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Abstract
We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph
G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021)
introduced ℓp-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize
the ℓp norm of the edge boundaries of k parts. We provide an O(log1/2 n log1/2+1/p k) approximation
algorithm for this problem, improving upon the approximation guarantee of O(log3/2 n log1/2 k) due
to Chandrasekaran and Wang.

We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We
assume that we are given access to an oracle, which answers certain queries about the norm. We
present an O(log1/2 n log7/2 k) approximation algorithm with a weaker oracle and an O(log1/2 n log5/2 k)
approximation algorithm with a stronger oracle. Additionally, we show that without any oracle
access, there is no n1/4−ε approximation algorithm for every ε > 0 assuming the Hypergraph
Dense-vs-Random Conjecture.
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1 Introduction

In this paper, we consider a variant of the classic combinatorial optimization problem,
Minimum Multiway Cut. Given an undirected graph G = (V, E) with edge weights w :
E → R≥0 and k terminals t1, . . . , tk ∈ V , the Minimum Multiway Cut problem asks to
partition graph G into k parts P1, . . . , Pk so that Pi contains terminal ti. The Multiway Cut
objective is to minimize the number or total weight of cut edges. For k = 2, the problem is
equivalent to the minimum st-Cut problem. Dahlhaus, Johnson, Papadimitriou, Seymour,
and Yannakakis proved that it is NP-complete and APX-hard for every k > 2 [9]. They also
gave a simple combinatorial (2 − 2/k)-approximation algorithm. Later Călinescu, Karloff,
and Rabani [7] showed how to obtain a 3/2 approximation using linear programming. This
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result was improved in a series of papers by Karger, Klein, Stein, Thorup, and Young [11],
Buchbinder, Naor and Schwartz [5], and Sharma and Vondrák [13] (see also [6]). The currently
best known approximation factor is 1.2965 [13]. The best known LP integrality gap and
Unique Games Conjecture hardness is 1.20016 due to Bérczi, Chandrasekaran, Király, and
Madan [4] (see also [2, 10, 12]).

In 2004, Svitkina and Tardos [14] introduced the Min-Max Multiway Cut problem. In
this problem, as before, we need to partition graph G into k parts P1, . . . , Pk so that each Pi

contains one terminal ti. However, the objective function is different: Min-Max Multiway Cut
asks to minimize the maximum of edge boundaries of sets Pi i.e., minimize maxi δ(Pi), where
δ(Pi) is the total weight of edges crossing the cut (Pi, V \ Pi). Svitkina and Tardos [14] gave
an O(log3 n) approximation algorithm for the problem. Later, Bansal, Feige, Krauthgamer,
Makarychev, Nagarajan, Naor, and Schwartz [3] provided an O(

√
log n log k)-approximation

algorithm. Also, Ahmadi, Khuller, and Saha [1] studied a related Min-Max Multicut problem.
Recently, Chandrasekaran and Wang [8] proposed a common generalization of the Min

Multiway Cut and Min-Max Multiway Cut problems, which they called Minimum ℓp-norm
Multiway Cut. This problem asks to minimize the ℓp norm of the edge boundaries of parts
P1, . . . , Pk. In other words, the objective is to

minimize:
( k∑

i=1
δ(Pi)p

)1/p

.

Note that this problem is equivalent to Min Multiway Cut when p = 1 and to Min-Max
Multiway Cut when p = ∞. Chandrasekaran and Wang [8] gave an O(log3/2 n log1/2 k)
approximation for the problem. Further, they proved that the problem is NP-hard for every
p ≥ 1 and k ≥ 4. Moreover, it does not admit an O(k1−1/p−ε)-approximation for every ε > 0
assuming the Small Set-Expansion Conjecture; a natural convex program for the problem
has the intgerality gap of Ω(k1−1/p).

In this paper, we provide an improved O(log1/2 n log1/2+1/p k) approximation algorithm.
We note that for p = ∞, our approximation guarantee matches the approximation of the
algorithm due to Bansal et al. [3].1 For p = 2, our approximation guarantee is O(log1/2 n log k),
which is Θ(log n/

√
log k) times better than the approximation guarantee of the algorithm

due to Chandrasekaran and Wang [8]. We also consider variants of Multiway Cut with norms
other than the ℓp norm.

1.1 Our Results
We now formally state our results. First, we present an approximation algorithm for the ℓp-
norm Multiway Cut problem. We show that our algorithm achieves an O(log1/2 n log1/2+1/p k)
approximation for every p > 1.

▶ Theorem 1. There exists a polynomial-time randomized algorithm that given a graph with
n vertices, k terminals, and p > 1, finds an O(log1/2 n log1/2+1/p k) approximation for ℓp-norm
Multiway Cut with high probability.

Further, we provide approximation algorithms for Norm Multiway Cut with an arbitrary
monotonic norm, a further generalization of ℓp-norm Multiway Cut. The monotonic norm is
defined as follows.

1 Our algorithm is stated only for the case where p is finite. However, we can solve an instance with
p = ∞ by running the algorithm with p = log k. Since ∥ · ∥log k is within a constant factor of ∥ · ∥∞ for
vectors in Rk, this approach yields an O(

√
log n log1/2+1/log k k) = O(

√
log n log k)-approximation.
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▶ Definition 2. A norm ∥ · ∥ on Rd is monotonic if for any x, y ∈ Rd with |xi| ≤ |yi| for all
i ∈ [d], it holds ∥x∥ ≤ ∥y∥.

