exact study of the
continuous Remotest String problem. Indeed, in the regime where the alphabet size |Σ|
exceeds the dimension d, the Closest and Remotest String problems can be solved faster in
time O(dd poly(n, d)) (and even faster parameterized in terms of the target distance [14]).

The intuition behind Theorem 2 is simple: We encode a k-SAT instance as a Remotest
String problem by viewing strings as assignments and by searching for a string which is
remote from all falsifying assignments. The previously known encoding [11] was inefficient
(encoding a single variable Xi accounted for two letters in the Remotest String instance: one
for encoding the truth value and another one as a “don’t care” value for clauses not containing
Xi), and our contribution is that we make the encoding lossless. While superficially simple,
this baseline idea requires a lot of technical effort.

ESA 2023
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1.2 Discrete Closest/Remotest String
Recall that in the discrete Closest String problem (in contrast to the continuous one) the
solution string x∗ must be part of the input set X. For applications in the context of data
compression and summarization, the discrete problem is often the better choice: Selecting
the representative string from a set of, say, grammatically or semantically meaningful strings
is typically more informative than selecting an arbitrary representative string.

The problem can be naively solved in time O(n2d) by exhaustive search: Compute the
Hamming distance between all

(
n
2
)

pairs of strings in X in time O(d) each. In terms of exact
algorithms, this running time is the fastest known. Toward our second driving question, we
investigate whether this algorithm can be improved, at least for some settings of n and d. In
previous work, Abboud, Bateni, Cohen-Addad, Karthik, and Seddighin [1] have established
a conditional lower bound under the Hitting Set Conjecture [3], stating that the problem
requires quadratic time in n whenever d = ω(log n):

▶ Theorem 3 (Discrete Closest String for Super-Logarithmic Dimensions [1]). The discrete
Closest String problem in dimension d = ω(log n) cannot be solved in time O(n2−ϵ), for any
ϵ > 0, unless the Hitting Set Conjecture fails.

This hardness result implies that there is likely no polynomially faster algorithm for
Closest String whenever the dimension d falls in the range ω(log n) < d < no(1). But this
leaves open the important question of whether the exhaustive search algorithm can be
improved outside this region, if d is very small (say, o(log n)) or very large (i.e., polynomial
in n). In this paper, we provide answers for both regimes.

Small Dimension. Let us start with the small-dimension regime, d = o(log n). The outcome
of the question whether better algorithms are possible is a priori not clear. Many related
center problems (for which the goal is to select a center point x∗ that is closest not necessarily
in the Hamming metric but in some other metric space) differ substantially in this regard:
On the one hand, in the Euclidian metric, even for d = 2O(log∗ n), the center problem requires
quadratic time under the Hitting Set Conjecture [1].1 On the other hand, in stark contrast,
the center problem for the ℓ1 and ℓ∞ metrics can be solved in almost-linear time n1+o(1)

whenever the dimension is d = o(log n). This dichotomy phenomenon extends to even more
general problems including nearest and furthest neighbor questions for various metrics and
the maximum inner product problem [33, 7].

In view of this, we obtain the perhaps surprising result that whenever d = o(log n) the
discrete Closest String problem can indeed be solved in subquadratic – even almost-linear –
time. More generally, we obtain the following algorithm:

▶ Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n · 2d).

Note that this result is trivial for binary alphabets, and our contribution lies in finding
an algorithm in time O(n · 2d) for alphabets of arbitrary size.

We believe that this result is interesting also from a technical perspective, as it crucially
relies on the inclusion-exclusion principle. While this technique is part of the everyday tool-set
for exponential-time and parameterized algorithms, it is uncommon to find applications for
polynomial-time problems and our algorithm yields the first such application to a center-type

1 Technically, the problem is only known to be hard in the listing version where we require to list all
feasible centers [1].
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problem, to the best of our knowledge. We believe that our characterization of the Hamming
distance in terms of an inclusion-exclusion-type formula (see Lemma 23) is very natural and
likely to find applications in different contexts.

Large Dimension. In the large-dimension regime, where d is polynomial in n, it is folklore
that fast matrix multiplication should be of use. Specifically, over a binary alphabet we can
solve the Closest String problem in time O(MM(n, d, n)) (where MM(n, d, n) is the time to
multiply an n × d by a d × n matrix) by using fast matrix multiplication to compute the
Hamming distances between all pairs of vectors, rather than by brute-force. For arbitrary
alphabet sizes this idea leads to a running time of O(MM(n, d|Σ|, n)) which is of little use
as |Σ| can be as large as n and in this case the running time becomes Ω(n2d).

