
Polynomial-Time Approximation of Independent
Set Parameterized by Treewidth
Parinya Chalermsook #

Aalto University, Finland

Fedor Fomin #

University of Bergen, Norway

Thekla Hamm #

Utrecht University, The Netherlands

Tuukka Korhonen #

University of Bergen, Norway

Jesper Nederlof #

Utrecht University, The Netherlands

Ly Orgo #

Aalto University, Finland

Abstract
We prove the following result about approximating the maximum independent set in a graph.
Informally, we show that any approximation algorithm with a “non-trivial” approximation ratio (as
a function of the number of vertices of the input graph G) can be turned into an approximation
algorithm achieving almost the same ratio, albeit as a function of the treewidth of G. More formally,
we prove that for any function f , the existence of a polynomial time (n/f(n))-approximation
algorithm yields the existence of a polynomial time O(tw · log f(tw)/f(tw))-approximation algorithm,
where n and tw denote the number of vertices and the width of a given tree decomposition of the input
graph. By pipelining our result with the state-of-the-art O(n · (log log n)2/ log3 n)-approximation
algorithm by Feige (2004), this implies an O(tw · (log log tw)3/ log3 tw)-approximation algorithm.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Graph algorithms analysis

Keywords and phrases Maximum Independent Set, Treewidth, Approximation Algorithms, Para-
meterized Approximation

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.33

Funding Parinya Chalermsook: Supported by European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 759557).
Fedor Fomin: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Thekla Hamm: Supported by the Austrian Science Fund (FWF, project J4651-N).
Tuukka Korhonen: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Jesper Nederlof : Supported by the project CRACKNP that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 853234).
Ly Orgo: Supported by European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 759557).

Acknowledgements The research presented in this paper was initiated partially during the trimester
on Discrete Optimization at Hausdorff Research Institute for Mathematics (HIM) in Bonn, Germany.

© Parinya Chalermsook, Fedor Fomin, Thekla Hamm, Tuukka Korhonen, Jesper Nederlof, and Ly Orgo;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 33;
pp. 33:1–33:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parinya.chalermsook@aalto.fi
mailto:fedor.fomin@uib.no
mailto:thekla.hamm@gmail.com
mailto:tuukka.korhonen@uib.no
mailto:j.nederlof@uu.nl
mailto:ly.orgo@aalto.fi
https://doi.org/10.4230/LIPIcs.ESA.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

1 Introduction

An independent set of a graph is a subset of pairwise non-adjacent vertices. The Maximum
Independent Set problem, which asks to find an independent set of maximum cardinality
of a given input graph on n vertices, has been among the most fundamental optimization
problems that appeared in many research areas of computer science and has been a canonical
problem of study in algorithms.

In the field of approximation algorithms, the problem is notoriously hard: It has no
O(n/2log3/4 n)-approximation algorithm running in polynomial time unless NP can be solved
in randomized quasi-polynomial time by the work of Khot and Ponnuswami [15] (building on
earlier work by among others Håstad [14]). The best known polynomial time approximation
algorithm is an Õ(n/ log3 n)-approximation by Feige [9], which is almost twenty years old;
here the Õ-notation hides factors polynomial in log log n.

Besides measuring the approximation ratio as a function of n, two other directions have
been suggested in the literature. One of the directions is to measure the ratio as a function
of the maximum degree d of the input graph. The first improvement over the naive greedy
(d + 1)-approximation to o(d) was given by Halldorsson and Radhakrishnan [12] in 1994.
After this, several improvements to this approximation were made [1, 11, 13], culminating in
the currently best Õ(d/ log1.5 d)-approximation by Bansal, Gupta, and Guruganesh [4] with
an almost matching lower bound of Ω(d/ log2 d) under the Unique Games Conjecture (UGC)
by Austrin, Khot, and Safra [2]; here the Õ-notation hides factors polynomial in log log d.

Another direction is to measure the approximation ratio as a function of the treewidth of
the input graph. Here, a simple greedy algorithm that is based on the fact that graph of
treewidth tw are tw-degenerate (see Lemma 2.5) achieves an approximation ratio of (tw + 1).
This was improved by Czumaj, Halldórsson, Lingas, and Nilsson [7] in 2005, who gave a
(tw/ log n)-approximation algorithm when a tree decomposition of width tw is given with the
input graph. Their algorithm is quite elegant and follows easily from the observation that one
can greedily partition the vertices of the graph into sets V1, . . . , Vr such that the treewidth of
G[Vi] is at most tw/r. Combined with dynamic programming for independent set on graphs
of bounded treewidth, this gives a 2tw/rnO(1) time r-approximation for any r, and therefore
runs in polynomial time when we set r = tw/ log n, resulting in the (tw/ log n)-approximation
algorithm.