We consider two oracles to the monotonic norm used in the Norm Multiway Cut: (1)
minimization oracle; (2) ordering oracle. For a set A ⊆ [d], let 1A ∈ {0, 1}d denote the
indicator vector of A, i.e., the i-th coordinate (1A)i = 1 if i ∈ A; otherwise, (1A)i = 0.

▶ Definition 3. Given a monotonic norm ∥ · ∥ on Rd, for any i ∈ [d], the minimization
oracle efficiently finds a set Ai ⊆ [d] that minimizes the norm of indicator vectors among all
subsets with size i, i.e.

Ai = arg min
A⊆[n],|A|=i

∥1A∥.

▶ Definition 4. Given a monotonic norm ∥ · ∥ on Rd, for any vector x ∈ Rd, the ordering
oracle efficiently finds an ordering of the vector x that minimizes the norm, i.e.

πx = arg min
π∈Sd

∥xπ∥,

where xπ denotes the ordering of x regarding the permutation π.

Assuming that they are given access to either a “minimization oracle” or a stronger
“ordering oracle”, our algorithms give O(log1/2 n log7/2 k) and O(log1/2 n log5/2 k) approxima-
tion, respectively. We remark that the oracles only answer queries about the norm and, in
particular, there is an ordering oracle for the ℓp-norm, weighted ℓp-norm, and many other
natural norms. Thus, our result implies an O(log1/2 n log5/2 k) approximation for weighted
ℓp-norm Multiway Cut. We prove the following theorems in the full version of the paper.

▶ Theorem 5. There exists a polynomial-time algorithm that for every monotonic norm with a
minimization oracle, given a graph with n vertices and k terminals, finds an O(log1/2 n log7/2 k)
approximation for the Norm Multiway Cut with high probability.

▶ Theorem 6. There exists a polynomial-time algorithm that for every monotonic norm with
an ordering oracle, given a graph with n vertices and k terminals, finds an O(log1/2 n log5/2 k)
approximation for the Norm Multiway Cut with high probability.

Finally, we show that the problem becomes very hard if we are not given access to a
norm minimization oracle. The proof is given in the full version of the paper.

▶ Theorem 7. Consider the Norm Multiway Cut problem with a monotonic norm. Assume
that the norm is given by a formula (in particular, we can easily compute the value of
the norm; however, we are not given a minimization oracle for it). Then, assuming the
Hypergraph Dense-vs-Random Conjecture, there is no polynomial-time algorithm for Norm
Multiway Cut with approximation factor α(n) ≤ n1/4−ε for every ε > 0.

1.2 Proof Overview
We first describe our algorithm for the ℓp-norm Multiway Cut. Our algorithm consists of
three procedures: (1) covering procedure, (2) uncrossing procedure, and (3) aggregation
procedure.

In the covering procedure, we generate a collection of subsets of the vertex set, S =
{S1, S2, · · · , Sm}. We generate these sets iteratively by using a bi-criteria approximation
algorithm for Unbalanced Terminal Cut by Bansal et al. [3] and a multiplicative weight
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update method. See Section 2.1 and Algorithm 1 for details. Each set in S contains at most
one terminal. These sets are not disjoint. While, these sets cover the entire graph, which
means the union of all sets in S contains all vertices. The number of sets in S is at most
O(k log n). We show that the ℓp norm and ℓ1 norm of the edge boundaries of sets in S is at
most O(log1/p n · α) OPT and O(log n · k1−1/p · α) OPT respectively, where α =

√
log n log k

and OPT is the cost of the optimal solution. This covering procedure follows the approach
by Bansal et al. [3] for Min-Max Multiway Cut. Chandrasekaran and Wang [8] also use a
similar covering procedure for ℓp-norm Multiway Cut. Their algorithm finds a cover S that
satisfies the above properties except for the ℓ1 norm bound. We get this ℓ1 norm bound on
the edge boundaries of sets in S by picking proper measure constraints for the Unbalanced
Terminal Cut algorithm. This ℓ1 norm bound is important in the aggregation procedure to
get an improved approximation.

Note that the sets in S are not disjoint. We use the uncrossing procedure to create a
partition of the graph with at most O(k log k) sets. Our uncrossing procedure first sample
O(k log k) sets from S uniformly at random. Then, we run an iterative uncrossing process
given by Bansal et al. [3] over sampled sets until all sets are disjoint and have small boundaries.
We show that all sampled sets cover almost the entire graph. The set of uncovered vertices
does not contain terminals and has a small boundary with high probability. Next, we use
the aggregation procedure to merge these O(k log k) sets into a k partition. We assign k

sets containing one terminal to k parts. For other sets without terminals, we assign them to
k parts almost uniformly such that each part has almost the same ℓ1 norm over assigned
sets. After the uncrossing procedure, the ℓp norm and ℓ1 norm of edge boundaries is at most
O(log1/p k · α) OPT and O(k1−1/p · α) OPT respectively. We upper bound the sets containing
one terminal and the sets with the largest edge boundary in each part by the above ℓp norm
bound. For the remaining sets, by the ℓ1 norm bound and the uniform assignment, we upper
bound the ℓp norm for these sets by O(α) OPT. Chandrasekaran and Wang [8] achieve an
O(log n · α) where the O(log n) factor is due to their aggregation procedure. We use the ℓ1
norm bound in the covering procedure and a new aggregation procedure to reduce O(log n)
extra factor to O(log1/p n). We use the sampling in the uncrossing procedure to further
reduce the extra factor from O(log1/p n) to O(log1/p k).