We prove that nevertheless, the O(n2d)-time baseline algorithm can be improved using
fast matrix multiplication – in fact, using ideas from sparse matrix multiplication such as
Yuster and Zwick’s heavy-light idea [34].

▶ Theorem 5 (Discrete Closest String for Large Dimensions). For all δ > 0, there is some ϵ > 0
such that the discrete Closest String problem with dimension d = nδ can be solved in time
O(n2+δ−ϵ).

Remotest String. Finally, we turn our attention to the discrete Remotest String problem.
In light of the previously outlined equivalence in the continuous setting, we would expect that
also in the discrete setting, the Closest and Remotest String problem are tightly connected.
We confirm this suspicion and establish a strong equivalence for binary alphabets:

▶ Theorem 6 (Equivalence of Discrete Closest and Remotest String). If the discrete Closest
String over a binary alphabet is in time T (n, d), then the discrete Remotest String over a
binary alphabet is in time T (O(n), O(d+log n))+Õ(nd). Conversely, if the discrete Remotest
String over a binary alphabet is in time T ′(n, d), then the discrete Closest String over a
binary alphabet is in time T ′(O(n), O(d + log n)) + Õ(nd).

In combination with Theorem 3, this equivalence entails that also Remotest String requires
quadratic time in the regime ω(log n) < d < no(1). Let us remark that, while the analogous
equivalence is trivial in the continuous regime, proving Theorem 6 is not trivial and involves
the construction of a suitable gadget that capitalizes on explicit constant-weight codes.

The similarity between discrete Closest and Remotest String continues also on the positive
side: All of our algorithms extend naturally to Remotest String, not only for binary alphabets
(see the full version for more details).

1.3 Open Problems
Our work inspires some interesting open problems. The most pressing question from our
perspective is whether there also is a |Σ|(1−o(1))d lower-bound for continuous Closest String
(for alphabets of size bigger than 2).

▶ Open Question 7 (Continuous Closest String for Large Alphabets). For |Σ| > 2, can the
continuous Closest String problem be solved in time O(|Σ|(1−ϵ)d poly(n)), for some ϵ > 0?

We believe that our approach (proving hardness under SETH) hits a natural barrier
for the Closest String problem. In some sense, the k-SAT problem behaves very similarly
to Remotest String (with the goal to be remote from all falsifying assignments), and over
binary alphabets remoteness and closeness can be exchanged. For larger alphabets this trivial
equivalence simply does not hold. It would be exciting if this insight could fuel a faster
algorithm for Closest String, and we leave this question for future work.

ESA 2023
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On the other hand, consider again the discrete Closest and Remotest String problems.
While we close almost all regimes of parameters, there is one regime which we did not address
in this paper:

▶ Open Question 8 (Discrete Closest/Remotest String for Logarithmic Dimension). Let c be a
constant. Can the discrete Closest and Remotest String problems with dimension d = c log n

be solved in time O(n2−ϵ), for some ϵ = ϵ(c) > 0?

In the regime d = Θ(log n), we typically expect only very sophisticated algorithms, say
using the polynomial method in algorithm design [2], to beat exhaustive search. And indeed,
using the polynomial method it is possible to solve also discrete Closest and Remotest
String in subquadratic time for binary (or more generally, constant-size) alphabets [5, 4,
Theorem 1.4]. The question remains whether subquadratic time complexity is also possible
for unrestricted alphabet sizes.

1.4 Outline of the Paper
We organize this paper as follows. In Section 2 we give some preliminaries and state the
formal definitions of the continuous/discrete Closest/Remotest String problems. In Section 3
we prove our conditional hardness results for the continuous problems. In Section 4 we treat
in detail the discrete problems. Throughout, due to space constraints, we defer several proofs
to the full version of this paper.

2 Preliminaries

We set [n] = {1, . . . , n} and write Õ(T ) = T (log T )O(1) and poly(n) = no(1). We occasionally
write 1(P ) ∈ {0, 1} to express the truth value of the proposition P .

Strings. Let Σ be a finite alphabet of size at least 2. For a string x ∈ Σd of length
(or dimension) d, we write x[i] for the i-th character in x. For a subset I ⊆ [d], we
write x[I] ∈ ΣI for the subsequence obtained from x by restricting to the characters
in I. The Hamming distance between two equal-length strings x, y ∈ Σd is defined as
HD(x, y) = |{i ∈ [d] : x[i] ̸= y[i]}|. Let X be a set of length-d strings and let x∗ be a length-d
string. Then we set

r(x∗, X) = max
y∈X

HD(x∗, y) (the radius of X around x∗),

d(x∗, X) = min
y∈X

HD(x∗, y) (the distance from x∗ to X).