Contrary to the degree-direction of approximating independent set, there has been no
progress in the two other directions measuring the approximation ratio as a function on
the number of vertices or the treewidth since the milestone results of Feige [9] and Czumaj
et al. [7]. It is easy to show that one cannot improve the result of Czumaj et al. [7] to
a polynomial time (tw/(f(tw) log n))-approximation for any diverging positive function f ,
assuming the Exponential Time Hypothesis (ETH). In particular, given an input graph G

on n0 vertices we can create a graph G′ on n = 2n0/f(n0) vertices by adding n − n0 vertices
of degree 0. Then G′ has treewidth n0 and the assumed algorithm is a nO(1) = 2o(n0)-time
r-approximation for r = n0/(f(n0) log n) = 1, which violates the lower bound that Maximum
Independent Set cannot be solved exactly in 2o(n0) time on graphs with n0 vertices, assuming
ETH (see e.g. for an equivalent lower bound for Vertex Cover [6, Theorem 14.6]) .

This ETH lower bound naturally brings us to the question of what is the best approxima-
tion ratio in terms of treewidth only. In this paper, we essentially resolve this question by
relating the approximation ratio parameterized by treewidth tightly to the approximation
ratio parameterized by n.

Formally, as our main result we prove the following theorem:

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:3

▶ Theorem 1.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph1.
Then there exists an O

(
tw·log f(tw)

f(tw)

)
-approximation algorithm for Maximum Independent Set,

where tw is the width of a given tree decomposition of the input graph.

Let γ(n) be the approximability function of Maximum Independent Set for n-vertex
graph (i.e., the function for which O(γ(n))-approximation exists and o(γ(n))-approximation
is hard). As mentioned before, the current state of the art has provided the lower and upper
bounds γ(n) = Ω(n/2log3/4 n) [15, 14] and γ(n) = Õ(n/ log3 n) respectively [9]. Similarly,
one can consider Maximum Independent Set parameterized by tw and define τ(tw) as
the approximability function of Maximum Independent Set on the setting when a tree
decomposition of width tw is given. Our result implies that the approximability functions γ

and τ are essentially the same function, so this closes the treewidth-direction of Maximum
Independent Set approximation.

We find this phenomenon rather surprising. For some other parameters, such relations
do not hold, e.g., when we consider the degree parameter d of the input graph, the approx-
imability function of Maximum Independent Set is Ω(d/ log2 d) assuming UGC [2], while the
Õ(n/ log3 n)-approximation of Feige [9] exists.

Combining Theorem 1.1 with the result of Feige [9], we obtain the following corollary.

▶ Corollary 1.2. There exists an O
(

tw·(log log tw)3

log3 tw

)
-approximation algorithm for Maximum

Independent Set, where tw is the width of a given tree decomposition of the input graph.

This improves over the result of Czumaj et al. [7] when log1/3 n = o
(

log tw
log log tw

)
, i.e., when

tw is larger than exp(Ω̃(log1/3 n)). It is better than the algorithm of Feige [9] whenever
tw = o(n/ log log n), so overall it improves the state-of-the-art in the range of parameters

exp(Ω̃(log1/3 n)) ≤ tw ≤ o(n/ log log n).

These results assume that the tree decomposition is given as part of the input. To remove
this assumption, we can use the algorithm of Feige et al. [10] to O(

√
log tw)-approximate

treewidth. In particular, their algorithm combined with Corollary 1.2 yields the following
corollary in the setting when a tree decomposition is not assumed as a part of the input.

▶ Corollary 1.3. There exists an O
(

tw·(log log tw)3

log2.5 tw

)
-approximation algorithm for Maximum

Independent Set, where tw is the treewidth of the input graph.

Techniques

On a high level, our technique behind Theorem 1.1 is as follows: First we delete a set of
vertices of size at most OPT/2 from the graph so that each of the remaining components
can be partitioned into subinstances with pathwidth at most tw and subinstances with
tree decompositions of width O(tw) and depth O(log f(tw)). For the subinstances of small
pathwidth, we partition the vertices into O(log f(tw)) levels based on in how many bags of
the path decomposition they occur. Similarly, for the subinstances with O(log f(tw))-depth
tree decompositions, we partition the vertices in levels based on the depth of the highest bag
of the tree decomposition they occur in. In both subinstances we argue that all vertices of

1 We make mild assumptions on the properties of f , which are detailed in Section 2. Any “reasonable”
function f satisfies these assumptions.

ESA 2023

33:4 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

all but one level can be removed, in order to make the vertices in the remaining level behave
well in the decomposition, after which the remaining level can be chopped into components
of size roughly O(tw) such that the size of maximum independent again does not decrease
significantly.