We now describe our algorithm for Norm Multiway Cut. We use the same framework with
covering, uncrossing, and aggregation procedures. While, unlike the ℓp norm, the general
monotonic norm may not be permutation invariant. For each terminal, we first compute
a minimum cut that separates this terminal from other terminals. Then, we can remove
all terminals and assign the remaining vertices freely among k parts. We mainly use a
bucketing idea to modify our algorithm. We partition k coordinates into log2 k buckets with
exponentially increasing size 2i such that the coordinates with large boundaries in the optimal
solution are assigned to small buckets. Differing from the previous covering procedure, the
new covering procedure uses the Unbalanced Terminal Cut algorithm with parameters related
to each bucket. The cover S contains O(2i log n log k) sets in each bucket i. The boundary of
every set in each bucket is relatively small, at most O(α) times the boundary of the optimal
part in this bucket. We then run the uncrossing and aggregation procedure to create a
multiway cut. We still sample each set in S with probability log2 k/ log2 n. Thus, we have
O(2i log2 k) sets in each bucket i after the uncrossing procedure. For bucket 0 ≤ i ≤ log2 k,
we find a set of 2i coordinates Ii ∈ [k] that minimizes the norm of the indicator vector through
the minimization oracle. We then assign O(2i log2 k) sets in each bucket to coordinates in Ii

such that each coordinate has O(log2 k) sets in bucket i. Thus, we achieve an O(log2 k · α)
approximation for each bucket. Since these sets of coordinates Ii may overlap, we lose an
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additional O(log k) factor for log2 k buckets. Suppose we have a stronger oracle that finds the
best ordering for any given vector that minimizes the norm. Then, we provide an assignment
for each bucket to avoid the large overlapping among buckets. Therefore, we avoid the extra
O(log k) factor loss due to the overlapping.

2 ℓp-norm Multiway Cut

In this section, we present our algorithm for ℓp-norm Multiway Cut. We prove the following
theorem. Our algorithm consists of three parts: covering procedure, uncrossing procedure,
and aggregation procedure. We describe and analyze the covering procedure in Section 2.1,
the uncrossing and aggregation procedures in Section 2.2.

▶ Theorem 1. There exists a polynomial-time randomized algorithm that given a graph with
n vertices and k terminals, and p > 1, finds an O(log1/2 n log1/2+1/p k) approximation for the
ℓp-norm Multiway Cut with high probability.

2.1 Covering Procedure
We first present and analyze a covering procedure in our algorithm. The covering procedure
takes a undirected graph G = (V, E) with edge weights w : E → R≥0 and k terminals
T = {t1, . . . , tk} ⊂ V as input and outputs a collection of sets S = {S1, . . . , Sm} where
Si ⊂ V for all i. All sets Si ∈ S covers the entire graph,

⋃m
i=1 Si = V . Each set Si ∈ S

contains at most one terminal. For each subset S ⊆ V , we use ∂(S) = E(S, V \ S) to
denote all edges crossing the cut (S, V \ S). We use δ(S) =

∑
e∈∂(S) w(e) to denote the edge

boundary of set S, which is the total weight of all edges crossing (S, V \ S). We prove the
following upper bounds on the ℓ1-norm and ℓp-norm of the edge boundaries of these sets in
S, which is crucial for our approximation guarantee.

▶ Lemma 8. Given a graph G = (V, E) with n vertices and k terminals T ⊂ V , the covering
procedure shown in Algorithm 1 returns m = O(k log n) sets S = {S1, . . . , Sm} that satisfies
1. |Si ∩ T | ≤ 1 for all i ∈ [m],
2.

m⋃
i=1

Si = V ,

3.
m∑

t=1
δ(St)p ≤ log n · O(αp) · OPTp,

4.
m∑

t=1
δ(St) ≤ log n · O(α) · k1−1/p · OPT,

where α =
√

log n log k and OPT is the objective value of the optimal ℓp-norm Multiway Cut.

Our algorithm relies on an intermediate problem, Unbalanced Terminal Cut that we
introduce now.

▶ Definition 9 (Unbalanced Terminal Cut). The input to this problem is a tuple ⟨G, w, µ, ρ, T ⟩,
where G = (V, E) is a graph with edge weights w : E → R≥0, a measure µ : V → R≥0, a
parameter ρ ∈ (0, 1], and a set of terminals T . The goal is to find S ⊆ V of minimum cost
δ(S) satisfying:
1. |S ∩ T | ≤ 1,
2. µ(S) ≥ ρ · µ(V ).

Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, and Schwartz [3] gave a bi-
criteria approximation algorithm for Unbalanced Terminal Cut that we state in the following
theorem.

ESA 2023
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Algorithm 1 Covering Procedure.

Set t = 1, and µ1(v) = 1 for all v ∈ V . Let S = ∅.
while

∑
v∈V

µt(v) ≥ 1
n do

Let P ∗
i be a set as stated in Lemma 14.

Guess µt(P ∗
i ).

Let St ⊆ V be the solution for Unbalanced Terminal Cut instance
⟨G, w, µt, max{ 1

2k ,
µt(P ∗

i )
µt(V ) }, T ⟩.

Let S = S ∪ {St}.
for v ∈ V do

Set µt+1(v) =
{

µt(v)/2, if v ∈ St,

µt(v), if v ̸∈ St.

Set t = t + 1
return S.

▶ Theorem 10. There exists a polynomial-time algorithm that given an instance ⟨G, w, µ, ρ, T ⟩
of Unbalanced Terminal Cut, finds a set S ⊆ V satisfying |S ∩ T | ≤ 1, µ(S) ≥ Ω(ρ) · µ(V ),
and δ(S) ≤ α · OPT⟨G,w,µ,ρ,T ⟩ where α = O

(√
log n log 1/ρ

)
.

