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Abstract
Scheduling with testing falls under the umbrella of the research on optimization with explorable
uncertainty. In this model, each job has an upper limit on its processing time that can be decreased
to a lower limit (possibly unknown) by some preliminary action (testing). Recently, Dürr et al.
[10] has studied a setting where testing a job takes a unit time, and the goal is to minimize total
completion time or makespan on a single machine. In this paper, we extend their problem to the
budget setting in which each test consumes a job-specific cost, and we require that the total testing
cost cannot exceed a given budget. We consider the offline variant (the lower processing time is
known) and the oblivious variant (the lower processing time is unknown) and aim to minimize the
total completion time or makespan on a single machine.

For the total completion time objective, we show NP-hardness and derive a PTAS for the offline
variant based on a novel LP rounding scheme. We give a (4 + ϵ)-competitive algorithm for the
oblivious variant based on a framework inspired by the worst-case lower-bound instance. For the
makespan objective, we give an FPTAS for the offline variant and a (2 + ϵ)-competitive algorithm
for the oblivious variant. Our algorithms for the oblivious variants under both objectives run in
time O(poly(n/ϵ)). Lastly, we show that our results are essentially optimal by providing matching
lower bounds.
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38:2 Scheduling with a Limited Testing Budget

1 Introduction

With increased interest in applying scheduling algorithms to solve real-life problems, many
models and methods have been addressing the uncertainty in the scheduling community.
Several elegant models that capture uncertainty have been studied in the past two decades,
most of which fall under the umbrella of the research on robust optimization [24, 7, 23, 29] or
stochastic optimization [16, 18, 15, 14]. In those settings, the uncertainty is usually described
by the input. In robust optimization, the input consists of several scenarios, while the input
is sampled from a known distribution in stochastic optimization. In some practical cases, we
can gain additional information about the input by paying extra costs, e.g., money, time,
energy, memory, etc. This model is also known as explorable uncertainty, which aims to
study the trade-offs between the exploration cost and the quality of a solution.

An intriguing scheduling model for explorable uncertainty was proposed by Dürr et al. [10]
under the name of scheduling with testing. In their model, before executing a job, one can
invest some time to test that job, potentially reducing its processing time. A practical use
case is code optimization, where we could either simply run programs/codes (jobs) as they
are or preprocess them through a code optimizer to hopefully improve their execution times.

Their model considers the test cost as the time spent by the machine, which is certainly
important and captures many applications stated in [10]. However, it may fail to describe
some scenarios. For example, in the code optimization problem, the code optimizer may be
an expert who might need to be employed by other companies. This situation is usually
faced by cloud computing companies [25, 6], which accept some tasks and want to assign
them to servers. They can employ experts to optimize some time-intensive tasks to speed up
the execution. In this way, the server can finish more tasks, thus creating more profit for the
company. After optimizing, the experts return the optimized tasks to the cloud computing
company, and the company can start to assign tasks to servers. Thus, optimizing does not
use servers’ time. Different tasks may require a different amount of effort from the expert to
optimize and therefore needs different cost. The company has a fixed budget and aims to
select some tasks to optimize (test) such that the total processing time of tasks is minimized.

Informally, we consider a natural variant of the model proposed in [10], in which we are
given a set of n jobs and a total budget B for testing. Each job j has an upper limit on the
processing time p∧

j and testing cost cj . After testing, the processing time of job j decreases
to a lower limit p∨

j , which is possibly hidden for the algorithms. We refer to the model as the
offline version if p∨

j is known by the algorithm for all jobs j; otherwise, it is called oblivious
version. The paper considers two objectives: the total completion time objective and the
makespan objective, which are two well-studied objectives for scheduling problems in the
literature [19, 5, 22, 9]. The formal definition of our problem is stated in Section 2.

Note that the offline version of the model in Dürr et al. [10] is easy, even if testing a job j

requires a job-specific amount of time tj . Testing a job is then beneficial if p∧
j − p∨

j > tj . In
contrast, we show that the offline version of our budgeted variant of the problem is NP-hard,
assuming each job takes a job-specific amount of budget to be tested. We study both the
offline and the oblivious settings. Further, we differentiate between the uniform cost variant,
where each job takes one unit of budget to be tested, and a non-uniform variant, where the
testing cost is job-specific.

