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Abstract
We explore various generalizations of the online matching problem in a bipartite graph G as the
b-matching problem [8], the allocation problem [5], and the AdWords problem [13] in a beyond-
worst-case setting. Specifically, we assume that G is a (k, d)-bounded degree graph, introduced
by Naor and Wajc [14]. Such graphs model natural properties on the degrees of advertisers and
queries in the allocation and AdWords problems. While previous work only considers the scenario
where k ≥ d, we consider the interesting intermediate regime of k ≤ d and prove a tight competitive
ratio as a function of k, d (under the small-bid assumption) of τ(k, d) = 1 − (1 − k/d) · (1 − 1/d)d−k

for the b-matching and allocation problems. We exploit primal-dual schemes [6, 3] to design and
analyze the corresponding tight upper and lower bounds. Finally, we show a separation between the
allocation and AdWords problems. We demonstrate that τ(k, d) competitiveness is impossible for
the AdWords problem even in (k, d)-bounded degree graphs.
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1 Introduction

Ad auctions have emerged as a powerful tool for online advertisers seeking to reach targeted
audiences through search engines and other digital platforms. Therefore, there has been much
interest in optimizing their revenue generation in recent years. In an ad auction, advertisers
bid on specific keywords or phrases relevant to their products or services. When users query
search engines, in addition to the algorithmic search results, it also displays sponsored ads
that match the ad auctions. These ads are rapidly sold or assigned to potential buyers
(advertisers). In their seminal work, Mehta et al. [13] developed a model for optimizing the
allocation of ad auctions, building upon the concept of online bipartite matching of Karp et
al. [10]. There are n bidders, where each bidder i ∈ {1, . . . , n}, has a known daily budget
B(i). Ad auctions arrive online, one at a time, and each bidder i provides a bid b(i, j) for
buying the product j (displaying the ad). Once the bids are received, the seller’s algorithm
must allocate the ad to one of the interested bidders, and this decision is irrevocable. The
seller’s objective is to maximize the total revenue accumulated from the ad auctions. To
accomplish this, Mehta et al. [13] proposed a (tight) deterministic algorithm, which is
(1 − 1/e)-competitive in cases where the budget of each bidder is relatively larger than the
bids. This is a realistic assumption in the ad auction scenario.
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Consequently, a loss of 1/e can equate to billions of dollars in potential revenue loss each
year. In addition, the 1 − 1/e hardness result of Karp et al. [10] for online matching is
prevalent in all the problem extensions. Therefore, researchers have been inspired to pursue a
more comprehensive theoretical understanding that extends beyond the worst-case scenarios.

One line of research considers stochastic arrival models, which include random order
arrival and iid arrival models. In the random order model, a fixed input graph is prepared in
advance, and the online vertices are randomly arranged. On the other hand, the iid arrival
model involves drawing online vertices from a known or unknown distribution. With these
arrival models, researchers were able to demonstrate results that outperform the 1 − 1/e

competitive ratio in both online matching and vertex-weighted matching, as demonstrated
by various sources [4, 7, 9, 11, 12].

In this work, we consider a different line of research, which assumes structural properties
commonly encountered in ad allocation instances used for targeted advertising. Such
properties were first identified and formalized by Naor and Wajc [14]. We assume that G is
a bipartite (k, d)-bounded-degree graph (for brevity’s sake, we use the term (k, d)-graphs).

Specifically, we assume that advertisers are interested in a large number of ad slots (i.e.∑
j b(i, j) ≥ k · B(i) for all i) and every ad slot is of interest to a relatively small number of

advertisers (i.e. |N(j)| = |{i : b(i, j) > 0}| ≤ d for all j).
This structural assumption is relatively natural for ad allocation graphs. First, ad

campaigns often target relatively small, specific population segments, resulting in users
belonging to fairly few segments. When coupled with the limited number of active campaigns,
this creates a limited pool of ads that may be shown to a particular user, justifying the
assumption of a small degree for ad slots. Second, advertisers generally aim to target large
population segments. However, they often allocate insufficient budget to display ads to all
users within a segment. This leads to the high-degree assumption on the offline side since
every page view by a specific, targeted user corresponds to a vertex in the graph.

Related work. Buchbinder et al. [5] developed a primal-dual algorithm for AdWords that
attains a competitive ratio of (1−1/c)(1−Rmax), where c = (1+Rmax)1/Rmax . As Rmax → 0,
the competitiveness tends to 1 − 1/e. Buchbinder et al. also examined a setting where the
degree of each incoming query was upper bounded by d (i.e., (1, d)-graph) and produced
an algorithm with a competitive ratio of nearly 1 − (1 − 1/d)d for the AdWords with equal
bids per advertiser (a.k.a, the allocation problem). Azar et al. [3] showed that this ratio is
the best possible, also for randomized algorithms. The expression 1 − (1 − 1/d)d is always
greater than 1 − 1/e but approaches the latter as d increases. Naor and Wajc [14] introduced
the (k, d)-graphs class and applied it to the AdWords problem and online bipartite matching.
For k ≥ d, they developed deterministic online algorithms achieving a competitive ratio of
1 − (1 − 1/d)k for online bipartite matching and its vertex-weighted extension, where all
edges connected to an offline vertex i have the same weight. They also showed that this ratio
holds for AdWords with equal bids per advertiser, where each advertiser has the same bid
for all relevant keywords. The ratio of 1 − (1 − 1/d)k is the best possible for online bipartite
matching and the vertex-weighted extension if k ≥ d. For AdWords with arbitrary bids,
Naor and Wajc provided an algorithm with a competitive ratio of (1 − Rmax)(1 − (1 − 1/d)k).
They also demonstrated that if k ≥ d, the best possible competitiveness is upper-bounded by
(1 − Rmax)(1 − (1 − 1/d)k/Rmax). As k/d increases, the expression 1 − (1 − 1/d)k tends to 1,
and for k ≃ d it approaches 1 − 1/e.