Although some aspects of our approach are natural, we are not aware of arguments
modifying the tree decomposition as we did here in the previous literature; we expect these
arguments may have more applications for designing approximation algorithms for other
NP -hard problem parameterized by treewidth similar to Theorem 1.1.

Organization

The paper is organized as follows. We give preliminaries in Section 2. A major ingredient of
Theorem 1.1 will be an approximation algorithm for Maximum Independent Set parameterized
by pathwidth, which we will be presented in Section 3. Then, the approximation algorithm
for Maximum Independent Set parameterized by treewidth will be presented in Section 4.
This will use the pathwidth case as a black box. We then conclude and present open problems
in Section 5.

2 Preliminaries

Basic notation

We refer to [8] for standard graph terminology. We use the standard notation – α(G) – to
denote the independence number, i.e., the size of a maximum independendent set, of graph G.
Throughout, for a natural number i we denote the set {1, . . . , i} by [i], and for two natural
numbers i ≤ j we denote the set {i, i + 1, . . . , j} by [i, j]. We use log to denote the base-2
logarithm.

Tree decompositions

Given a graph G, a tree decomposition of G consists of a tree T , where each node t ∈ V (T)
is associated with a subset Bt ⊆ V (G) of vertices called a bag, such that
1.

⋃
t∈V (T) Bt = V (G)

2. For every edge uv ∈ E(G), there must be some node t such that {u, v} ⊆ Bt.
3. For every vertex v ∈ V (G), the bags {t : v ∈ Bt} are connected in T .

The width of a tree decomposition is maxt∈V (T) |Bt| − 1. The treewidth of G (denoted
by tw(G)) is the minimum number k, such that G has a tree decomposition of width k. When
the input graph is clear from the context, we simply write tw to denote the treewidth of G.

A rooted tree decomposition is a tree decomposition where one node is assigned to be
the root of the tree T . We use standard rooted-tree definitions when talking about rooted
tree decomposition. The depth of a rooted tree decomposition is the depth of the tree T , i.e.,
the length of the longest root-leaf path.

A rooted tree decomposition T is called nice if it satisfies that
Every node of T has at most 2 children.
If a node t has two children t′ and t′′, then t is called a join node and Bt = Bt′ = Bt′′ .
If a node t has one child t′, then either:

1. Bt ⊂ Bt′ and |Bt′ | = |Bt| + 1, in which case t is a forget node, or
2. Bt′ ⊂ Bt and |Bt| = |Bt′ | + 1, in which case t is an introduce node.
If a node t has no children we call it a leaf node.

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:5

It is well-known that any tree decomposition can be turned into a nice tree decomposition.

▶ Lemma 2.1 ([16]). For every graph G on n vertices, given a tree decomposition T ′ of
width ω, there is a nice tree decomposition T with at most 4 · n nodes and width ω that can
be computed in polynomial time.

It is possible to also assume the following additional property without loss of generality.

▶ Lemma 2.2. Given a tree decomposition T ′ of width ω, there exists a nice tree decomposition
of width ω and at most 4n nodes, that can be computed in polynomial time, such that for
each leaf node t ∈ V (T), there exists a vertex v ∈ Bt that appears in exactly one bag, i.e., the
bag Bt itself.

Proof. We use Lemma 2.1 to compute a nice tree decomposition T . If there exists a leaf
node t ∈ V (T) that does not contain such a vertex, we delete t from T . Notice that all the
properties of a tree decomposition continue to hold after such a deletion. However, if after
this deletion the former parent s of t in T is not a leaf, s was a join node which now has a
child with the same bag as s which violates niceness. To repair this we can simply contract
the edge between s and its remaining child in T . It is straightforward to verify that after
this T remains nice. We can iterate the above, strictly decreasing the number of nodes of T ,
until T has the desired property. ◀

We will use the following well-known lemma of Bodlaender and Hagerup [5] to turn a
tree decomposition into a logarithmic-depth tree decomposition, while increasing the width
only by a factor of three.

▶ Lemma 2.3 ([5, Lemma 2.2]). Given a tree decomposition of a graph G of width ω and
having γ nodes, we can compute in polynomial time a rooted tree decomposition of G of depth
O(log γ) and width at most 3ω + 2.

Path decompositions

A path decomposition is a tree decomposition where the tree T is a path. The pathwidth
of G is the minimum number k, such that G has a path decomposition of width k. It is
denoted by pw(G). A nice path decomposition is a nice tree decomposition where T is a
path, and the root is assigned to a degree-1 node, i.e., at one end of the path. Note that
there are no join-nodes in a nice path decomposition.

We observe that any path decomposition can be turned into a nice path decomposition
with 2n nodes.