Our covering procedure relies on the multiplicative weights update method and is inspired
by the algorithm in [3]. It initializes the measure of each vertex to one. At each iteration t,
the algorithm guesses the measure µt(P ∗

i ) of a particular set P ∗
i in an optimal solution and

computes St of measure µt(St) ≈ µt(P ∗
i ) using the Unbalanced Terminal Cut algorithm in

Theorem 10. The existence of such a P ∗
i is shown in Lemma 14. Once St is computed, the

algorithm decreases the measure of the vertices covered by St by a factor of 2. The algorithm
terminates when the total measure of vertices is less than 1/n.

We guess µt(P ∗
i ) as follows: For any set S ⊆ V , its measure µt(S) lies in the range

[µt(u), n ·µt(u)], where u = arg maxv∈S µt(v) is the heaviest vertex in S. Thus µt(P ∗
i ) can be

well approximated by the set A =
{

2i · µt(v) : v ∈ V, i = 0, . . . , ⌊log2 n⌋
}

of size O(n log n).
For each candidate a ∈ A we compute a set S(a) using the Unbalanced Terminal Cut
algorithm with a parameter a and choose St = arg mina∈A δ(S(a)) with the smallest cost.
We give a pseudo-code for this algorithm in Algorithm 1. We remark that one can think of
this algorithm as of multiplicative weight update algorithm for solving a covering LP with
constraints from Lemma 8.

We then analyze this covering algorithm in Algorithm 1. Let S = {S1, · · · , Sm} denote
the collection of m sets output by Algorithm 1. By Theorem 10, every set Si contains at
most one terminal. First, for any fixed vertex v ∈ V , we give a lower bound on the number
of sets containing v.

▷ Claim 11. For a vertex v ∈ V , let Nv = |{St| v ∈ St}| denote the number of sets containing
v. Then Nv ≥ Ω(log n).

Proof. Recall that initially µ1(v) = 1 and after iteration m its measure becomes µm+1(v) =( 1
2
)Nv . Due to the stopping condition of our algorithm we have µm+1(V ) < 1

n . Thus,
1

2Nv
< 1

n and the claim follows. ◁

Next, we bound the number of sets in S. In the following claim we give an upper bound
on the total normalized measure of the sets produced by our algorithm.

▷ Claim 12.
m∑

t=1

µt(St)
µt(V ) ≤ 4 ln n + 1.
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Proof. Observe that the total measure at iteration t can be described as follows:

µt(V ) = µt−1(V ) − µt−1(St−1)
2 = µt−1(V ) ·

(
1 − µt−1(St−1)

2µt−1(V )

)
.

Since µm(V ) ≥ 1
n , we have

1
n

≤ µm(V ) = µ1(V ) ·
m−1∏
t=1

(
1 − µt(St)

2µt(V )

)
≤ n ·

m−1∏
t=1

e
− µt(St)

2µt(V ) = n · e
− 1

2 ·
m−1∑
t=1

µt(St)
µt(V )

,

which implies
m−1∑
t=1

µt(St)
µt(V ) ≤ 4 ln n. Since µm(Sm)

µm(V ) ≤ 1, we get the desired result. ◁

We obtain an upper-bound on the number of sets in S which immediately follows from
Claim 12 and the fact that µt(St) ≥ Ω(1/k)µt(V ) for all t.

▶ Corollary 13. The cover S returned by Algorithm 1 contains m = O(k log n) sets.

We prove the existence of a set in an optimal solution with large measure and small cut
value.

▶ Lemma 14. Let P∗ = (P ∗
1 , . . . , P ∗

k ) be an optimal solution to an ℓp-norm Multiway Cut
instance and let OPT denote the ℓp-norm of P∗. For any measure µ : V → R≥0 on vertices
such that µ(V ) ̸= 0, there exists an i ∈ [k] such that the following three conditions hold:
1. δ(P ∗

i )p ≤ 5 · OPTp · µ(P ∗
i )

µ(V )

2. δ(P ∗
i ) ≤ 5k1−1/p · OPT · µ(P ∗

i )
µ(V )

3. µ(P ∗
i ) ≥ µ(V )

2k

Proof. Let

J = {j ∈ [k] : δ(P ∗
j )p ≤ 5 · OPTp ·µ(P ∗

j )/µ(V ), δ(P ∗
j ) ≤ 5k1−1/p · OPT ·µ(P ∗

j )/µ(V )}

be the indices of sets in P∗ that satisfies conditions 1 and 2 in Lemma 14. It is sufficient to
show that

∑
j∈[k]\J µ(P ∗

j ) < µ(V )/2. If
∑

j∈[k]\J µ(P ∗
j ) < µ(V )/2, then there exists a j ∈ J

such that µ(P ∗
j ) ≥ µ(V )/2k, which implies this set P ∗

j satisfies all three conditions.
We now show that

∑
j∈[k]\J µ(P ∗

j ) < µ(V )/2. Let J̄1 = {j ∈ [k] \ J : δ(P ∗
j )p >

5 · OPTp ·µ(P ∗
j )/µ(V )} be the indices of sets P ∗

j that does not satisfy condition 1. Let
J̄2 = {j ∈ [k] \ J : δ(P ∗

j ) > 5k1−1/p · OPT ·µ(P ∗
j )/µ(V )} be the indices of sets P ∗

j that does not
satisfy condition 2. Note that [k] \ J = J̄1 ∪ J̄2. Then, we have∑

j∈[k]\J

µ(P ∗
j ) ≤

∑
j∈J̄1

µ(P ∗
j ) +

∑
j∈J̄2

µ(P ∗
j )

≤
∑
j∈J̄1

µ(V ) ·
δ(P ∗

j )p

5 OPTp +
∑
j∈J̄2

µ(V ) ·
δ(P ∗

j )
5k1−1/p OPT

≤ µ(V ) ·
∑
j∈[k]

(
δ(P ∗

j )p

5 OPTp +
δ(P ∗

j )
5k1−1/p OPT

)
.