A recent work [2], studied the online b-matching problem in (k, d)-graphs for k ≥ d. In
this scenario, each vertex a located on the left-hand side of the bipartite graph represents a
server with a capacity of ba, which implies that it can be matched with up to ba incoming
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α = 1/3 α = 1/2 α = 2/3 α = 3/4

d = 12 0.66765 0.70335 0.76464 0.80744
d = 24 0.66258 0.69997 0.76286 0.80634
d = 48 0.69997 0.69833 0.76200 0.80581
d = 120 0.65868 0.69737 0.76149 0.8055
d → ∞ 0.65772 0.69673 0.76116 0.8053

Figure 1 Comparison of τ(k, d) for various d, k = α · d values.

requests that appear as right-hand side vertices. The objective is to maximize the size of
the generated matching. Their results also hold for the vertex-weighted problem extension
and, thus, for AdWords and auction problems in which each bidder issues individual, equally
valued bids. They designed deterministic online algorithms for optimal competitiveness, for
k ≥ d instances. Later, in [1], they showed a non-trivial extension for the AdWords problem,
i.e., bids of arbitrary value. Specifically, they showed an algorithm for the general AdWords
problem that achieves competitiveness arbitrarily close to 1 for k ≥ d using the small-bids
assumption.

Our Contributions. We examine the interesting scenarios of (k, d)-graphs where k ≤ d.
First, we study the b-matching problem for k ∈ N. Our algorithm is based on a fractional
algorithm for b-matching. In Section 3, we provide a fractional algorithm with a competitive
ratio of τ(k, d), where τ(k, d) = 1 − d−k

d

(
1 − 1

d

)d−k
. The algorithm is based on two steps;

The first ensures that each offline vertex’s fractional load at the end of the algorithm is at
least k/d, while the second step uses the water-level algorithm to allocate the remaining
volume. We analyze the algorithm using the primal-dual scheme and a carefully chosen
potential function, f (k,d). Second, we prove that the bound τ(k, d) is tight. We use the
primal-dual techniques from [3] to analyze a class of (k, d)-graphs where any online algorithm
is at most τ(k, d)-competitive.

Next, for arbitrary k ∈ R+, let α = k/d ≤ 1, we prove that for AdWords in the equally-
valued bids case, it is possible to achieve almost τ(α)-competitive values (under the small bid
assumption), where τ(α) = 1 − (1 − α) · eα−1. It is evident that limd→∞,k=α·d τ(k, d) = τ(α).
Figure 1 presents a comparison of the bound of τ(k, d) as a function of α = k/d and d. The
algorithm uses a similar approach to our fractional matching algorithm on (k, d)-graph and
uses a ’smoother’ potential function f (α) as a function only of α. We round the fractional
algorithm outputs using the algorithm of [5].

Finally, we prove that achieving a τ(α)-competitive algorithm for the AdWords problem
for bids of arbitrary value is impossible. To do that, we significantly extend the lower bounds
of [3], which essentially uses a single scenario, to a multi-scenario instance; we show that
the primal-dual techniques can be adapted to analyze the multi-scenario. Subsequently, we
prove an improved upper bound by carefully choosing such a multi-scenario instance.

2 Preliminaries

The AdWords problem
The online ad auctions problem comprises a group of L = {1, . . . , n} = [n] buyers, where
bidder i has a daily budget of B(i). In the online setting, a group of R = [m] products
arrives one by one, and each buyer i places a bid b(i, j) for each product j. The objective is
to allocate the products to buyers to maximize the seller’s revenue. The allocation can be

ESA 2023
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Primal: Dual:

max
∑
j∈R

∑
i∈N(j)

b(i, j) · xi,j∑
j∈N(i)

b(i, j) · xi,j ≤ B(i), ∀i ∈ L (yi)∑
i∈N(j)

xi,j ≤ 1, ∀j ∈ R (zj)

xi,j ≥ 0, ∀i, j

min
∑
i∈L

B(i) · yi +
∑
j∈R

zj

b(i, j) · yi + zj ≥ b(i, j), ∀i, j (xi,j)
yi ≥ 0, ∀i ∈ L

zj ≥ 0, ∀j ∈ R

Figure 2 The fractional AdWords problem (the primal) and the corresponding dual problem.

integral, where a product goes to a single buyer, or fractional, where products can be divided
among several buyers. However, the sum of the fractions cannot exceed 1 for each product.
The revenue received from a buyer i is the minimum between the sum of the costs of the
products allocated to the buyer (times the allocated fraction) and the buyer’s total budget.
The problem can be formulated as a linear programming problem where the variable xi,j

denote the fraction of product j allocated to buyer i. The objective is to maximize the total
seller revenue, and the constraints guarantee that the sum of fractions for each product does
not exceed 1 and each buyer’s budget is not exceeded. See Figure 2 for the corresponding
fractional Linear Program and its dual.

▶ Definition 1 ((k, d)-bounded graph [14]). A bipartite graph G = (L, R, E) is (k, d)-bounded
if each left vertex i ∈ L has a degree d(i) ≥ k, and every right vertex j ∈ R has a degree
d(j) ≤ d. For ad allocations, we replace d(i) ≥ k with the property

∑
j b(i, j) ≥ k · B(i).

Rounding the fractional solution. For the AdWords problem with equal bids per advertiser,
in [5], they presented an algorithm that rounds the online fractional solution, such that if each
product’s bid price is small compared to the total bidder budget (the small bid assumption),
then this rounding phase only reduces the revenue by a factor of 1 − o(1) compared to the
fractional solution revenue. Formally, let bmax = maxj b(j) denote the maximum bid price,
and Bmin = mini B(i).

▶ Theorem (Theorem 5.4 in [5]). There exists a deterministic online rounding algorithm,
where the integral allocation algorithm’s revenue is at least 1 − o(1) times the revenue of the
fractional solution, provided that: (1 + bmax)

√
ln 2n
Bmin

= o(1)

3 Matching on bounded-degree graphs

In this section, we prove the tight bounds for online fractional bipartite matching on bounded-
degree graphs.

The b-matching problem
Consider a bipartite graph G = (L ∪ R, E), where L represents servers and R represents
requests. The set of servers, L, is known beforehand, and each server i ∈ L has an individual
capacity B(i), indicating that it can be matched with up to B(i) requests. Requests arrive
online, one by one, and when a new request j ∈ R arrives, its incident edges are revealed, and
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it must be immediately and irreversibly matched to an eligible server, provided one exists.
The objective is to maximize the number of matching edges. According to the AdWords
formulation, we have b(i, j) = 1 if (i, j) ∈ E and 0 otherwise.

A fractional version of the bipartite matching problems allows for every node j ∈ R to be
allocated partially with nodes i ∈ N(j) in fractions xi,j . We study the case where G is a
(k, d)-graph. Let τ(k, d) = 1 − d−k

d

(
1 − 1

d

)d−k
.