Let us formally repeat the definitions of the four problems studied in this paper:

▶ Definition 9 (Continuous Closest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ Σd which minimizes the radius r(x∗, X).

▶ Definition 10 (Continuous Remotest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ Σd which maximizes the distance d(x∗, X).

▶ Definition 11 (Discrete Closest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ X which minimizes the radius r(x∗, X).

▶ Definition 12 (Discrete Remotest String). Given a set of n strings X ⊆ Σd, find a string
x∗ ∈ X which maximizes the distance d(x∗, X \ {x∗}).
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Hardness Assumptions. In this paper, our lower bounds are conditioned on the following
two plausible hypotheses from fine-grained complexity.

▶ Definition 13 (Strong Exponential Time Hypothesis, SETH [18, 19]). For all ϵ > 0, there is
some k ≥ 1 such that k-CNF SAT cannot be solved in time O(2(1−ϵ)n).

▶ Definition 14 (Hitting Set Conjecture [3]). For all ϵ > 0, there is some c ≥ 1 such that
no algorithm can decide in O(n2−ϵ) time, whether in two given lists A, B of n subsets of a
universe of size c log n, there is a set in the first list that intersects every set in the second
list (i.e. a “hitting set”).

3 Continuous Closest String is SETH-Hard

In this section we present our fine-grained lower bounds for the continuous Closest and
Remotest String problems. We start with a high-level overview of our proof, and then provide
the technical details in Sections 3.1–3.4.

Let us first recall that over binary alphabets, the continuous Closest and Remotest String
problems are trivially equivalent. The insight is that for any two strings x, y ∈ {0, 1}d we
have that HD(x, y) = d−HD(x, y) where x is the complement of x obtained by flipping each
bit. From this it easily follows that

min
x∗∈{0,1}d

max
y∈X

HD(x∗, y) = d− max
x∗∈{0,1}d

min
y∈X

HD(x∗, y).

Note that finding a string x∗ optimizing the left-hand side is exactly the Closest String
problem, whereas finding a string x∗ optimizing the right-hand side is exactly the Remotest
String problem, and thus both problems are one and the same. For this reason, let us focus
our attention for the rest of this section only on the Remotest String problem.

Tight Lower Bound for Remotest String. Our goal is to establish a lower bound under
the Strong Exponential Time Hypothesis. To this end, we reduce a k-SAT instance with N

variables to an instance of the Remotest String problem with dimension d = (1 + o(1))N . In
Sections 3.1–3.4 we will actually reduce from a q-ary analogue of the k-SAT in order to get a
tight lower bound for all alphabet sizes |Σ|. However, for the sake of simplicity we stick to
binary strings and the usual k-SAT problem in this overview. Our reduction runs in two
steps.

Step 1: Massaging the SAT Formula. In the first step, we bring the given SAT formula
into a suitable shape for the reduction to the Remotest String problem. Throughout, we
partition the variables [N ] into groups P1, . . . , P N

s
of size exactly s (where s is a parameter

to be determined later). We assert the following properties:
Regularity: All clauses contain exactly k literals, and all clauses contain literals from the
same number of groups (say r). This property can be easily be guaranteed by adding a
few fresh variables to the formula, all of which must be set to 0 in a satisfying assignment,
and by adding these variables to all clauses which do not satisfy the regularity constraint
yet.
Balancedness: Let us call an assignment α ∈ {0, 1}N balanced if in every group it assigns
exactly half the variables to 0 and half the variables to 1. We say that a formula is
balanced if it is either unsatisfiable or if it is satisfiable by a balanced assignment. To
make sure that a given formula is balanced, we can for instance flip each variable in the

ESA 2023
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formula with probability 1
2 . In this way we balance each group with probability ≈ 1√

s
,

and so all N
s groups are balanced with probability at least s− N

2s . By choosing s = ω(1),
this random experiment yields a balanced formula after a negligible number of repetitions.
In Lemma 19 we present a deterministic implementation of this idea.

Step 2: Reduction to Remotest String. The next step is to reduce a regular and balanced
k-CNF formula to an instance of the Remotest String problem. The idea is to encode all
falsifying assignments of the formula as strings – a sufficiently remote point should in spirit
be remote from falsifying and thus satisfying. To implement this idea, take any clause C

from the instance. Exploiting the natural correspondence between strings and assignments,
we add all strings α ∈ {0, 1}n that satisfy the following two constraints to the Remotest
String instance:
1. The assignment α falsifies the clause C.
2. For any group Pi that does not contain a variable from C, we have that α[Pi] = 0s or

α[Pi] = 1s.
We start with the intuition behind the second constraint: For any balanced assignment α and
any group Pi that does not contain a variable from C, we have that HD(α∗[Pi], α[Pi]) = s

2
(the string α∗[Pi] contains half zeros and half ones, whereas α[Pi] is either all-zeros or
all-ones). There are exactly N

s − r such groups (by the regularity), leading to Hamming
distance s

2 ( N
s − r).