1.1 Our Contributions
The paper studies the problem of Scheduling with a Limited Testing Budget (SLTB) under
both the total completion time minimization objective (SLTBTC) and the makespan min-
imization objective (SLTBM). For both objectives, we further distinguish the offline and
oblivious settings.
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Our main results are summarized in Table 1. For the objective of total completion time
minimization, in the offline setting, we show that the problem is NP-hard even when all the
lower processing times are 0 by a reduction from the Partition problem, and then give a
PTAS. The PTAS is derived based on a novel LP rounding scheme. Further, we find that
there exists an FPTAS if all the jobs share the same lower processing time. For the oblivious
setting, we give a (4 + ϵ)-competitive deterministic algorithm for any ϵ (we use the concept
of the competitive ratio following the previous work [10]). The ratio is almost tight since
we prove that no deterministic algorithm has a competitive ratio strictly better than 4. For
the objective of makespan minimization, the main results are derived based on a connection
between our problem and the classical 0-1 knapsack problem. We prove that the offline
setting is NP-hard and admits an FPTAS, while for the oblivious setting, an almost tight
competitive ratio of 2 + ϵ can be obtained.

Table 1 The summary of our results. The vector p∨ := (p∨
1 , . . . , p∨

n) is the lower processing time
vector, and p∨ ∈ R≥0 · 1 means that all the entries of the vector share the same value. ϵ is an
arbitrary positive parameter.

UB (SLTBTC) LB (SLTBTC) UB (SLTBM) LB (SLTBM)

Offline p∨ ∈ Rn
≥0 PTAS (Thm. 4) NP-C (Thm. 1) FPTAS NP-C

p∨ ∈ R≥0 · 1 FPTAS
Oblivious — 4 + ϵ 4 2 + ϵ 2

Paper Organization. We first state some useful notation in Section 2, and then give an
overview of our techniques in Section 3. In the remaining part of the main body (Section 4),
we describe a PTAS for the offline SLTB with the total completion time objective, the most
interesting and technical part of our work. Due to space limitations, the proofs are omitted
in this version. All proofs and our other results can be found in the full version [8].

1.2 Related Work
Explorable Uncertainty. Scheduling with testing falls under the umbrella of the research on
optimization with explorable uncertainty, where some additional information can be obtained
through queries. The model under the stochastic setting can be traced back to Weitzman’s
Pandora’s Box problem [28] and it remains an active research area up to the present [17, 11].
The model under the adversarial setting was first coined by Kahan [21] to study the number
of queries necessary to obtain an element set’s median value. So far, many optimization
problems have been considered in this setting, e.g. caching [27], geometric tasks [4], minimum
spanning tree [20, 26], knapsack [12] and so on.

Scheduling with Testing. The problem of scheduling with testing was first coined by Dürr
et al. [10]. They consider a model where each testing operation requires one unit of time
and mainly investigate non-preemptive schedules on a single machine to minimize the total
completion time or makespan. Since the offline version of the problem (algorithms know the
lower processing time of each job) is trivial, they mainly consider the online version. They
present a 2-competitive deterministic algorithm for total completion time minimization while
the deterministic lower bound is 1.8546. They also gave a 1.7453-competitive randomized
algorithm while the randomized lower bound is 1.6257. For makespan minimization, they give
a 1.618-competitive deterministic algorithm and show that it is optimal for the deterministic
setting. They also present a 4/3-competitive randomized algorithm and show that it is
optimal.

ESA 2023



38:4 Scheduling with a Limited Testing Budget

Later, Albers and Eckl [2] consider the non-uniform testing case where the testing time
depends on the job. They investigate the single-machine preemptive and non-preemptive
scheduling to minimize the total completion time or makespan. The offline version of
this problem is still trivial, so they mainly consider the oblivious version. They present a
4-competitive deterministic algorithm for total completion time minimization and a 3.3794-
competitive randomized algorithm. If preemption is allowed, the deterministic ratio can be
further improved to 3.2361. All lower bounds are the same as in the uniform testing case.
For makespan minimization, they extend the algorithm proposed in [10] and show that the
approximation can be preserved in the non-uniform testing case.

Scheduling with testing on identical machines is also considered in the literature [3]. The
authors mainly consider the makespan minimization in both non-preemptive and preemptive
settings. They look into the non-uniform testing case. For the preemptive setting, they
present a 2 competitive algorithm which is essentially optimal. For the non-preemptive
setting, they give a 3.1016-competitive algorithm for the general testing case, and the ratio
can be improved to 3 when each test requires one unit of time. Later, Gong et al. [13]
improved the non-preemptive ratios to 2.9513 and 2.8081 for non-uniform and uniform testing
cases, respectively.