Since P∗ is a partition with an optimal cost, we have

k∑
i=1

δ(P ∗
i )p = OPTp .

ESA 2023
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Similarly, we have

k−1/p · OPT =
(

k∑
i=1

1
k

· δ(P ∗
i )p

)1/p

≥ 1
k

k∑
i=1

δ(P ∗
i ),

where the inequality follows from Jensen’s inequality. Thus, we have

∑
j∈[k]\J

µ(P ∗
j ) ≤ µ(V ) ·

∑
j∈[k]

δ(P ∗
j )p

5 OPTp +
δ(P ∗

j )
5k1−1/p OPT

≤ µ(V ) · 2
5 <

µ(V )
2 . ◀

We now prove the main lemma in this section. Specifically, we give two upper-bounds on
the ℓ1-norm and ℓp-norm of the cut values of the sets produced by the covering procedure in
Algorithm 1, respectively.

Proof of Lemma 8. We already show the number of sets in S is at most m = O(k log n) in
Corollary 13. By Theorem 10 and Claim 11, we have every Si contains at most one terminal
and all sets in S covers the entire graph. Thus, it is sufficient to prove the two bounds on
the ℓ1-norm and ℓp-norm of the cut values of the sets in S as shown in Conditions 3 and 4 in
the lemma.

Due to Lemma 14 at each iteration t, there exists a set P ∗
i in an optimal solution with a

measure µt(P ∗
i ) ≥ µt(V )

2k such that

δ(P ∗
i ) ≤ 5 · min

{(
µt(P ∗

i )
µt(V )

)1/p

, k1−1/p · µt(P ∗
i )

µt(V )

}
· OPT .

Thus, at each iteration t of Algorithm 1, we have

δ(St) ≤ O(α) · min
{(

µt(P ∗
i )

µt(V )

)1/p

, k1−1/p · µt(P ∗
i )

µt(V )

}
· OPT .

Note that each set St is computed by the Unbalanced Terminal Cut algorithm in Theorem 10.
Thus, we have µt(St) ≥ Ω(µt(P ∗

i )). Since µt(St) ≥ Ω(µt(P ∗
i )) holds, we obtain (1) δ(St)p ≤

O(αp) · OPTp · µt(St)
µt(V ) ; and (2) δ(St) ≤ O(α) · k1−1/p · OPT · µt(St)

µt(V ) . These provide

m∑
t=1

δ(St)p ≤ O(αp) · OPTp ·
m∑

t=1

µt(St)
µt(V ) ,

m∑
t=1

δ(St) ≤ O(α) · k1−1/p · OPT ·
m∑

t=1

µt(St)
µt(V ) .

By Claim 12, we have
m∑

t=1

µt(St)
µt(V ) = O(log n). Then, we get the desired upper bounds on

m∑
t=1

δ(St)p and
m∑

t=1
δ(St). ◀

2.2 Uncrossing and Aggregation Procedures
In this section, we provide procedures that transform the cover of the graph S produced
by the covering procedure into a partition of the graph P = {P1, P2, . . . , Pk}. Each set Pi

in P contains exactly one terminal in T . With a positive probability, this solution is an
O(log1/2 n log1/2+1/p k) approximation for the ℓp-Norm Multiway Cut.
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▶ Theorem 15. Given a graph G = (V, E) and k terminals T ⊂ V , there exists a polynomial-
time algorithm that returns a partition of the graph P = {P1, P2. . . . , Pk} such that with
probability at least 3/4 − 1/k

1. |Pi ∩ T | = 1 for all i ∈ [k],

2.
(

k∑
i=1

δ(Pi)p

)1/p

≤ O(log1/2 n log1/2+1/p k) · OPT.

Note that the sets in the cover S are not disjoint. We first use the uncrossing procedure
to generate a m′ = O(k log k) partition of the graph P ′ = {P ′

1, P ′
2, . . . , P ′

m′} from the cover S
produced by the covering procedure. We sample O(k log k) sets from S uniformly at random.
These sampled sets cover a large fraction of the graph. Then, we generate disjoint sets from
these sampled sets by using the uncrossing step in [3]. The uncrossing procedure is shown in
Algorithm 2. We then merge these sets in P ′ to get a k-partition P using the aggregation
procedure in Algorithm 3.