▶ Theorem 2. For the fractional online b-matching problem in (k, d)-graphs, where k ≤ d

and k, d ∈ N+, there exists a τ(k, d)-competitive algorithm.

In Section 4, we prove the result is tight for any (k, d) graph. Note that we may apply the
rounding algorithm of [5] (Theorem 5.4) to the b-matching problem.

3.1 The Two-Step-Water-Level algorithm

For a vertex i ∈ L, denote the level of vertex i as ℓ(i) =
∑

j∈N(i)
xij

B(i) . Note that, for (k, d)-
graphs, a naive online algorithm can ensure that the level of any i ∈ L at the end of the
algorithm is k/d. This is achieved by assigning each online vertex a 1/d fraction to each
neighbor. Since the degree of any j ∈ R is at most d, the algorithm is feasible. In addition,
since for any vertex i ∈ L, the degree is at least k · B(i), its level at the end of the algorithm
will be k/d. Accordingly, our algorithm consists of two steps. For the allocation of an online
vertex j ∈ R, the first step fractionally allocates the vertex’s volume to vertices in i ∈ N(j)
such that their degree is less or equal to k · B(i). As a result of this step, a level of at least
k/d is guaranteed at the end of the algorithm’s run for all i ∈ L. The second step runs the
water-level algorithm, continuously raising the level on the current set of minimum-level
vertices in N(j) on the remainder of the vertex j volume. We use the notations dj(i) and
ℓj(i) for the degree and level of vertex i after vertex j’s arrival, respectively. Given a function
f (k,d) : [0, 1] → [0, 1], which we will describe later, the algorithm also maintains a solution to
the dual variables.

Algorithm 1 The Two-Step-Water-Level algorithm.

Upon the arrival of a new vertex j ∈ R:
1. For each vertex i ∈ N(j), such that dj(i) ≤ k · B(i)

Increase (if necessary) the level of i to dj(i)/d

2. Using the leftover volume:
Increase the level of vertices in N(j) using the water-level algorithm

3. Update the dual variables, let ℓ(j) = mini∈N(j) ℓj(i) and ℓ̂(j) = max(k/d, ℓ(j)).
Set yi = f (k,d)(ℓ(i)), for i ∈ N(j)
Set zj = 1 − f (k,d)(ℓ̂(j))

3.2 The algorithm’s feasibility

We will prove that for a proper f (k,d),(for brevity’s sake, we use f for f (k,d) for the rest of the
section) the primal and dual solutions of the Two-Step-Water-Level (TSWL) algorithm
are feasible.

ESA 2023
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Figure 3 The function f (k,d)(x) for k = 2 and d = 5.

▶ Lemma 3. Given a function f : [0, 1] → [0, 1], where f is a monotone non-decreasing
function, the primal and dual solutions of the TSWL Algorithm are feasible at the end of the
algorithm.

Proof. First, we will show that the algorithm does not over-allocate online vertex j in step 1.
We assume that the algorithm is feasible until the arrival of vertex j. For any vertex i ∈ N(j),
its degree increases by 1, and by the algorithm definition, its level prior to the assignment
of vertex i is at least dj(i)−1

d . Therefore, for any such i, xij after the first step is at most
dj(i)

d − dj(i)−1
d = 1

d , and by the definition of (k, d)-graphs, |N(j)| ≤ d. Therefore, vertex j

fractional allocation at step 1 is at most |N(j)| · 1
d ≤ 1. By the definition of step 1, and since

G is (k, d)-graph, at the end of the sequence, the level of any vertex i ∈ L is at least k/d.
To prove that the dual is feasible, we need to verify for i ∈ N(j) that yi + zj ≥ 1

(b(i, j) = 1). If ℓ(j) ≥ k/d, then

yi + zj = f(ℓ(i)) + 1 − f(ℓ(j)) ≥ f(ℓj(i)) + 1 − f(ℓ(j)) ≥ 1,

where the first inequality is since ℓ(i) ≥ ℓj(i) and f is a monotone, non-decreasing function,
and the second inequality is because, by definition, ℓj(i) ≥ ℓ(j). If ℓ(j) < k/d, by definition
ℓ̂(j) = k/d, then we have

yi + zj = f(ℓ(i)) + 1 − f(ℓ̂(j)) ≥ f(k/d) + 1 − f(k/d) ≥ 1,

the first inequality is since the level of any vertex i ∈ L at least k/d and the end of the
algorithm, and since f is a monotone, non-decreasing function. ◀

3.3 The potential function
For a function f , we denote f ′

+(x)(f ′
−(x)) the right (left) derivative of f at point x.

▶ Lemma 4. For any k ≤ d,k ∈ N+ there exists f (k,d) = f : [0, 1] → [0, 1], such that
f, f ′ are monotone, non-decreasing functions.
f(0) = 0, f(1) = 1.
1 − f

(
d−i

d

)
+ f ′

−
(

d−i
d

)
= 1

τ(k,d) , for i ∈ {0, . . . , d − k}.
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Proof. Let β = 1/τ(k,d). We define f [0, 1] → [0, 1] as a piece-wise linear function.

f ′
+

(
d − i + 1

d

)
= f ′

−

(
d − i

d

)
= β ·

(
d − 1

d

)i

, for i ∈ {0, . . . , d − k − 1},

and

f ′
+(0) = f ′

−

(
k

d

)
= β ·

(
d − 1

d

)d−k

.

By definition, f ′ is a monotone, non-decreasing function, and since f ′(x) > 0, f is a monotone,
increasing function. We set f(0) = 0, we have

f(1) = f(0) + k

d
· f ′

−

(
k

d

)
+ 1

d
·

d−k−1∑
i=0

f ′
−

(
d − i

d

)

= 0 + k

d
· β ·

(
d − 1

d

)d−k

+ 1
d

·
d−k−1∑

i=0
β ·
(

d − 1
d

)i

= β ·

(
k

d
·
(

d − 1
d

)d−k

+ 1 −
(

d − 1
d

)d−k
)

= 1

Finally, we show by induction that for i ∈ {0, . . . , d−k}, we have 1−f
(

d−i
d

)
+f ′

−
(

d−i
d

)
= β.