▶ Lemma 2.4. For every graph G on n vertices, given a path decomposition P ′ of width ω,
there is a nice path decomposition P with 2n nodes and width ω, that can be computed in
polynomial time.

Proof. By introducing vertices one at a time and forgetting vertices one at a time we obtain
a nice path decomposition where the bag of the first node is empty, the bag of the last node
is empty, and on each edge exactly one vertex is either introduced or forgotten, and therefore
the path decomposition has exactly 2n edges and 2n + 1 nodes. We can remove the first bag
that is empty to get a path decomposition with exactly 2n nodes. ◀

ESA 2023

33:6 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

Maximum independent set approximation

Given a function r that maps graphs to numbers greater than 1, an r-approximation algorithm
for Maximum Independent Set takes as input a graph G and outputs in polynomial time an
independent set in G of size at least α(G)

r(G) . We usually denote any occurrence of |V (G)| in r

by n.
Let us now detail our assumptions on the function f in Theorem 1.1. We assume that

the approximation ratio n/f(n) of the given approximation algorithm is a non-decreasing
function on n. This assumption is reasonable because if n/f(n) would be decreasing at
some point, we could improve the approximation ratio by adding universal vertices to the
graph; note that adding universal vertices does not change the optimal solution, but increases
n. This also implies that the function f(n) grows at most linearly in n. We assume that
for arbitrary fixed constant c ≥ 1, it holds that f(c · n) ∈ O(f(n)). We also assume that
the function f can not decrease too much when n grows, in particular, we assume that for
arbitrary fixed constant c ≥ 1 it holds that f(c · n) ∈ Ω(f(n)).

Moreover, we will use a basic result about finding independent sets whose size depends
on the treewidth of the graph. Recall that a graph G is d-degenerate if there is always a
vertex of degree at most d in any induced subgraph of G. It is known that every graph
G is tw(G)-degenerate: Simply consider the vertex that is contained at a leaf bag and no
other bag of a tree decomposition T of any induced subgraph of G as given by Lemma 2.2.
This vertex has degree at most tw(G). Therefore, we obtain a following trivial algorithm for
approximating Maximum Independent Set parameterized by treewidth.

▶ Lemma 2.5. There is a polynomial time algorithm that given a graph G on n vertices
finds an independent set of size at least n/(tw(G) + 1).

Proof. Iteratively assign a vertex of minimum degree to the independent set and delete its
neighbors. By the aforementioned degeneracy argument, at each iteration at most tw(G) + 1
vertices are deleted, so the number of iterations and the size of the found independent set is
at least n/(tw(G) + 1). ◀

Note that the algorithm of Lemma 2.5 does not need a tree decomposition as an input.

3 Approximation parameterized by pathwidth

In this section, we prove a version of Theorem 1.1 where instead of a tree decomposition,
the input graph is given together with a path decomposition. This will be an important
ingredient for proving Theorem 1.1. In particular, this section is devoted to the proof of the
following lemma.

▶ Lemma 3.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph,
and f satisfies the assumptions outlined in Section 2. Then there exists an O

(
pw·log f(pw)

f(pw)

)
-

approximation algorithm for Maximum Independent Set, where pw is the width of a given
path decomposition of the input graph.

Throughout this section we will use G to denote the input graph and pw to denote the
width of the given path decomposition of G. We denote by k = pw + 1 the maximum size of
a bag in the given decomposition. Note that by our assumptions on the function f , it holds
that f(k) = Θ(f(pw)).

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:7

Let us denote OPT = α(G). If OPT < n
f(k) , then Lemma 2.5 gives us a solution of size at

least
n

tw(G) + 1 ≥ OPT · f(k)
tw(G) + 1 ,

i.e., an O(tw(G)/f(k))-approximation, which would give the desired result by the facts that
tw(G) ≤ pw and f(k) = Ω(f(pw)). Therefore, in the rest of this section we will assume that
OPT ≥ n

f(k) .
Let P be the given path decomposition of G. By Lemma 2.4, we can assume without loss

of generality that P is a nice path decomposition and has exactly 2n bags, which we will
denote by B1, . . . , B2n in the order they occur in the path. For each v ∈ V (G), we define the
length of v to be the number of bags in P that contain v, and denote the length of v by
ℓ(v). In particular,

ℓ(v) = |{i ∈ [1, 2n] : v ∈ Bi}|.

Then, we partition V (G) into 2 + ⌈log f(k)⌉ sets based on the lengths of the vertices:

V0 = {v : ℓ(v) < 2k}
Vi = {v : ℓ(v) ∈ [k · 2i, k · 2i+1)}, 1 ≤ i ≤ ⌈log f(k)⌉

V ′ = {v : ℓ(v) ≥ 4k · 2⌈log f(k)⌉}

Note that (V0, V1, . . . , V⌈log f(k)⌉, V ′) is indeed a partition of V (G). We first show that
the set V ′, which consists of the longest vertices, can only contribute to at most half of the
optimal solution.