It follows that the only groups that actually matter for the distance between α∗ and α

are the groups which do contain a variable from C. Here comes the first constraint into
play: If α∗ is a satisfying assignment, then α∗ and α must differ in at least one of these
groups and therefore have total distance at least s

2 ( N
s − r) + 1. Conversely, for any falsifying

assignment α∗ there is some string α in the instance with distance at most s
2 ( N

s − r).
Therefore, to decide whether the SAT formula is satisfiable it suffices to compute whether
there is a Remotest String with distance at least s

2 ( N
s − r) + 1. Finally, it can be checked

that the number of strings α added to the instance is manageable.
This completes the outline of our hardness proof, and we continue with the details. In

Section 3.1 we introduce the (q, k)-SAT problem which we will use to give a clean reduction
also for alphabet larger than size 2. In Section 3.2 we formally prove how to guarantee that a
given (q, k)-SAT formula is regular and balanced, and in Section 3.3 we give the details about
the reduction to the Remotest String problem. We put these pieces together in Section 3.4
and formally prove Theorem 2.

3.1 q-ary SAT

To obtain our full hardness result, we base our reduction on the hardness of q-ary analogue
of the classical k-SAT problem. We start with an elaborate definition of this problem. Let
X1, . . . , XN denote some q-ary variables (i.e., variables taking values in the domain [q]). A
literal is a Boolean predicate of the form Xi ̸= a, where xi is one of the variables and a ∈ [q].
A clause is a disjunction of several literals; we say the clause has width k if it contains exactly
k literals. A (q, k)-CNF formula is a disjunction of clauses of width at most k. Finally, in
the (q, k)-SAT problem, we are given a (q, k)-CNF formula over M clauses and N q-ary
variables, and the task is to check whether there exists an assignment α ∈ [q]N which satisfies
all clauses. This problem has already been addressed in previous works [31, 30], and it is
known that q-ary SAT cannot be solved faster than exhaustive search unless SETH fails:
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▶ Lemma 15 (q-ary SAT is SETH-Hard [30, Theorem 3.3]). For any ϵ > 0, there is some k ≥ 3
such that for all q = q(N) ≥ 2, (q, k)-SAT cannot be solved in time O(q(1−ϵ)N poly(M)),
unless SETH fails.

While k is always constant, note that this hardness result applies even when q grows
with N . We will later exploit this by proving hardness for Remotest String even for alphabets
of super-constant size.

3.2 Regularizing and Balancing
Before we get to the core of our hardness result, we need some preliminary lemmas on the
structure of (q, k)-CNF formulas. Throughout, let N be the number of variables and let P
be a partition of N into groups of size exactly s. (Note that the existence of P implies that
N is divisible by s.) In two steps we will now formally introduce the definitions of regular
and balanced formulas and show how to convert unconstrained formulas into regular and
balanced ones. We defer the proofs of the upcoming lemmas to the full version of this paper.

▶ Definition 16 (Regular Formulas). Let ϕ be a (q, k)-CNF formula over N variables, and
let P be a partition of [N ]. We say that ϕ is r-regular (with respect to P) if every clause
contains exactly k literals from exactly r distinct groups in P.

▶ Lemma 17 (Regularizing). Let ϕ be a (q, k)-CNF formula, and let 2k ≤ s ≤ N . In time
poly(NM) we can construct a (q, 2k)-CNF formula ϕ′ satisfying the following properties:

ϕ′ is satisfiable if and only if ϕ is satisfiable.
ϕ′ has at most N + O(s) variables and at most M + O(s poly(q)) clauses.
ϕ′ is (k + 1)-regular with respect to some partition P into groups of size exactly s.

▶ Definition 18 (Balanced Formulas). Let P be a partition of [N ] into groups of size s. We
say that an assignment α ∈ [q]N is balanced (with respect to P) if in every group of P, α

assigns each symbol in [q] exactly s
q times. We say that a (q, k)-CNF formula ϕ is balanced

(with respect to P) if either ϕ is unsatisfiable, or ϕ is satisfiable by a balanced assignment α.

▶ Lemma 19 (Balancing). Let ϕ be a (q, k)-CNF formula over N variables, let P be a partition
of [N ] into groups of size s, and assume that q divides s. We can construct (q, k)-CNF
formulas ϕ1, . . . , ϕt over the same number of variables and clauses as ϕ such that:

For all i ∈ [t], ϕi is satisfiable if and only if ϕ is satisfiable.
There is some i ∈ [t] such that ϕi is balanced (with respect to P).
t = ((s + 1)(q − 1))(q−1) N

s , and we can construct each formula in time poly(NMt).