For i = 0:

1 − f

(
d − i

d

)
+ f ′

−

(
d − i

d

)
= 1 − 1 + β ·

(
d − 1

d

)0
= β

and for i ∈ {1, . . . , d − k}:

1 − f

(
d − i − 1

d

)
+ f ′

−

(
d − i − 1

d

)
= 1 − f

(
d − i

d

)
+ 1

d
· f ′

−

(
d − i

d

)
+ d − 1

d
· f ′

−

(
d − i

d

)
= 1 − f

(
d − i

d

)
+ f ′

−

(
d − i

d

)
= β. ◀

3.4 The algorithm’s competitive ratio
We are now able to complete the proof of Theorem 2. By demonstrating that the value of
the primal is at least τ(k, d) = 1

β times the value of the dual solution, we conclude by the
weak duality that the TSWL is τ(k, d)-competitive.

We prove it by bounding the ratio of the increment of the primal and the dual objectives
for every arrival of a vertex j ∈ R. We denote ∆P (∆D) as the primal (dual) value increment.
Moreover, ∆D = ∆L + ∆R, where ∆L(∆R) refers to the increment from the left side (right
side). Now, we have the following key lemma:

▶ Lemma 5. For every arrival of a vertex j ∈ R, we have ∆D ≤ β · ∆P .

Proof. Given a vertex j ∈ R, let t = ℓ(j) · d and t⋆ = ⌈t⌉. We divide it into three cases:
Case 1: ∆P < 1. Here, t = d and vertex j’s neighbors have been fully matched, i.e.,

ℓ(i) = 1 for all i ∈ N(j). Then we would set ∆R = zu = 1 − f(1) = 0, thus we and
∆L ≤ f ′

−(1) · ∆P since f ′ in monotone, non-decreasing, therefore:

∆D = ∆L + ∆R ≤ f ′
−(1) · ∆P + 0 = f ′

−(1) · ∆P = β · ∆P

ESA 2023
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Case 2: ∆P = 1 and t > k. In this case, we know that zj = 1 − f(t/d). Next, let V1 be the
increment volume for j’s neighbors between t⋆ − 1 and t⋆. And Let V2 = 1 − V1, i.e., the
total volume of the increment for j’s neighbors below t⋆ − 1. We have

∆L ≤ V1 · f ′
−( t⋆

d
) + V2 · f ′

−( t⋆ − 1
d

)

= V1 · f ′
−( t⋆

d
) + V2 · d − 1

d
· f ′

−( t⋆

d
)

= d − 1
d

· f ′
−( t⋆

d
) + 1

d
· V1 · f ′

−( t⋆

d
)

≤ d − 1
d

· f ′
−( t⋆

d
) + 1

d
· (t − t⋆ + 1) · f ′

−( t⋆

d
)

= f ′
−( t⋆

d
) + 1

d
· (t − t⋆) · f ′

−( t⋆

d
)

where the first inequality is because f ′ in a monotone, non-decreasing function, and the
last inequality holds since we know that (note that j ∈ R, therefore d(j) ≤ d)

V1 ≤
(

t

d
− t⋆ − 1

d

)
· d(j) ≤

(
t

d
− t⋆ − 1

d

)
· d = t − t⋆ + 1

And, by f ’s definition:

∆R = 1 − f( t

d
) = 1 − f( t⋆

d
) − ( t

d
− t⋆

d
) · f ′

−( t⋆

d
) = 1 − f( t⋆

d
) − 1

d
· (t − t⋆) · f ′

−( t⋆

d
).

Therefore,

∆D = ∆R + ∆L ≤ 1 − f( t⋆

d
) + f ′

−( t⋆

d
) = β.

Case 3: ∆P = 1 and t ≤ k. By the algorithm definition, ∆R = zj = 1 − f(k/d), and
∆L = f ′

−(k/d). Thus, we have

∆D = ∆R + ∆L = 1 − f(k

d
) + f ′

−(k

d
) = β. ◀

4 Upper Bounds for fractional matching

In this section, we provide an instance indicating that τ(k, d) is the best possible competitive
ratio that can be achieved by any online algorithm.

▶ Theorem 6. For fractional online matching in (k, d)-graphs, no online algorithm can be
better than τ(k, d)-competitive. This upper bound also holds for randomized algorithms.

Proof. The hard instance is inspired by [3]. More concretely, we construct a parameterized
family of primal linear programs based on a candidate collection of input sequences for proving
the lower bound, where the objective function corresponds to optimizing the competitive
ratio. Given d, k, our instance is a bipartite graph G(L, R, E), where the number of vertices
is n = |L| = |R|. Given a deterministic online fractional algorithm, the adversary sequence
has d phases in total. Wherein in the first k phases, the adversary divides L into n/d

groups, each containing d vertices, and introduces a single online vertex adjacent to each
group. This guarantees d(i) ≥ k for all i ∈ L and that the offline can match k vertices
from each group. Accordingly, the adversary sets Lk+1 ⊂ L by dropping each group’s
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k-lowest load vertices (according to the online algorithm assignment). Next, in phase
t ∈ {k + 1, . . . , d − 1} = [k + 1, d − 1], the adversary divides Lt into |Lt|/d groups and
introduces a single online vertex adjacent to each group. The adversary defines Lt+1 ⊂ Lt by
dropping the lowest load vertex from each group. In the last phase, for each vertex i ∈ Ld,
the adversary introduces an online adjacent vertex.

Formally, the adversary defines for each phase t ∈ [d], Lt ⊆ L, where all the new edges in
phase t would be connected only to Lt, and the adversarial would set Ld ⊆ Ld−1 ⊆ · · · ⊆
L1 = L. Moreover, the adversary groups each set Lt into |Lt|/d disjoint groups, each of
size d, denoted as Lt,s, for s ∈ [|Lt|/d]. In phase t ∈ [d − 1], |Lt|/d online vertices arrive,
and the sth (s ∈ [|Lt|/d]) vertex has edges to the offline vertices in the group Lt,s. For
t ∈ [k], Lt = L, and the adversary uses the same (arbitrary) grouping, i.e., Lt1,s = Lt2,s for
t1, t2 ∈ [k], s ∈ [n/d]. According to the online algorithm assignment, the adversary sets Lk+1.
Specifically, for s ∈ [n/d], let Le

k,s ⊂ Lk,s the subset of the k-lowest load vertices in Lk,s after
phase k and Lm

k,s = Lk,s \ Le
k,s (the subset of the (d − k)-highest load vertices in Lk,s). We

define Lk+1 = ∪n/d
s=1Lm

k,s. note that,|Lk+1| = (1 − k/d) |Lk|. Similarly, the adversary sets Lt+1,
for t ∈ [k +1, d−1] as follow: For s ∈ |Lt|

d , let Le
k,s ⊂ Lk,j be the subset containing the lowest

total load vertex in Lt,s after phase t and Lm
t,s = Lt,s \ Le

t,s. We define Lt+1 = ∪|Lt|/d
s=1 Lm

t,s.
Note that, |Lt+1| = (1 − 1/d) |Lt| for t ∈ [k + 1, d − 1]. Finally, in phase d, for each vertex
i ∈ Ld, the adversary introduces an online adjacent vertex. We set n as a large constant,
ensuring that |Lt| for t ∈ [d] is a multiple of d.