▶ Lemma 3.2. It holds that |V ′| ≤ OPT/2.

Proof. First, notice that
∑

v∈V (G) ℓ(v) ≤ 2nk. This is because P has 2n bags, each vertex
appears in ℓ(v) bags of P , and each bag of P can have at most k vertices appearing in it.
Now, because for vertices v ∈ V ′ we have ℓ(v) ≥ 4k · 2⌈log f(k)⌉ ≥ 4k · f(k) the vertices in V ′

contribute at least
∑

v∈V ′ ℓ(v) ≥ 4k · f(k) · |V ′| to the sum. Therefore, it holds that

|V ′| ≤ 2nk

4k · f(k) ≤ n

2 · f(k) ≤ OPT/2,

as desired. ◀

Lemma 3.2 implies that at least half of any maximum independent set in G must be in
the subgraph G[V0 ∪ V1 ∪ . . . ∪ V⌈log f(k)⌉]. In the rest of this section, we will focus on the
following lemma.

▶ Lemma 3.3. For each i ∈ [0, ⌈log f(k)⌉], there is a O(k/f(k))-approximation algorithm
for Maximum Independent Set in G[Vi].

It is easy to see how Lemma 3.3 implies Lemma 3.1. For each such G[Vi], we invoke
Lemma 3.3 to obtain a O(k/f(k))-approximate solution Si ⊆ Vi. Our algorithm returns
the set Si with the largest cardinality. Since there are at most O(log f(k)) such sets, by
Lemma 3.2 there must be some integer i∗ for which α(G[Vi∗]) ≥ Ω(OPT/ log f(k)). Therefore,
the returned set must have size at least

Ω(OPT/ log f(k))
O(k/f(k)) = OPT · Ω

(
f(k)

k · log f(k)

)
= OPT · Ω

(
f(pw)

pw · log f(pw)

)
.

Therefore, to finish the proof of Lemma 3.1, it remains to prove Lemma 3.3.

ESA 2023

33:8 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

Proof of Lemma 3.3. Recall that the bags of P are denoted by B1, B2, . . . , B2n where Bh

is the h-th bag in the order from left to right. Let L = maxv∈Vi
ℓ(v) denote the maximum

length of a vertex v ∈ Vi. Recall that by our definition of Vi, it holds that if i = 0, then
L < 2k, and if i > 0, then all vertices in Vi have length between L/2 and L. We partition
the set Vi into sets Xr and Yr as follows.

For each r ∈ [1, ⌊2n/(2L)⌋], we define Xr = B2Lr ∩ Vi. These sets contain the vertices
of Vi that appear in bags B2L, B4L, . . . and the vertices in B2Lr can never occur in the
same bag as the vertices in B2Lr′ , for any r ̸= r′, since all vertices in Vi have length at
most L. Let X =

⋃
r Xr.

Denote the remaining vertices by Y = Vi \ X. We further partition Y into sets Yr for
r ∈ [1, ⌈2n/(2L)⌉], where Yr contains the vertices v ∈ Y that occur only in the bags Bj

in the interval j ∈ [2L(r − 1) + 1, 2Lr − 1].

It follows from definitions that X ∪ Y = Vi. See Figure 1 for an illustration.

Figure 1 Xr is the set of vertices in Vi that are in the (2Lr)-th bag. Yr (in red) is the set of
vertices in Vi that start after Xr−1 and end before Xr.

We prove the following claim.

▷ Claim 3.4. For all r ∈ N, both sets Xr and Yr have size at most 4k.

Proof of claim. For the set Xr, there is nothing to prove since each bag contains at most k

vertices. Let us consider the set Yr. First, we observe that because vertices of Yr occur only
in the bags B2L(r−1)+1, . . . , B2Lr−1, we have that∑

v∈Yr

ℓ(v) ≤ k · 2L, (1)

by the argument that each bag can contribute to the length of at most k vertices. Then, we
consider two cases: i > 0 and i = 0.

In the case when i > 0, we know that each vertex v ∈ Yr has length at least ℓ(v) ≥ L/2.
Together with Equation (1), this implies that |Yr| ≤ 4k.