3.3 Reduction to Remotest String
Having in mind that for our reduction we can assume the SAT formula to be regular and
balanced, the following lemma constitutes the core of our reduction:

▶ Lemma 20 (Reduction from Regular Balanced SAT to Remotest String). Suppose there is an
algorithm for the continuous Remotest String problem, running in time O(|Σ|(1−ϵ)d poly(n)),
for some ϵ > 0. Then there is an algorithm that decides whether a given s-partitioned
r-regular (q, k)-SAT formula is satisfiable, and runs in time O(q(1−ϵ)N+O(s+ N

s ) poly(M)).

Proof. We start with some notation: For a clause C, we write P(C) ⊆ P to address all
groups containing a literal from C. We start with the construction of the Remotest String
instance with alphabet Σ = [q] and dimension d = N . Here, we make use of the natural
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correspondence between strings α ∈ Σd and assignments α ∈ [q]N . In the instance, we add
the following strings: For each clause C, add all assignments α ∈ [q]N to the instance which
satisfy the following two constraints:
1. The assignment α falsifies the clause C.
2. For each group P ∈ P \ P(C), the subsequence α[P ] contains only one symbol.

(That is, α[P ] = as for some a ∈ [q].)
We prove that this instance is complete and sound.

▷ Claim 21 (Completeness). If ϕ is satisfiable, then there is some α∗ ∈ [q]d with d(α∗, X) >
(q−1)(N−rs)

q .

Proof. Since we assume that the formula ϕ is satisfiable and balanced, there is a satisfying
and balanced assignment α∗. To prove that d(α∗, X) > (q−1)(N−rs)

q , we prove that for each
string α added to the Remotest String instance, we have HD(α∗, α) > (q−1)(N−rs)

q . Let C be
the clause associated to α. From the two conditions on α, we get the following two bounds.

By the first condition, α is a falsifying assignment of C. In particular, the subsequence
α[

⋃
P ∈P(C) P ] falsifies C (which is guaranteed to contain all variables visible to C) falsifies C.

Since α∗ is a satisfying assignment to the whole formula, and in particular to C, we must
have that α∗[

⋃
P ∈P(C) P ] ̸= α[

⋃
P ∈P(C) P ], and thus

∑
P ∈P(C) HD(α∗[P ], α[P ]) ≥ 1.

By the second condition, for any group P ∈ P \ P(C), the subsequence α[P ] contains
only one symbol. Since α∗ is balanced, α∗[P ] contains that symbol exactly in a 1/q-
fraction of the positions and differs in the remaining ones from α[P ]. It follows that
HD(α∗[P ], α[P ]) = s− s

q = (q−1)s
q .

Combining both bounds, we have that

HD(α∗, α) =
∑

P ∈P(C)

HD(α∗, α[P ]) +
∑

P ∈P\P(C)

HD(α∗, α[P ])

≥ 1 +
(

N

s
− r

)
· (q − 1)s

q
= (q − 1)(N − rs)

q
+ 1,

and the claim follows. ◁

▷ Claim 22 (Soundness). If ϕ is not satisfiable, then for all α∗ ∈ [q]d we have d(α∗, X) ≤
(q−1)(N−rs)

q .

Proof. Take any α∗ ∈ [q]d. Since ϕ is not satisfiable, α∗ is a falsifying assignment of ϕ and
thus there is some clause C that is falsified by α∗. Our strategy is to find some string α ∈ [q]d
in the constructed instance with HD(α∗, α) ≤ (q−1)(N−rs)

q .
We define that string α group-wise: In the groups P(C) touching C, we define α to

be exactly as α∗, that is, α[
⋃

P ∈P(C)] := α∗[
⋃

P ∈P(C)]. For each group P ∈ P \ P(C) not
touching C, let a ∈ [q] be an arbitrary symbol occurring at least s

q times in α∗[P ] and assign
α[P ] := as. By this construction we immediately have HD(α[P ], α∗[P ]) ≤ s− s

q = (q−1)s
q ,

and in total

HD(α∗, α) =
∑

P ∈P(C)

HD(α∗, α[P ]) +
∑

P ∈P\P(C)

HD(α∗, α[P ])

≤ 0 +
(

N

s
− r

)
· (q − 1)s

q
= (q − 1)(N − rs)

q
,

as claimed. ◁
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In combination, Claims 21 and 22 show that the constructed instance of the Remotest
String problem is indeed equivalent to the given (q, k)-SAT instance ϕ in the sense that ϕ is
satisfiable if and only if there is a remote string with distance more than (q−1)(N−rs)

q .