In the aggregation procedure, we assign all sets in P ′ into k parts to get a k-partition.
Since P ′ = {P ′

1, P ′
2, . . . , P ′

m′} is a partition of the graph and each set P ′
i contains at most one

terminal, there are exactly k sets containing one terminal in P ′. Suppose P ′
1, P ′

2, · · · , P ′
k are

these sets containing one terminal. We initially assign these sets P ′
1, P ′

2, · · · , P ′
k to k parts

P1, P2, . . . , Pk. Let Q = P ′ \ {P1, P2, · · · , Pk} be the sets in P ′ that does not contain any
terminals. We assign all sets in Q into k parts in a round-robin approach. We sort the sets in
Q by the cut values in descending order and denote it by Q = {Q1, Q2, . . . , Qm′−k}. We then
partition all sets in Q into k buckets Q1, . . . , Qk as follows. Consider every k consecutive sets
{Qjk+1, Qjk+2, · · · , Q(j+1)k} in Q for 0 ≤ j ≤ ⌊m′−k/k⌋. If jk + i > n for j = ⌊m′−k/k⌋ and
some i ∈ [k], then let Qjk+i = ∅. For every i ∈ [k], we assign the set Qjk+i to the bucket
Qi. Finally, we assign each bucket Qi to part Pi and set Pi = Pi ∪ (

⋃
Qj∈Qi

Qj).

Algorithm 2 Uncrossing Procedure.

Sample m′′ − 1 = 12k ln k sets S ′ = (S′
1, S′

2, . . . , S′
m′′−1) from S uniformly at random.

Sort sets in S ′ in a random order.
Set P ′

i = S′
i \ ∪j<iS

′
j for all i = 1, 2 . . . , m′′ − 1.

while there exists a set P ′
i such that δ(P ′

i ) > 2δ(S′
i) do

Set P ′
i = S′

i and for all j ̸= i, P ′
j = P ′

j \ S′
i.

Set the set P ′
m′′ = V \ ∪m′′−1

i=1 P ′
i .

return all non-empty sets P ′
i .

Algorithm 3 Aggregation Procedure.

Set P = {P ′
i ∈ P ′ : P ′

i ∩ T ̸= ∅} = {P1, P2, . . . , Pk}.
Set Q = P ′ \ P.
Sort the sets in Q = {Q1, . . . , Qm′−k} by the cut value in descending order.
Partition the sets in Q into k buckets Q1, · · · , Qk, where

Qi = {Qj ∈ Q : (j − 1) mod k = i − 1}.

Set Pi = (
⋃

Qj∈Qi
Qj) ∪ Pi for all i = 1, . . . , k.

return all sets P1, P2, . . . , Pk.

ESA 2023



32:10 Approximation Algorithm for Norm Multiway Cut

We first prove the following lemma on the partition P ′ returned by the uncrossing
procedure.

▶ Lemma 16. Let S denote the collection of sets produced by the covering procedure for a
graph G = (V, E) and k terminals T . Given S as input, the uncrossing procedure as shown
in Algorithm 2 generates a m′ = O(k log k) partition of the graph P ′ = {P ′

1, P ′
2, . . . , P ′

m′}
such that with probability at least 3/4 − 1/k

1. |P ′
i ∩ T | ≤ 1 for all i ∈ [m′],

2.
m′∑
i=1

δ(P ′
i )p ≤ O(log k · αp) · OPTp,

3.
m′∑
i=1

δ(P ′
i ) ≤ O(k1−1/p · α) · OPT,

where α =
√

log n log k.

Proof. We consider all sets P ′
1, P ′

2, . . . , P ′
m′′ generated in the uncrossing procedure (Al-

gorithm 2), including those empty sets that are not returned. If the set P ′
i is empty, we take

δ(P ′
i ) = 0. It is easy to see that these sets P ′

1, P ′
2, . . . , P ′

m′′ are disjoint, and
⋃m′′

i=1 P ′
i = V .

We first show that Algorithm 2 terminates in polynomial time. In graph G, we assume
that the ratio between the largest non-infinite edge weight wmax and the smallest non-zero
edge weight wmin is at most wmax/wmin ≤ n2/ε for a small constant ε > 0. If the graph does
not satisfy this assumption, then we transform it into an instance satisfying this condition
as follows. We guess the largest weight of the cut edge in the optimal solution, denoted
by W . There are at most O(n2) different edge weights. Then, we construct a new graph
G′ with the same vertex set V and edge set E. For every edge e ∈ E, we assign its weight
w′(e) in G′ to be w(e) if εW/n2 ≤ w(e) ≤ W , w′(e) = 0 if w(e) < εW/n2, and w′(e) = ∞ if
w(e) ≥ W . Thus, the new graph G′ satisfies the assumption that wmax/wmin ≤ n2/ε. Let
OPT′ be the optimal value of ℓp multiway cut on graph G′. We know that OPT′ ≤ OPT
since the optimal multiway cut on graph G has a smaller value on graph G′. Suppose we
find an α-approximation for ℓp multiway cut on graph G′. Then, the same partition on the
original graph G has an objective value at most α · OPT′ +εW ≤ (α + ε) OPT. Hence, this
α-approximation solution on G′ provides an (α + ε)-approximation on G.

Consider any iteration of Algorithm 2. Let P ′
i be the partition of V before the current

uncrossing iteration. Suppose we pick a set P ′
i such that δ(P ′

i ) > 2δ(S′
i). For any two subsets

A, B ⊆ V , we use δ(A, B) to denote the total weight of edges crossing A and B. Then, we
have the ℓ1-norm of the cut values after this iteration is

δ(S′
i) +

∑
j ̸=i

δ(P ′
j \ S′

i) ≤ δ(S′
i) +

∑
j ̸=i

δ(P ′
j) − δ(P ′

j , S′
i \ P ′

j) + δ(S′
i, P ′

j \ S′
i)

≤ δ(S′
i) − δ(P ′

i ) + δ(S′
i) +

∑
j ̸=i

δ(P ′
j)

≤ 2δ(S′
i) − 2δ(P ′

i ) +
∑

j

δ(P ′
j) ≤

∑
j

δ(P ′
j) − 2wmin,

where the last inequality is due to δ(P ′
i ) > 2δ(S′

i) and the minimum non-zero edge weight is
wmin. Thus, the ℓ1-norm of the cut values decreases by 2wmin after each iteration. Since
the largest ℓ1-norm of the cut values is at most wmaxn2, the total number of iterations is
polynomial in n.