In the case when i = 0, we have L ≤ 2k, but we do not have the lower bound on the length
of vertices in V0. In this case, we use the property that P is a nice path decomposition of G.
We know that the paths of vertices in Yr appear only in the bags B2L(r−1)+1, . . . , B2Lr−1
of P . There are 2L − 1 such bags, and because P is nice, each bag either introduces a
single vertex in Yr ∪ Xr or forgets a single vertex in Xr−1 ∪ Yr. Since all vertices of Yr

must be introduced in these bags, but there are only 2L − 1 such bags, this implies that
|Yr| ≤ 2L − 1 ≤ 4k. ◁

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:9

Finally, notice that because there are no bags that contain vertices from both Yr and Yr′

for r ̸= r′, there are no edges between Yr and Yr′ for r ≠ r′. Also, since Xr−1 and Xr have
2L − 1 bags between them and the maximum length of a vertex is L, it follows that no vertex
from Xr−1 occurs in a bag together with a vertex in Xr, and therefore there are no edges
between Xr and Xr′ for r ̸= r′. Therefore, a union of independent sets in Y1, . . . , Y⌈2n/(2L)⌉
is an independent set in Y , and a union of independent sets in X1, . . . , X⌊2n/(2L)⌋ is an
independent set in X.

As each graph G[Xr] and G[Yr] has at most 4k vertices, we use the given n
f(n) -approx-

imation algorithm to 4k
f(4k) -approximate maximum independent set in all of the graphs G[Xr]

and G[Yr]. We denote by X∗ the union of the results in the graphs G[Xr] and by Y ∗ the union
of the results in the graphs G[Yr]. Note that by previous arguments, α(G[X]) =

∑
r α(G[Xr])

and α(G[Y]) =
∑

r α(G[Yr]), and therefore X∗ is a 4k
f(4k) -approximation for independent set

in G[X] and Y ∗ is a 4k
f(4k) -approximation for independent set in G[Y]. Now, we observe that

because Vi = X ∪ Y , either α(G[X]) ≥ α(G[Vi])/2 or α(G[Y]) ≥ α(G[Vi])/2, and therefore
the larger of X∗ and Y ∗ is a 8k

f(4k) -approximation for independent set in G[Vi]. Note that
8k

f(4k) = O(k/f(k)), which is the desired approximation ratio. ◀

4 Approximation parameterized by treewidth

In this section, we finish the proof of Theorem 1.1. For the convenience of the reader, let us
re-state Theorem 1.1 here.

▶ Theorem 1.1. Let f : N → N be a function such that there exists an n
f(n) -approximation

algorithm for Maximum Independent Set, where n is the number of vertices of the input graph2.
Then there exists an O

(
tw·log f(tw)

f(tw)

)
-approximation algorithm for Maximum Independent Set,

where tw is the width of a given tree decomposition of the input graph.

Throughout this section we will use G to denote the input graph and tw to denote the
width of the given tree decomposition of G. We denote by k = tw + 1 the maximum size of a
bag in the given tree decomposition. Recall that f(k) = Θ(f(tw)).

Let T be the given tree decomposition of G. By Lemma 2.2 we assume that T is nice,
and moreover that for each leaf node t of T there exists a vertex v ∈ Bt that occurs only in
the bag Bt. Let OPT denote the size of a maximum independent set in G. Similarly to the
pathwidth case in Section 3, by using Lemma 2.5 we can assume in the rest of this section
that OPT ≥ n

f(k) .
Let L ⊆ V (T) be the set of all leaf nodes of T . If the number of leaf nodes is at least

|L| ≥ OPT·f(k)
k , then the unique vertices in these leaf bags already give us an independent

set with the desired approximation factor. Therefore, in the rest of this section we will also
assume that |L| < OPT·f(k)

k . With this assumption, we can invoke the following lemma with
ℓ = 2f(k).

▶ Lemma 4.1. There exists a set X ⊆ V (G) of size |X| ≤ k · |L|
ℓ such that for each connected

component of G − X there is a rooted tree decomposition of width at most k − 1 that has
at most ℓ leaf nodes. Such a set X and the tree decompositions of the components can be
computed in polynomial time.

2 We make mild assumptions on the properties of f , which are detailed in Section 2. Any “reasonable”
function f satisfies these assumptions.

ESA 2023

33:10 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

Proof. We prove the lemma constructively starting with X = ∅ and the tree decomposition T

of the entire graph. We also maintain a set of tree decompositions C of connected components
of G − X. We iteratively remove vertices from the graph G based on the structure of T as
follows.

Initially, we define the set of tree decompositions we will return as C = ∅, and we initially
assign T ′ = T as the tree decomposition from which we will “chop off” pieces with at most
ℓ leaf nodes into C. As long as T ′ has more than ℓ leaves, let t∗ be a node of T ′ such that
there are at least ℓ leaf nodes in the subtree T ∗ of T ′ rooted at t∗ and no descendant of t∗

has the same property. We add the vertices of Bt∗ to X and delete them from the graph
and all bags of T ′. This separates the vertices in the bags in T ∗ from the vertices in the
bags of the rest of T ′ and since no descendant of t∗ had more than ℓ leaves, all connected
components of T ∗ − t∗ have at most ℓ leaves.