It remains to analyze the running time. Let n denote the number of strings in the
constructed instance. As a first step, we prove that n ≤ qO(s)+ N

s ·M and that we can
construct the instance in time poly(n). Indeed, focus on any clause C. The strings α in
the instance are unconstrained in all groups touching C (up to the condition that α must
falsify C) which accounts for r · s positions and thus qrs = qO(s) options. For each group
not touching C we can choose between q possible values, and therefore the total number of
options is q

N
s −r ≤ q

N
s . Therefore, the total number of strings is indeed n ≤M · qO(s) · q N

s .
Moreover, it is easy to see that the instance can be constructed in time poly(n).

As the time to construct the instance is negligible, the total running time is dominated by
solving the Remotest String instance. Assuming an algorithm in time O(|Σ|(1−ϵ)d poly(n)),
this takes time O(q(1−ϵ)N+O(s+ N

s ) poly(M)) as claimed. ◀

3.4 Putting the Pieces Together
We are finally ready to prove Theorems 1 and 2.

▶ Theorem 2 (Continuous Remotest String is SETH-Hard). The continuous Remotest String
problem cannot be solved in time O(|Σ|(1−ϵ)d poly(n)), for any ϵ > 0 and |Σ| = o(d), unless
SETH fails.

Proof. Suppose that the continuous Remotest String problem is in time O(|Σ|(1−ϵ)d poly(n))
for some ϵ > 0 and for |Σ| = o(d). With this in mind, we design a better-than-brute-force
(q, k)-SAT algorithm for q = |Σ| by combining the previous three Lemmas 17, 19, and 20.
Let ϕ be the input formula, and let P denote a partition of the variables into groups of size s

(which is yet to be determined) as before.
1. Using Lemma 17, construct a regular (q, 2k)-formula ϕ′ which is equivalent to ϕ.
2. Using Lemma 19, construct regular (q, 2k)-formulas ϕ′

1, . . . , ϕ′
t all of which are equivalent

to ϕ. At least one of these formulas is balanced.
3. By means of the reduction in Lemma 20, solve all t formulas ϕ′

1, . . . , ϕ′
t. If a formula is

reported to be satisfiable, check whether the answer is truthful (e.g., using the standard
decision-to-reporting reduction) and if so report that the formula is satisfiable. We need
the additional test since, strictly speaking, we have not verified in Lemma 20 that the
algorithm is correct for non-balanced inputs.

The correctness is obvious. Let us analyze the running time. Constructing the formula ϕ′

takes polynomial time and can be neglected. By Lemma 17, ϕ′ has N ′ = N + O(s) variables
and M ′ = M + O(s poly(q)) clauses. The construction of the formulas ϕ′

1, . . . , ϕ′
t also runs in

polynomial time poly(N ′M ′t) and can be neglected; this time we do not increase the number
of variables and clauses. Moreover, Lemma 19 guarantees that

t = ((s + 1)(q − 1))(q−1) N′
s ≤ (sq)O( qN

s ),

By picking s = cq (for some parameter c to be determined), this becomes

t ≤ (cq2)O( N
c ) = qO( N

c logq(cq2)) = qN ·O( log c
c ).

Finally, by Lemma 20 solving each formula ϕ′
i takes time

q(1−ϵ)N ′+O(s+ N′
s ) poly(M ′) = q(1−ϵ)N+O(s+ N

s ) poly(M) = q(1−ϵ)N+o(cN)+O( N
c ) poly(M),
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(using that s = cq = o(cN)), and thus the total running time is bounded by

qN ·O( log c
c ) · q(1−ϵ)N+o(cN)+O( N

c ) poly(M) = q(1−ϵ+o(c)+O( log c
c ))N poly(M).

Note that by picking c to be a sufficiently large constant (depending on ϵ), the exponent
becomes (1− ϵ

2 )N , say. We have therefore obtained an algorithm for the (q, k)-SAT problem
in time O(q(1−ϵ/2)N poly(M)), which contradicts SETH by Lemma 15. ◀

4 Discrete Closest String via Inclusion-Exclusion

In this section, we present an algorithm for the discrete Closest String problem with subquad-
ratic running time whenever the dimension is small, i.e. d = o(log n). Our algorithm relies
on the inclusion-exclusion principle, and is, to the best of our knowledge, the first application
of this technique to the Closest and Remotest String problems. Specifically, we obtain the
following result:

▶ Theorem 4 (Discrete Closest String for Small Dimensions). The discrete Closest String
problem can be solved in time O(n · 2d).