Clearly, the optimal matching size is n since it matches online vertices of phases t ∈ [k]
to the vertices Le

k,s (for s ∈ [n/d]), and for t ∈ [k + 1, d − 1] match the s’th online vertex of
phase t to the vertex in Le

t,s. The rest of the Ld vertices are matched in the last phase.

4.1 The primal linear program
We would use xm

k (xe
k) as the average load assigned in phases [k] on vertices in Lm

k,s(Le
k,s) for

s ∈ [n/d]. Similarly, for t ∈ [k + 1, d − 1] we use xm
t (xk

t ) as the average load assigned in phase
t to vertices in Lm

t,s(Le
t,s). For t ∈ [k + 1, d − 1], we use um

t (ue
k) as the average total load

assigned before phase t to vertices in Lm
t,s(Le

t,s), and um
d as the average total load assigned

before phase d to Ld.

max |Lk|
d ((d − k)xm

k + k · xe
k) +

d−1∑
t=k+1

|Lt|
d

(xe
t + (d − 1)xm

t ) + |Ld|(1 − um
d )

(d − k) · xm
k + k · xe

k ≤ k (vk)
(d − 1) · xm

t + xe
t ≤ 1 ∀t ∈ [k + 1, d − 1], (vt)

xe
k ≤ xm

k (mk)
xe

t + ue
t ≤ xm

t + um
t ∀t ∈ [k + 1, d − 1], (mt)

d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1 (ck)

d · (xm
t + um

t ) ≤ (d − 1) · um
t+1 + ue

t+1 ∀t ∈ [k + 1, d − 2], (ct)
d · (xm

d−1 + um
d−1) ≤ d · um

d (cd−1)
xm

t , um
t , xe

t , ue
t ≥ 0 ∀t ∈ [k, d]

Constraint vk implies that the total volume in vertices in Lm
k (note, |Lm

k |
|Lk| = d−k

d ) plus
the total volume of vertices in Le

k (note, |Le
k|

|Lk| = k
d ) does not exceed the total volume in the

first k phases. Constraint vt for t ∈ [k + 1, d − 1] implies that the total volume of vertices
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in Lm
t (note, |Lm

t |
|Lt| = d−1

d ) plus the total volume of vertices in Le
t (note, |Le

t |
|Lt| = 1

d ) does not
exceed the total volume assigned in those phases. Constraints mt for t ∈ [k, d − 1] preserve
the monotonicity property, i.e., the average total load of vertices in Lm

t,s is higher than the
average total load of vertices in Lm

e,s, by the groups’ definition. Constraints ct for t ∈ [k, d−1]
preserve the total volume of Lm

t after phase t as the total volume of Lt+1 prior to phase
t + 1. Finally, the objective function captures the fractional volume assigned on L.

4.2 The dual linear program
The dual of the linear program is:

min k · vk +
d−1∑
t=k

vt + |Ld|

(d − k) · vk − mk + d · ck ≥ n · (1 − k/d) (xm
k )

k · vk + mk ≥ n · k

d
(xe

k)

(d − 1) · vt − mt + d · ct ≥ n · (1 − k/d) · (1 − 1/d)t−k ∀t ∈ [k + 1, d − 1], (xm
t )

vt + mt ≥ n

d
· (1 − k/d) · (1 − 1/d)t−k−1 ∀t ∈ [k + 1, d − 1], (xm

t )

− mt − (d − 1) · ct−1 + d · ct ≥ 0 ∀t ∈ [k + 1, d − 1], (um
t )

mt − ct−1 ≥ 0 ∀t ∈ [k + 1, d − 1], (ue
t )

− d · cd−1 ≥ −n · (1 − k/d) · (1 − 1/d)d−k−1 (um
d )

4.3 Constructing the dual solution
By assuming the constraints are tight, we have by constraint (um

d ): cd−1 = n
d ·(1 − 1/d)d−k−1

,

by summing constraints (um
t ) and (ue

t ) for all t ∈ [k + 1, d − 1]: ct = ct−1, and, therefore,

ct = n

d
· (1 − 1/d)d−k−1

, for all t ∈ [k, d − 1].

By summing constraints (xm
k ) and (xe

k) for all t ∈ [k + 1, d − 1]: d · vk + d · ck = n, therefore:

vk = n · 1 − d · ck

d
= n

d
·
(

1 − (1 − k/d) · (1 − 1/d)d−k−1
)

.

By summing constraints (xm
t ) and (xe

k) for all t ∈ [k + 1, d − 1], we have: d · vt + d · ct =
n · (1 − k/d) · (1 − 1/d)t−k−1, therefore:

vt = n

d
· (1 − k/d) · (1 − 1/d)d−k−1

(
(1 − 1/d)t−d − 1

)
, for all t ∈ [k + 1, d − 1].

Finally, by constraint xe
k, mk = n·k

d − k · vk, and by constraint xm
t , mt = n

d · (1 − k/d) ·
(1 − 1/d)t−k−1 − vt. It is easy to verify that the dual is feasible. The value of the dual
objective function:

k · vk +
d−1∑

t=k+1
vt + |Ld| = n · k

d
·
(

1 − (1 − k/d) · (1 − 1/d)d−k−1
)

+
d−1∑

t=k+1

n

d
· (1 − k/d) · (1 − 1/d)d−k−1

(
(1 − 1/d)t−d − 1

)
+ n · (1 − k/d) · (1 − 1/d)d−k−1

= n · τ(k, d)
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Therefore, there is a feasible solution for the dual, with the value n·τ(k, d). By weak duality,
and since the primal captures the objective of the online algorithm, any online algorithm
will fractionally match at most n · τ(k, d) vertices. Finally, since by our construction, the
optimal value is n, any online is at most τ(k, d) competitive as required. See discussion in [3]
for applying the lower bound also on randomized algorithms. ◀

5 Allocation problem

We improve the competitive ratio for the allocation problem on (k, d)-graphs for k ≤ d.