We then show that the partition returned by Algorithm 2 satisfies two conditions in
the Lemma. We first show that each set P ′

i contains at most one terminal. Note that
for every i = 1, 2, . . . , m′′ − 1, the set P ′

i is a subset of S′
i ∈ S. By Lemma 8, we have
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|P ′
i ∩ T | ≤ |S′

i ∩ T | ≤ 1 for all i = 1, 2, . . . , m′′ − 1. By Claim 11, every vertex u ∈ V is
covered by at least log2 n sets in S. By Corollary 13, the cover S contains at most 6k log2 n

sets. Thus, a random set in S covers u with probability at least 1/6k. For each vertex u ∈ V ,
the probability that u is not covered by any set in S ′ is at most

P{u ̸∈ ∪m′′−1
i=1 S′

i} ≤
(

1 − 1
6k

)12k ln k

≤ 1
k2 . (1)

By the union bound over all terminals, all terminals are covered by S ′ with probability at
least 1 − 1/k. Thus, the set P ′

m′′ contains no terminal with probability at least 1 − 1/k.
We now bound the ℓ1-norm of the cut values of sets P ′

1, P ′
2, . . . , P ′

m′′ . The first two steps
in Algorithm 2 can be implemented equivalently by sorting sets in S in a random order and
picking the first m′′ − 1 = 12k ln k sets as S ′. Let S1, S2, . . . , Sm be the sets in S in a random
order. Let P̃i = S′

i \ ∪j<iS
′
j for i = 1, 2, . . . , m. Then, for any i = 1, 2, . . . , m′′ − 1, the set P̃i

corresponds to the set P ′
i before running the while loop in Algorithm 2.

We first bound the expected ℓ1-norm of the cut values of sets P̃1, P̃2, . . . , P̃m′′−1. Note
that we have

m′′−1∑
i=1

δ(P̃i) ≤
m∑

i=1
δ(P̃i).

We assign each cut edges (u, v) ∈ ∂P̃i into the following two types: (1) edge (u, v) is cut by
a set P̃j for j < i; (2) edge (u, v) is first cut by the set P̃i. Let Ei be the set of cut edges
that first cut by the set P̃i. Let w(Ei) =

∑
e∈Ei

w(e) be the total weight of edges in Ei.
Each cut edge is counted twice in

∑m
i=1 δ(P̃i), while each cut edge is counted exactly once in∑m

i=1 w(Ei). Thus, we have
m∑

i=1
δ(P̃i) = 2

m∑
i=1

w(Ei).

Note that Ei ⊆ ∂Si is a subset of edges cut by Si. Each edge (u, v) ∈ ∂Si is a cut edge in Ei

after uncrossing if and only if Si is the first set among all sets that contain node u or node v

in the uncrossing sequence. Suppose Si only contains node u. Then, the probability that
(u, v) is contained in Ei is at most the probability that Si is the first set among all the sets
that contain node u in the uncrossing sequence. If a set in S that contains node v is before
set Si, then this edge (u, v) is not count in Ei. By Claim 11, we have

P{(u, v) ∈ Ei} ≤ P{Si is the first set that contains u} ≤ 1
log2 n

.

Therefore, we have the expected ℓ1-norm of the cut values of sets P̃1, P̃2, . . . , P̃m is at most

E
[

m∑
i=1

δ(P̃i)
]

= 2
m∑

i=1
E[w(Ei)] = 2

m∑
i=1

∑
e∈∂Si

w(e) · P{e ∈ Ei}

≤ 2
log2 n

m∑
i=1

δ(Si) ≤ k1−1/p · O(α) · OPT,

where the last inequality is from Lemma 8. At every iteration of the while loop, the ℓ1-norm
of the cut values of sets P ′

1, P ′
2, · · · , P ′

m′′−1 only decreases. Thus, we have

E

m′′−1∑
i=1

δ(P ′
i )

 ≤ E

m′′−1∑
i=1

δ(P̃i)

 ≤ k1−1/p · O(α) · OPT .
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Thus, the expected ℓ1-norm of the cut values of sets P ′
1, P ′

2, . . . , P ′
m′′ is

E

m′′∑
i=1

δ(P ′
i )

 ≤ 2 · E

m′′−1∑
i=1

δ(P ′
i )

 ≤ k1−1/p · O(α) · OPT .

To bound the ℓp-norm of edge boundaries, we then bound the edge boundary of the last
set P ′

m′′ . We only consider the subsampling process in the uncrossing procedure. We sample
O(k log k) sets from the cover S uniformly at random. Consider every edge (u, v) in the
boundary of sets in cover S. If this edge (u, v) is a cut edge crossing P ′

m′′ and v ∈ P ′
m′′ , then

one of the sets Si ∈ S that contains node u is sampled and node v is not covered by sampled
sets. Each set Si ∈ S is sampled with probability O(log k/ log n). Suppose the set Si ∈ S
cuts this edge (u, v) and contains node u. Similar to Equation (1), the probability that node
v ∈ P ′