We structure this section as follows: First, we present a high-level overview of the main
ideas behind the algorithm; for the sake of presentation, we focus only on the Closest String
problem. We start developing a combinatorial toolkit to tackle the Closest String problem
(with all proofs deferred to the full version of this paper). Then, in Section 4.1 we provide
the actual algorithm and prove Theorem 4.

Before we describe our algorithm, we provide some intuition about the general connection
between the inclusion-exclusion principle and the Hamming distance between a pair of strings.
Our key insight is that the inclusion-exclusion principle allows us to express whether two
strings have Hamming distance bounded by, say k. The following lemma makes this idea
precise:

▶ Lemma 23 (Hamming Distance by Inclusion-Exclusion). Let x and y be two strings of length
d over some alphabet Σ, and let 0 ≤ k < d. Then:

1(HD(x, y) ≤ k) =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· 1(x[I] = y[I]).

Recall that we write x[I] = y[I] to express that the strings x and y are equally restricted
to the indices in I. The precise inclusion-exclusion-type formula does not matter too much
here, but we provide some intuition for Lemma 23 by considering the special cases where
HD(x, y) = k and HD(x, y) = k − 1. If HD(x, y) = k, then there is a unique set I of size
d − k for which x[I] = y[I]. If instead HD(x, y) = k − 1, then there is a unique such set
of size d− k + 1, and additionally there are d− k + 1 such sets of size d− k. The scalars
(−1)|I|−d+k

( |I|−1
d−k−1

)
are chosen in such a way that in any case, all these contributions sum

up to exactly 1.
The takeaway from the above lemma is that we can express the proposition that two strings

satisfy HD(x, y) ≤ k by a linear combination of 2d indicators of the form 1(x[I] = y[I]). It is
easy to extend this idea further to the following lemma, which is the core of our combinatorial
approach:
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▶ Lemma 24 (Radius by Inclusion-Exclusion). Let x be a string of length d over some alphabet
Σ, let X be a set of strings each of length d over Σ, and let 0 ≤ k < d. Then r(x, X) ≤ k if
and only if

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

Given this lemma, our algorithm for the Closest String problem is easy to state. Informally,
we proceed in the following two steps:

Step 1: Partition. Precompute, for all x ∈ X and for all I ⊆ [d], the value |{y ∈ X : x[I] =
y[I]}|. This can be implemented in time O(n · 2d · poly(d)) by partitioning the input strings
X depending on their characters in the range I. After computing this partition, we can read
the value |{y ∈ X : x[I] = y[I]}| as the number of strings in the same part as x.

Step 2: Inclusion-Exclusion. We test for each 0 ≤ k ≤ d and x ∈ X, whether r(x, X) ≤ k

and finally return the best answer. By Lemma 24 we can equivalently express the event
r(x, X) ≤ k via

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

By observing that the sum contains only 2d terms and noting that we have precomputed the
values |{y ∈ X : x[I] = y[I]}|, we can evaluate the sum, for a fixed x, in time O(2d · poly(d)).
In total, across all strings x ∈ X, the running time becomes O(n · 2d · poly(d)).

Finally, let us briefly comment on the poly(d) term in the running time. When evaluating
the above sum naively, we naturally incur a running time overhead of poly(d) since the
numbers in the sum need Ω(d + log n) bits to be represented. However, this overhead can
be circumvented by evaluating the expression in a smarter way. We provide more details in
Section 4.1.

4.1 The Algorithm in Detail
In this subsection, we provide our algorithms for the discrete Closest String problem. Let us
first demonstrate how to precompute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X efficiently.

▶ Lemma 25. We can compute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X in time O(n ·2d).

Proof. Our strategy is to compute, for each I ⊆ [d], a partition PI of the set of all strings X

such that two strings y1, y2 ∈ X are in the same part in PI if and only if y1[I] = y2[I]. This
is our goal since, for all strings x ∈ X, the value we are interested in |{y ∈ X : x[I] = y[I]}|
is exactly the size of the part P in PI that contains x. Thus, if we can efficiently compute,
for all I ⊆ [d] and all x ∈ X, the partition PI and the part P ∈ PI such that x ∈ P then we
have the desired algorithm.

Computing the partition PI for each subset of I ⊆ [d] when |I| ≤ 1 is simple: The
partition P∅ contains just one part which is the entire input set. We also know that
P{i} = {{x ∈ X : x[i] = σ} : σ ∈ Σ} for every 0 ≤ i ≤ d− 1. Thus, we can compute the
partitions P∅ and P{i} for every 0 ≤ i ≤ d− 1 in time O(n · d). The remaining question is
how to efficiently compute the partitions PI for each subset of I ⊆ [d] where |I| ≥ 2.