The allocation problem
In the allocation problem, a seller is interested in selling products to a group of buyers
L = [n], where buyer i ∈ L has a budget B(i), and R is a set of products the seller introduces
one by one. Each product j ∈ R has a fixed price b(j). Upon the arrival of a product, the
buyers announce to the seller whether they are interested in buying the current product for
the set price. The seller then decides (instantly) which of the interested buyers to sell the
product to. Using the AdWords formulation, we have b(i, j) ∈ {0, b(j)} for all i.

For k ≥ d, there exists a trivial online fractional solution. Assume k ≤ d and let α = k/d

and τ(α) = 1 − (1 − α) · eα−1, we will show that there exists a τ(α)-competitive fractional
online algorithm.

▶ Theorem 7. For the fractional online allocation problem in (k, d)-graphs, where α = k/d,
there exists a τ(α)-competitive algorithm.

Note that the upper bound of Section 4 also holds for the allocation problem; hence, the
result is tight. The algorithm and analysis are similar to the upper bound in Section 4,
except we use a smooth potential function f (α).

Let α = k/d, τ(α) = 1 − (1 − α) · eα−1, and for a fixed alpha, set β = 1/τ(α), and define
g(x) = 1 + β · (exp(x − 1) − 1), and f (α),

f (α)(x) =
{

g(x) for x ∈ [α, 1]
x·g(α)

α for x ∈ [0, α),

▶ Lemma 8. For f = f (α):
f(0) = 0, f(1) = 1.
f and f ′ are continuous functions in the segment [0, 1], and f, f ′ are monotone non-
decreasing functions.
For x ∈ [α, 1] we have 1 − f(x) + f ′(x) = β

Proof. Clearly, f(x), f ′(x) are continuous functions in the segments [0, α), (α, 1]. In addition,
f−(α) = g(α) = f+(α), so f is a continuous function and

f ′
+(α) = g′(α) = β · exp(α − 1)

= β · α exp(α − 1)
α

= β · (1/β − 1 + exp(α − 1))
α

= 1 + β · (exp(α − 1) − 1)
α

= g(α)
α

= f ′
−(α),

therefore, f ′ is continuous as well. And f ′(x) > 0 for x ∈ [0, 1]. Moreover, f ′′(x) = 0
for x ∈ [0, α] and f ′′(x) = exp(x − 1)/β ≥ 0; hence, f ′ is monotone non-decreasing.
f(0) = 0 · g(α)/α = 0, and f(1) = g(1) = 1 + β · (exp(1 − 1) − 1) = 1. Finally, for x ∈ [α, 1]
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(a) f(x).
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Figure 4 The functions f (α) and f ′(α), for α = 0.4.

1 − f(x) + f ′(x) = 1 − g(x) − g′(x)
= 1 − (1 + β · (exp(x − 1) − 1)) + β · exp(x − 1) = β. ◀

5.1 The Two-Step-Water-Level Allocation algorithm

For i ∈ L, let N(i) be the set of products that buyer i is interested in. Let T (i) =
∑

j∈N(i)
b(j)

B(i)
be the ratio between the sum of prices in which buyer i is interested, to its budget, and let
G(i) =

∑
j∈N(i) b(j) · xi,j be the total gain of bidder i, the level of buyer i ∈ L, defined as

ℓ(i) = G(i)
B(i) . Accordingly, we define the degree and level after the arrival of product j, as

T j(i) =
∑

t∈N(i),t≤j b(t), and ℓj(i) = Gj(i)
B(i) , where Gj(i) =

∑
t∈N(i),t≤j b(t) · xi,t.

Algorithm 2 The Two-Step-Water-Level Allocation algorithm.

Upon the arrival of a new product j ∈ R:
1. For each buyer i ∈ N(j), such that T j(i) ≤ k

Increase (if necessary) Gj(i), the gain of buyer i, to T j(i)/d

2. Using the leftover volume of product j:
Increase the gain of bidders in N(j) using the water-level algorithm (according to

the buyer’s level)
3. Update the dual variables, let ℓ(j) = mini∈N(j) ℓj(i) and ℓ̂(j) = max(k/d, ℓ(j)).

Set yi = f (α)(ℓ(i)), for i ∈ N(j)
Set zj = 1 − f (α)(ℓ̂(j))

5.2 The algorithm’s feasibility
First, we will prove that for a proper f (α) (for brevity’s sake, we use f for f (α) for the rest
of the section), the primal and the dual solutions of Two-Step-Water-Level Allocation
algorithm (TSWLA) are feasible.
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▶ Lemma 9. Given a function f : [0, 1] → [0, 1], where f is monotone, non-decreasing the
primal and dual solutions of the TSWLA algorithm are feasible at the end of the algorithm.

Proof. First, we will show that the algorithm does not over-allocate product j in step 1.
We assume that the algorithm is feasible until the arrival of product j, and we bound the
value of xi,j after step 1, and we will show that xi,j ≤ 1/d, for all i ∈ N(j). For i ∈ N(j),
by our assumption that the algorithm is feasible until the arrival of product j, its level
before the arrival of j is at least T j(i)−b(j)/B(i)

d , by rearranging the terms xi,j ≤ 1
d . Second,∑

i∈N(j) xi,j ≤ |N(j)|
d ≤ 1, by d’s definition. In the second step, the water level algorithm

never increases the level above one, and, therefore, G(i) ≤ B(i) for all i ∈ L. We will show
that for any monotone, non-decreasing function f : [0, 1] → [0, 1], the dual is feasible at the
end of the algorithm’s run. We have for all i ∈ L, ℓ(i) ≥ min(T (i),k)

d ≥ k/d, where the last
inequality is by k’s definition. The dual constraints: If ℓ(j) ≤ k/d, for i ∈ N(j), we have

b(j) · yi + zj = b(j) · f(ℓ(i)) + b(j) · (1 − f(k/d)) ≥ b(j),

since ℓ(i) ≥ k/d for all i ∈ L at the end of the algorithm and f is monotone, non-decreasing.
If ℓ(j) > k/d, we have,

b(j) · yi + zj ≥ b(j) · f(ℓj(i)) + b(j) · (1 − f(ℓ̂(j))) ≥ b(j),

where the first inequality is because ℓ(i) only increases, and f is monotone, non-decreasing. ◀

5.3 Algorithm’s competitive ratio
We are now able to complete the proof of Theorem 7. By proving that the value of the
Primal is at least the τ(α) = 1

β times the value of the dual solution, then, by weak duality,
we will conclude the TSWLA is τ(α)-competitive as required.