We remove T ∗ from T ′, and add all connected components of T ∗ − t∗ into C. This
completes the iteration. When the process stops, vertices in G are either deleted (because
they belonged to Bt∗ in some iteration) or appear in some tree decomposition that was added
to C.

By construction, each connected component of G − X has a tree decomposition that is
given by a connected component in C. Each of these has fewer than ℓ leaves and did not
increase in width compared to T .

With these observations, the following claim finishes the proof of the lemma.

▷ Claim 4.2. It holds that |X| ≤ k · |L|
ℓ .

Proof of claim. In each iteration of the algorithm, the number of leaves of T ′ decreases by at
least ℓ, because T ∗ has more than ℓ leaves. Hence, this process terminates after at most |L|

ℓ

iterations. Each such iteration adds a subset of a bag of T to X (which contains at most k

vertices). Therefore, the total number of deleted vertices is at most k · |L|
ℓ . ◁

◀

We then assume to have X as in the statement of Lemma 4.1 with ℓ = 2 · f(k), and for
each connected component C of G − X a tree decomposition T C of width at most k − 1
with at most 2f(k) leaves. For a connected component C of G − X, let SC denote a fixed
maximum independent set in C. Since |X| ≤ k · |L|

2f(k) ≤ OPT/2, we know that the sum of
|SC | over all connected components C of G − X is at least OPT/2.

We can distinguish two cases for a single connected component C of G − X based on
whether a majority of SC appears in bags of nodes of degree at least 3 in T C or not. Formally,
let Q denote the set of vertices that appear in the bags of nodes of degree at least 3 in T C , i.e.,
Q =

⋃
t has degree > 2 in T C Bt. For each component C one of the following two alternatives

holds:
1. |SC \ Q| > |SC |/2, or
2. |SC ∩ Q| ≥ |SC |/2.

For handling the first case we can observe an easy pathwidth bound for C − Q, which
allows us to apply Lemma 3.1.

▶ Lemma 4.3. A path decomposition of C − Q of width at most k − 1 can be computed in
polynomial time given the tree decomposition T C .

Proof. A path decomposition witnessing this can easily be obtained from T C by deleting
all nodes with degree at least 3 as well as vertices in their bags from the decomposition,
resulting in a disjoint union of paths all of whose bags are of size at most k. These paths can
be concatenated in arbitrary order. ◀

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:11

For the second case we next give a lemma that splits up each C[Q] into O(log f(k)) many
disjoint subgraphs in which every connected component has at most O(k) vertices.

▶ Lemma 4.4. C[Q] can be divided into ℓ ≤ O(log f(k)) subgraphs H1, . . . , Hℓ, such that
V (C[Q]) =

⋃̇
i∈[ℓ]V (Hi), and for any i ∈ [ℓ], each connected component of Hi has at most 6k

vertices. Such H1, . . . , Hℓ can be computed in polynomial time.

Proof. Consider the tree decomposition T C of C obtained according to Lemma 4.1. In
particular, such a tree has at most 2f(k) leaves and therefore at most 2f(k) − 1 nodes with
degree at least 3.

We can replace each path between two nodes u and v of degree at least 3 in T C by two
edges incident to a shared new node whose bag consists of the union Bu ∪ Bv of the bags of
u and v. In this way we obtain a tree decomposition of C[Q] with at most 4 · f(k) nodes and
width at most 2k − 1.

For this tree decomposition we invoke Lemma 2.3 to obtain a tree decomposition T J of
C[Q] with width at most 6k − 1 and depth ℓ ∈ O(log f(k)). Now, we partition the vertices
in C[Q] into H1, . . . , Hℓ where Hi contains all vertices v such that the distance between the
root of T J and the highest bag in which v appears is exactly i − 1.

By definition all V (Hi) are pairwise disjoint and because T J is a tree decomposition of
C[Q], the union of all V (Hi) covers V (C[Q]). Moreover each connected component of any Hi

is by construction a subset of some bag of TJ and thus has at most 6k vertices as desired. ◀

With the previous lemmas in hand, we are now ready to finish the proof of Theorem 1.1
as follows.

Proof of Theorem 1.1. We begin by invoking Lemma 4.1. Let C be the set of connected
components in G − X.

For the next few paragraphs consider an arbitrary but fixed single connected component
C ∈ C. We first use Lemma 4.3 to invoke Lemma 3.1 on C − Q to obtain an independent set
SJ

C in C − Q of size at least Ω
(

f(k)
k·log f(k)

)
· α(C − Q).