ESA 2023



3:14 Can You Solve Closest String Faster Than Exhaustive Search?

The idea is to use dynamic programming in combination with a partition refinement data
structure. Let us start with some notation: For a partition P and a set S, we define the
refinement of P by S as the partition {P ∩ S, P \ S : P ∈ P}. For two partitions P and
P ′, we define the refinement of P by P ′ by the iterative refinement of all sets S ∈ P ′. In
previous work, Habib, Paul, and Viennot [16] have established a data structure to maintain
partitions P of some universe [n] that efficiently supports the following two operations:

Refinement: We can refine a partition P by another partition P ′ in time O(n).
Query: Given a partition P and an element i ∈ [d], we can find the part i ∈ P ∈ P in
time O(1).

Given this data structure, our algorithm is simple: Enumerate all sets I in nondecreasing
order with respect to their sizes |I|. Writing I = I ′ ∪ {i} (for some i ∈ [d]), we compute PI

as the refinement of the previously computed partitions PI′ and P{i}. It is straightforward
to verify that this algorithm is correct. The running time of each refinement step is O(n)
and so the total running time is O(n · 2d) as claimed. ◀

We are finally ready to state our algorithm and prove its correctness using Lemmas 24
and 25.

Proof of Theorem 4. First, it is clear that if we test for each 0 ≤ k ≤ d and x ∈ X whether
r(x, X) ≤ k then we can find the solution to the discrete Closest String problem. From
Lemma 24 we know that r(x, X) ≤ k if and only if:

|X| =
∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|.

Thus, if we efficiently compute |{y ∈ X : x[I] = y[I]}| for all strings x ∈ X and efficiently
compute the right-hand side of the equation we will have an efficient algorithm for the
discrete Closest String problem. We know from Lemma 25 that we can precompute |{y ∈
X : x[I] = y[I]}| for all strings x ∈ X in time O(n · 2d). Therefore, the only missing part of
the algorithm is computing the inclusion-exclusion step in O(n · 2d) time.

If we naively evaluate the inclusion-exclusion formula the running time becomes Ω(n ·2d ·d)
as the intermediate values need Ω(d) bits to be represented in memory. However, we observe
that inclusion-exclusion formula can indeed be evaluated more efficiently by rewriting it as
follows:∑

I⊆[d]
|I|≥d−k

(−1)|I|−d+k ·
(
|I| − 1

d− k − 1

)
· |{y ∈ X : x[I] = y[I]}|

=
d∑

ℓ=d−k

(−1)ℓ ·
(

ℓ− 1
d− k − 1

)
·

∑
I⊆[d]
|I|=ℓ

|{y ∈ X : x[I] = y[I]}|.

We can precompute S[x, ℓ] :=
∑

I⊆[d],|I|=ℓ|{y ∈ X : x[I] = y[I]}| for all strings x ∈ X and all
values 1 ≤ ℓ ≤ d before we compute the inclusion exclusion step. Since there are 2d different
subsets of [d] and since we already have access to the values |{y ∈ X : x[I] = y[I]}|, for all
strings x ∈ X, computing S[x, ℓ] amounts to time O(n · 2d). Afterwards, computing

d∑
ℓ=d−k

(−1)ℓ ·
(

ℓ− 1
d− k − 1

)
· S[x, ℓ]

for all strings x ∈ X and for all 0 ≤ k ≤ d− 1 only takes time O(n · d3). Hence, the total
running time of the algorithm is O(n · 2d). ◀
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Algorithm 1 An algorithm for the discrete Closest String problem in the small-distance regime.
See Theorem 4.

1: (Step 1: Precompute T [x, I] = |{y ∈ X : x[I] = y[I]}|)
2: P∅ ← X

3: P{i} ← {{x ∈ X : x[i] = σ} : σ ∈ Σ} ∀i ∈ [0, . . . , d− 1]
4: for I = I ′ ∪ {i} do
5: PI ← refinement of PI′ ,P{i}
6: for x ∈ X, I ⊆ [d] do
7: T [x, I]← |P | where x ∈ P ∈ PI

8: (Step 2: Inclusion-Exclusion)
9: for x ∈ X, I ⊆ [d] do

10: S[x, |I|]← S[x, |I|] + T [x, I]
11: for k ← 0, . . . , d− 1 do
12: for x ∈ X do
13: if |X| =

∑d
ℓ=d−k (−1)ℓ ·

(
ℓ−1

d−k−1
)
· S[x, ℓ] then

14: return x

15: return an arbitrary x ∈ X

We summarize the pseudocode of the algorithm outlined in the proof of Theorem 4 in
Algorithm 1.
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