We prove it by bounding the ratio of the increment of the primal and the dual for
every arrival. We denote ∆P (∆D) to denote the increment for the primal (dual) variable.
Moreover, ∆D = ∆L + ∆R, where ∆L(∆R) refers to the increment from the left side (right
side). Now, we have the following key lemma:

▶ Lemma 10. For every arrival of a product j ∈ R, we have ∆D ≤ ∆P · β.

Proof. At every step t, we have ∆R = zt, ∆L =
∑

i∈N(j) ∆Li, where ∆Li = B(i) ·(yj
i −yj−1

i )
We note that, d∆Pi

dxi,j
= b(j). Therefore, ∆P = b(j) ·

∑
i∈N(j) xi,j .

d∆Li

dxi,j
= B(i) · dyi

dxi,j
= B(i) · b(j)

B(i) · f ′(ℓ(i)) ≤ b(j) · f ′(ℓj(i)) = b(j) · f ′(ℓ̂(j))

where the inequality is because f ′ is a monotone non-decreasing function, and the last
equality is since f ′(x) = f ′(α) for x ∈ [0, α].

Therefore, we have ∆L ≤ b(j) · f ′(ℓ̂(j))
∑

i∈N(u) xi,j

Case 1.
∑

i xi,j < 1. In this case, ℓ(j) = 1, ∆R = zj = 1 − f(1) = 0, and we have

∆D = ∆L + ∆R ≤ b(j) · f ′(1) ·
∑

i

xi,j = (1 − f(1) + f ′(1)) · ∆P = β · ∆P

Case 2.
∑

i xi,j = 1, ℓ(j) > k/d. We have ∆R = zj = b(j) · (1 − f(ℓ(j)) and ∆P = b(j).

∆D = ∆L+∆R ≤ b(j)·f ′(ℓ(j))+b(j)·(1−f(ℓ(j)) = b(j)·(1−f(ℓ(j))+f ′(ℓ(j))) = β ·∆P

Case 3.
∑

i xi,j = 1, ℓ(j) ≤ k/d. Again, we have ∆P = b(j). We know that ∆R = zj =
b(u) · (1 − f(k/d)). Note that f ′(x) = f ′(k/d) for x ∈ [0, k/d].

∆D = ∆L+∆R ≤ b(j)·f ′(ℓ(j))+b(j)·(1−f(k/d)) = b(j)·(1−f(k/d)+f ′(k/d)) = β ·∆P . ◀
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6 Upper Bounds for the Adwords problem

In this section, we prove that τ(k, d) competitiveness is impossible for the Adwords problem.

▶ Theorem 11. For fractional AdWords in (k, d)-graphs, there exists k, d and fixed ϵ > 0,
such that no online algorithm can be better than (τ(k, d) − ϵ)-competitive.

The hard instance is composed of several scenarios. The intuition behind the scenario
is that if for a certain j, b(i1, j) > b(i2, j), then, on the one hand, the online algorithm
should allocate the item to i1 in order not to lose its higher price, and, on the other hand,
by doing so the optimal allocation can use item j to i2. We amplify this example and prove
an improved upper bound for α = 1/2 (k = d/2) and B(i) = 1 for all i ∈ L. First, we bound
the gain of a subset of the bidders after several sequence steps.

6.1 Bounding the gain of a subset of the bidders

Let Q ⊆ L be a subset of vertices. After several sequence steps, we bound the total online
gain that can be extracted from Q, where the degree of i ∈ Q is already k, and the adversary
determined how many bidders from Q have already exhausted their budget in previous steps.
We compute an upper bound on the total gain of an online algorithm on Q as a function of
the average online gain on Q in previous steps by defining the rest of the sequence for this
subset Q and bounding the total gain using a linear program. The rest of the sequence for
this Q is as the second part of Section 4. Specifically, it defines Qk+1 as a subset of Q in
which the current gain in OPT is 0. In phase t ∈ [k + 1, d − 1], the adversary divides Qt into
|Qt|/d groups and introduces for each group’s bidders a product with an equal bid value of 1.
The adversary defines Qt+1 by dropping the lowest gain bidder from each group. In the last
phase, for each bidder i ∈ Qd, the adversary introduces a product with a bid of 1.

Formally, given such Q and the decomposition of Q into Qe
k, Qm

k where the average gain in
Qe

k is, at most, the average gain of Qm
k For t ∈ [k + 1, d], the adversarial would define at each

phase t ∈ [k + 1, d], Qt ⊆ Q, where Qk+1 = Qm
k . The adversary groups each Qt into |Qt|/d

disjoint groups, each of size d, denoted as Qt,s, for s ∈ [|Qt|/d]. In phase t ∈ [k + 1, , d − 1],
|Qt|/d products arrive and the s’th (s ∈ [|Qt|/d]) bid b(i, s) = 1 to i ∈ Qt,s (and 0 otherwise).
In phase t ∈ [k +1, , d−1], |Qt|/d products arrive and the s’th (s ∈ [|Qt|/d]) product bids are
b(i, s) = 1 to all the bidders in group i ∈ Qt,s. Qt+1 for t ∈ [k + 1, d − 1] is set as follows: For
s ∈ |Qt|

d , let Qe
k,s ⊂ Qk,s be the subset containing the lowest gain bidder in Qt,s after phase

t and Qm
t,s = Qt,j \ Qe

t,j . We define Qt+1 = ∪|Qt|/d
s=1 Qm

t,s. note that, |Qt+1| = (1 − 1/d) |Qt| for
t ∈ [k + 1, d − 1]. Let GQ be the total gain of Q vertices.