m′′ conditioned on Si ∈ S ′ is at most 2/k2. Thus, we have

E[δ(P ′
m′′)] = E

w

(u, v) ∈
m′′−1⋃

i=1
∂S′

i : u ̸∈ P ′
m′′ and v ∈ P ′

m′′




≤
m∑

i=1

∑
(u,v)∈∂Si

w(u, v) · P{u ∈ Si, Si ∈ S ′, v ∈ P ′
m′′}

≤ O

(
1
k2 · log k

log n

)
·

m∑
i=1

δ(Si) ≤ O(α) · OPT,

where the last inequality is due to condition 4 in Lemma 8.
After the while loop, we have δ(P ′

i ) ≤ 2δ(S′
i) for all i = 1, 2, . . . , m′′−1. Since E[δ(P ′

m′′)] ≤
O(α) · OPT, by Markov’s Inequality, we have with probability at least 7/8 that δ(P ′

m′′) ≤
O(α) · OPT. Since we subsample a fraction O(log k/ log n) of sets in the cover S uniformly
at random, we have

E

m′′−1∑
i=1

δ(S′
i)p

 ≤ O

(
log k

log n

) m∑
i=1

δ(Si)p.

When δ(P ′
m′′) ≤ O(α) · OPT, we have

E

m′′∑
i=1

δ(P ′
i )p

 ≤ 2p · E

m′′−1∑
i=1

δ(S′
i)p

+ Eδ(P ′
m′′)p

≤ 2p · O

(
log k

log n

) m∑
i=1

δ(Si)p + O(αp) · OPTp ≤ O(log k · αp) · OPTp,

where the third inequality is from the condition 3 in Lemma 8. Therefore, we have the
conditions 2 and 3 in this lemma hold in expectation with probability at least 7/8. By
Markov’s Inequality, we have the conditions 2 and 3 in the lemma hold simultaneously with
probability at least 3/4. Since the condition 1 hold with probability at least 1 − 1/k, we have
all conditions hold with probability at least 3/4 − 1/k. ◀

Next, we analyze the aggregation procedure, which merges these sets to get a k partition
of the graph.

Proof of Theorem 15. By Lemma 16, the partition P ′
1, P ′

2, . . . , P ′
m′ returned by the uncross-

ing procedure (Algorithm 2) satisfies the following three conditions with probability at least
3/4 − 1/k:
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1. |P ′
i ∩ T | ≤ 1 for all i ∈ [m′],

2.
m′∑
i=1

δ(P ′
i )p ≤ O(log k · αp) · OPTp,

3.
m′∑
i=1

δ(P ′
i ) ≤ O(k1−1/p · α) · OPT.

We now assume the partition P ′ = {P ′
1, P ′

2, . . . , P ′
m′} given by the uncrossing procedure

satisfies these three conditions. Then, we use the aggregation procedure as shown in Al-
gorithm 3 on this partition P ′ = {P ′

1, P ′
2, . . . , P ′

m′} to get a k-partition P = {P1, P2, · · · , Pk}.
Since each part Pi has exactly one set P ′

i containing one terminal, we have |Pi ∪ T | = 1 for
all i ∈ [k].

We now bound the ℓp-norm of the cut values. Let Q′
i =

⋃
j>k,Qj∈Qi

Qj be the union of
sets in bucket Qi excluding the set with the largest cut in that bucket. Thus, we have each
part Pi = Q′

i ∪ Qi ∪ P ′
i for all i ∈ [k]. By the triangle inequality, we have(

k∑
i=1

δ(Pi)p

)1/p

≤

(
k∑

i=1
δ(Q′

i)p

)1/p

+
(

k∑
i=1

δ(Qi)p

)1/p

+
(

k∑
i=1

δ(P ′
i )p

)1/p

.

By Lemma 16, the ℓp-norm of the cut values of sets P ′
1, P ′

2, . . . , P ′
k is(

k∑
i=1

δ(P ′
i )p

)1/p

≤ O(log1/p k · α) · OPT .

Similarly, we have the ℓp-norm of the cut values of sets Q1, Q2, . . . , Qk is(
k∑

i=1
δ(Qi)p

)1/p

≤ O(log1/p k · α) · OPT .

We then bound the ℓp-norm of the cut values of sets Q′
1, Q′

2, . . . , Q′
k. We first bound the cut

value of each set Q′
i. Since Qi are sorted by the cut value in descending order, we have

δ(Q′
i) ≤

∑
j>k,Qj∈Qi

δ(Qj) ≤
∑

Qj∈Qk

δ(Qj) ≤ 1
k

∑
Qj∈Q

δ(Qj),

where the second inequality is due to δ(Qi+zk) ≤ δ(Qzk) for z ≥ 1 and the third inequality is
because Qk contains the smallest cut set for every k consecutive sets. By Lemma 16, we have

δ(Q′
i) ≤ 1

k
·
∑

Qj∈Q
δ(Qj) ≤ O(k−1/p · α) · OPT .

Therefore, we have ℓp-norm of the cut values of sets Q′
1, Q′

2, . . . , Q′
k is at most(

k∑
i=1

δ(Q′
i)p

)1/p

≤
(
k · O(k−1 · αp) · OPTp

)1/p = O(α) · OPT .

Combining three parts, we get the conclusion. ◀

By Theorem 15, given a graph with n vertices and k terminals, our algorithm finds an
O(log1/2 n log1/2+1/p k) approximation for the ℓp-Norm Multiway Cut with probability at least
3/4 − 1/k. We can repeat this algorithm O(log 1/ε) times to find an O(log1/2 n log1/2+1/p k)
approximation for the ℓp-Norm Multiway Cut with probability at least 1 − ε, which proves
Theorem 1.
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