2 Preliminaries

An instance to Scheduling with a Limited Testing Budget (SLTB) is a 5-tuple I =
(J, p∧, p∨, c, B). J = [n] denotes a set of n jobs. Each job j has an upper limit on
the processing time p∧

j ∈ R≥0, a lower processing time p∨
j ∈ [0, p∧

j ] and a testing cost cj ∈ R≥0.
These parameters are collected in the lower and upper limit processing time vectors p∨ and
p∧, respectively, and a vector of testing costs c. Additionally, a total amount of budget
B ∈ R≥0 is given.

Each job j can be executed either in a tested or untested state. When job j is tested, j

will take p∨
j time to process; otherwise, it requires p∧

j time. If a job is tested, it consumes cj

budget; otherwise, no budget is consumed.
We consider offline and oblivious versions. For the offline version, the algorithm knows

the complete instance I. For the oblivious version, the lower processing time vector p∨ is
hidden from the algorithm, and the remaining information of the instance is known a priori.

In this work, we only consider non-preemptive and, w.l.o.g., gapless schedules on a single
machine. Once a job starts executing, other jobs cannot be processed until the current job is
finished. Thus, a schedule corresponds to a specific ordering of jobs. We define I := [n] to be
the set of positions. The job in position i ∈ I will be the ith job executed in the schedule.

A schedule S = (σ, J∨) for an instance I = (J, p∧, p∨, c, B) is defined by a job order σ

and a testing job set J∨ ⊆ J . The job order σ : J → I is a bijective function that describes
the order in which the jobs are processed (i.e., job j is the σ(j)-th processed job in the
non-preemptive schedule). The testing job set J∨ ⊆ J represents a set of jobs to test with∑

j∈J∨
cj ≤ B.

Given a schedule S, we can indicate whether a job is tested using a set of types T := {∨,∧}.
We say that j is of type ∨,∧ if it is tested, untested, respectively. If S schedules a job j of
type t into position i, we also say that position i is of type t. For a schedule S = (σ, J∨)
and a job j, let the type tS(j) of j in S be ∨ if j ∈ J∨ and ∧ otherwise. Denote by
Cj :=

∑
j′∈J,σ(j′)≤σ(j) p

tS(j′)
j′ the completion time of job j in schedule S. The total completion

time is the sum of all completion times, i.e.,
∑

j∈J Cj , and the makespan is the maximum
completion time among all jobs, i.e., maxj∈J{Cj}.
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Given a testing job set J∨, the optimal ordering of the jobs is easy to determine. The
ordering is relevant for the total completion time minimization but not for the makespan
minimization. It is a well-known fact that the SPT rule (shortest processing time first)
orders the jobs optimally for total completion time minimization. The processing times are
in our case p∨

j if job j is tested and p∧
j otherwise. Thus, an optimal schedule can be easily

constructed from an optimal testing job set J∨.

3 Overview of Techniques

In this section, we focus on the total completion time minimization and give technical
overviews for the offline model and the oblivious model.

3.1 Offline SLTB under Total Completion Time Minimization
For offline SLTBTC, we mainly show the following theorem. The NP-hardness is proved via
a reduction from the Partition problem. Due to space limitations, the proofs are omitted
and can be found in the full version [8], we focus on introducing the high-level ideas of our
PTAS, the most interesting and technical part of this paper.

▶ Theorem 1. The offline SLTBTC problem is NP-hard even when the lower processing
time of each job is 0, and admits a PTAS.

Our algorithm is based on an integer linear programming (ILP) formulation for offline
SLTBTC. The ILP contains variables xj,i,t that dictate whether job j ∈ J should be
scheduled in position i ∈ I of type t ∈ T . (See Section 4.1 for the exact definition of this
ILP.) The ILP is conceptually similar to the classical matching ILP on bipartite graphs [1],
with jobs and positions representing the two disjoint independent sets of the bipartition. A
matching would then describe an assignment of jobs to positions. However, there are two
main differences. First, we have two variables per pair of job and position (distinguished
by the type t ∈ T ). This translates to each job-position pair having two edges that connect
them in the (multi-)graph. Second, the total cost of jobs tested is restricted by some budget
B. This causes a dependency when selecting edges in the graph.