Bounding GQ as a function of previous phases. Next, we bound the total gain of GQ, given
that after phase k, a decomposition of Q into Qe

k, Qm
k exists (i.e., Q = Qe

k ∪Qm
k ) such that xm

k

(xe
k) is the average load on Qm

k (Qe
k) and xe

k ≤ xm
k (constraint m̃k). Assuming that the total

gain of Q until (not including) step k +1 is Gk
Q, we have |Qm

k |
|Q| ·xm

k + |Qe
k|

|Q| ·xe
k ≤ Gk

Q

|Q| , constraint
ṽk). We will define Qk+1 = Qm

k , and accordingly, we have d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1

(constraint ñk). Denote V Q = GQ
k

|Q| , and rQ = |Qm
k |

|Q| the following Linear program, will bound
G(V Q, rQ) the total gain that can be extracted from Q.
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G(V Q, rQ) = max |Q| · V Q +
∑d−1

t=k+1
|Qt|

d · (xe
t + (d − 1)xm

t ) + |Qd| · (1 − um
d ),

such that:

rQ · xm
k + (1 − rQ) · xe

k ≤ V Q (ṽk)
(d − 1) · xm

t + xe
t ≤ 1 ∀t ∈ [k + 1, d − 1], (vt)

xe
k ≤ xm

k (m̃k)
xe

t + ue
t ≤ xm

t + um
t ∀t ∈ [k + 1, d − 1], (mt)

d · xm
k ≤ (d − 1) · um

k+1 + ue
k+1 (ñk)

d · (xm
t + um

t ) ≤ (d − 1) · um
t+1 + ue

t+1 ∀t ∈ [k + 1, d − 2], (ct)
d · (xm

d−1 + um
d−1) ≤ d · um

d (cd−1)
xm

t , um
t , xe

t , ue
t ≥ 0 ∀t ∈ [k, d]

6.2 The Scenarios

Let L = U ∪ D, such that |U | = |D| = n, We divide U(D) into n/k disjoint groups Uk,s(Dk,s)
such that |Uk,s| = |Dk,s| = k, for s ∈ [n/k].

Phase 0. For each s ∈ [n/k], introduce a product j, such that b(i, j) = 0.26 · d for i ∈ Uk,s

and b(i, j) = 0.24 · d for j ∈ Dk,s. Any online algorithm must determine γ =
∑

i∈Uk,s,j
xi,j/n,

the average portion of the items of phase 0 assigned to U . Next, the adversary introduces
products of phase k (phases [k − 1] are empty).

First Scenario. For each s ∈ [n/(2 · k)], the adversary introduces two products j1, j2, such
that b(i, j1) = 0.24 · d for i ∈ Uk,2·s−1 ∪ Uk,2·s and b(i, j2) = 0.26 · d for i ∈ Dk,2·s−1 ∪ Dk,2·s.

Second Scenario. For each s ∈ [n/k], the adversary introduces a product j, such that
b(i, j) = 0.24 · d for i ∈ Uk,s and b(i, j) = 0.26 · d for j ∈ Dk,s. Any online algorithm must
determine δ =

∑
i∈Uk,s,j

xi,j/n, the average portion of the items of phase k of the second
scenario assigned to U . Note that, in both scenarios, the current degree of each vertex i ∈ L

is k. Using the values γ, δ, we bound the average gain per bidder of U(D) up to phase k for
scenario o, denoted as V U(o)(V D(o)). For the first scenario:

V U(1) = 1
n

·
(n

k
· γ · 0.26 · d + n

d
· 0.24 · d

)
= 0.52 · γ + 0.24

V D(1) = 1
n

·
(n

k
· (1 − γ) · d · 0.24 · d + n

d
· 0.26 · d

)
= 0.74 − 0.48 · γ

For the second scenario:

V U(2) = 1
n

·
(n

k
· γ · 0.26 · d + n

k
· δ · 0.24 · d

)
= 0.52 · γ + 0.48 · δ

V D(2) = 1
n

·
(n

k
· (1 − γ) · d) · 0.24 · d + n

k
· (1 − δ) · 0.26 · d

)
= 1 − 0.48 · γ − 0.52 · δ

Similarly, we denote γOPT, δOPT as the corresponding values for the optimal allocation.
After setting those values (for a certain case), the gain of OPT on this subset would
be determined. Then, the adversary can omit bidders in the corresponding subset, i.e.,
determining rQ for Q ∈ U, D.
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Continuing the first scenario. In the first scenario, the adversary sets γOPT = 0 (i.e., uses
the products of phase 0 to increase the gain of vertices only in D). Taking into account
also the products of phase k of the first scenario, it omits the rU = 0.24 portion from U

and the rD = 0.74 portion from D, and continues the sequence for U, D separately using
Subsection 6.1 construction.

Formally, for s ∈ [n/k], let Ue
k,j ⊂ Uk,s be the subset of the (rU · k)-lowest gain vertices

in Uk,s after phase k and Um
k,s = Uk,s \ Ue

k,s (the subset of the ((1 − rU ) · k)-highest load
vertices in Uk,j), and define Uk+1 = ∪sUm

k,s. Accordingly, for s ∈ [n/k], let De
k,s ⊂ Dk,s be

the subset of the (rD · k)-lowest gain vertices in Uk,s after phase k and Um
k,j = Uk,j \ Qe

k,j

(the subset of the ((1 − rD) · k)-highest load vertices in Qk,j). We continue the scenario
separately for U and D using Subsection 6.1 construction. We bound the total gain of this
scenario using the LP G(V Q, rQ). Specifically, the total gain is at most (as a function of γ):

G(V U , rU ) + G(V D, rD) = G(0.52 · γ + 0.24, 0.24) + G(0.74 − 0.48 · γ, 0.74).

Continuing the second scenario. In the second scenario, the adversary uses γOPT = 1,
δOPT = 0 (i.e., uses the products of phase 0 to increase the gain of vertices only in U and the
products of the second scenario of phase k to increase the gain of vertices only in D). In this
case, it omits the rU = 0.52 portion from U and the rD = 0.52 portion from D. Similarly to
the previous case, we have:

G(V U , rU ) + G(V D, rD) = G(0.52 · γ + 0.48 · δ, 0.52) + G(1 − 0.48 · γ − 0.52 · δ, 0.52).

By our construction definition, in all scenarios, the optimal value is 2 · n. Therefore, in order
to bound c, we have the following LP

max c

such that: G(0.52 · γ + 0.24, 0.24) + G(0.74 − 0.48 · γ, 0.74) ≥ 2 · n · c

G(0.52 · γ + 0.48 · δ, 0.52) + G(1 − 0.48 · γ − 0.52 · δ, 0.52) ≥ 2 · n · c

By solving it numerically, we have for d = 100, k = 50, we have:

c ≤ 0.69485 < τ(0.5) ≂ 0.6967.
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