Independently we invoke Lemma 4.4 and on each of the returned graphs Hi the assumed
n

f(n) -approximation for n-vertex graphs on each of its connected components. Due to their
small component size for each Hi this results in an independent set SHi

of size at least
Ω

(
f(k)

k

)
·α(Hi). Because the graphs Hi vertex-partition C[Q] and there are only O(log f(k))

many Hi, returning an SHi
with maximum size yields an O(k log f(k)/f(k))-approximate

solution for Maximum Independent Set on C[Q].
We know that either

1. α(C − Q) ≥ α(C)/2, or
2. α(C[Q]) ≥ α(C)/2.
Overall this implies that returning the larger of SJ

C and the maximum-size SHi yields an
O

(
k log f(k)

f(k)

)
-approximate solution for Maximum Independent Set on C. We denote the

returned independent set by SC .
Our final output is the union of all SC . Because all C are pairwise independent, the union

of SC is an independent set in G. Moreover, because
∑

C∈C α(C) ≥ OPT/2 and because of
the above approximation guarantee for each SC , we obtain the overall desired approximation
guarantee. ◀

ESA 2023

33:12 Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

5 Conclusion and open problems

In this paper we essentially settled the polynomial time approximability of Maximum
Independent Set when parameterized by treewidth. The most relevant open problem is to
extend our approach to give the improved time-approximation tradeoff result in Czumaj et
al. [7]. The current best known algorithm gives an r-approximation in 2tw/rnO(1) time. With
fine-tuning of the parameters and using the recent exponential-time approximation result of
Bansal et. al. [3], we believe our techniques could give an improved running time of 2o(tw/r)

when r is sufficiently high, e.g., r = logΩ(1) tw.
For us, the most interesting question is perhaps when r is tiny. Can we get a 2-

approximation algorithm that runs in time 2(1/2−ϵ)twnO(1)? Can we prove some concrete
lower bound in this regime? While the Gap-ETH lower bound 2tw/poly(r) (for sufficiently
large r) is immediate from [3], such techniques do not rule out anything when r is a small
constant.

A different possible direction for future research would be to formulate approximation
algorithms in terms of treewidth only for the more general Maximum Weight Induced
Subgraph problem studied by Czumaj et al. [7].

References
1 Noga Alon and Nabil Kahalé. Approximating the independence number via the theta-function.

Math. Program., 80:253–264, 1998. doi:10.1007/BF01581168.
2 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and independent

set in bounded degree graphs. Theory Comput., 7(1):27–43, 2011. doi:10.4086/toc.2011.
v007a003.

3 Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper
Nederlof. New tools and connections for exponential-time approximation. Algorithmica,
81:3993–4009, 2019.

4 Nikhil Bansal, Anupam Gupta, and Guru Guruganesh. On the lovász theta function for
independent sets in sparse graphs. SIAM J. Comput., 47(3):1039–1055, 2018. doi:10.1137/
15M1051002.

5 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Artur Czumaj, Magnús M Halldórsson, Andrzej Lingas, and Johan Nilsson. Approximation
algorithms for optimization problems in graphs with superlogarithmic treewidth. Information
processing letters, 94(2):49–53, 2005.

8 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

9 Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM Journal on
Discrete Mathematics, 18(2):219–225, 2004.

10 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

11 Magnús M. Halldórsson. Approximations of weighted independent set and hereditary subset
problems. J. Graph Algorithms Appl., 4(1):1–16, 2000. doi:10.7155/jgaa.00020.

12 Magnús M. Halldórsson and Jaikumar Radhakrishnan. Improved approximations of independ-
ent sets in bounded-degree graphs via subgraph removal. Nord. J. Comput., 1(4):475–492,
1994.

https://doi.org/10.1007/BF01581168
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.1137/15M1051002
https://doi.org/10.1137/15M1051002
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/05064299X
https://doi.org/10.7155/jgaa.00020

P. Chalermsook, F. Fomin, T. Hamm, T. Korhonen, J. Nederlof, and L. Orgo 33:13

13 Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages
329–337. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338269.

14 Johan Hastad. Clique is hard to approximate within n/sup 1-/spl epsiv. In Proceedings of
37th Conference on Foundations of Computer Science, pages 627–636. IEEE, 1996.

15 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In Automata, Languages and Programming: 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I
33, pages 226–237. Springer, 2006.

16 Ton Kloks. Treewidth: computations and approximations. Springer, 1994.

ESA 2023

http://dl.acm.org/citation.cfm?id=338219.338269

	1 Introduction
	2 Preliminaries
	3 Approximation parameterized by pathwidth
	4 Approximation parameterized by treewidth
	5 Conclusion and open problems