Our approach combines a rounding scheme of the ILP with an exploitation of the cost
structure of the problem. We relax the ILP to an LP by allowing the variables xj,i,t to
take on fractional values between 0 and 1. We start with an optimal LP solution and then
continue with our rounding scheme, which consists of two phases. In the first phase, we
round the solution such that all fractional variables correspond to the edges of a single cycle
in the graph mentioned above. These variables are hard to round directly without overusing
the budget. Here we start the second rounding phase. We relax some of the constraints in
the LP to be able to continue the rounding process. Specifically, we allow certain positions to
schedule two jobs (we call these positions crowded). We end up with an integral (but invalid)
solution that has some crowded positions. Then, we “decrowd” these positions by moving
their jobs to nearby positions (shifting the position of some other jobs one up), and show
that we can bound the cost of moving a job this way in terms of its current contribution
to the overall cost. Observing that moving a job from position i to position i′ (note that
positions are counted from right to left) increases that job’s contribution by a factor of i′/i,
if a crowded position lies far to the right (i is small), we cannot afford to move one of its jobs
too far away. For example, in the extreme case that the rightmost position is crowded (i.e.,
i = 1), even the smallest possible move of one of its jobs to the second-rightmost position
(i.e., i′ = 2) already doubles that job’s contribution. Thus, our algorithm tries to avoid
producing crowded positions that lie too far to the right (at small positions).

ESA 2023



38:6 Scheduling with a Limited Testing Budget

To this end, the rounding process in this phase is specifically tailored to control where
crowded positions can appear in the integral solution. We look at the f(ϵ) = 2/ϵ + 1 smallest
(rightmost) positions that appear on the current path (representing fractional variables), and
select one of them (let’s call it the cut-position) to cut the path into two halves. This is
done such that each half contains 1/ϵ many of the smallest positions on the current path.
By shifting workload along each of these two halves, we can make one of them integral. This
integral half gives us 1/ϵ positions that are not crowded, while the cut-position might have
become crowded (as might any future cut-position in the remaining fractional path). Because
we cut somewhere in the f(ϵ) rightmost positions of the path, we can show that for each
crowded position, there are many positions further to the right of the schedule that are not
crowded (this is basically what our charging argument formalizes). In the end, this allows
us to prove that no job is moved too far from its original position (relative to its original
position), keeping the cost increase due to such moves small.

3.2 Oblivious SLTB under Total Completion Time Minimization

For the oblivious model where the lower processing time vector p∨ is hidden, we show that
(4 + ϵ) approximation can be obtained, and further, prove that the ratio is the best possible.

▶ Theorem 2. For oblivious SLTBTC and any ϵ > 0, there exists a deterministic algorithm
with a competitive ratio of (4 + ϵ), while no deterministic algorithm can obtain a competitive
ratio strictly smaller than 4.

We start by considering the oblivious uniform SLTBTC problem to build some intuition.
The uniform case limits the number of tested jobs, i.e., we can test at most k jobs. Clearly, for
the worst-case analysis, we can assume that each job j tested by our algorithm has p∨

j = p∧
j ;

that is, we exhaust the budget, but no job’s processing time gets reduced. In contrast, for all
the jobs tested by an optimal solution, their processing times can be reduced to 0. Thus,
from this perspective, regardless of which jobs we test, our total completion time remains
unchanged, but the optimum depends on our tested jobs because the adversary can only let
the job j that is not tested by our algorithm have p∨

j = 0.
Then we find that the oblivious uniform SLTBTC problem is essentially equivalent to

the following optimization problem: given a set of jobs J with p∧ and p∨ = 0, the goal is
to select k jobs such that the minimum total completion time obtained by testing at most
k unselected jobs is maximized. The selected jobs can be viewed as the jobs tested by our
algorithm, while the minimum total completion time obtained by testing unselected jobs
is the optimum of oblivious uniform SLTBTC. When our objective value is fixed, a larger
optimum implies a better competitive ratio. For this much easier problem, it is easy to
see that the best strategy is selecting the k jobs with the largest upper processing time,
which is the set of jobs that would be tested by an optimal solution of SLTBTC instance
I = (J, p∧, p∨ = 0, c = 1, k).

We build on the above argument to give the algorithm for the non-uniform case I =
(J, p∧, p∨, c, B). The basic idea is constructing an auxiliary instance Ĩ := (J, p∧, p̃∨ =
0, c, B), solving the instance optimally or approximately, and returning the obtained solution.
Use ALG(·) and OPT(·) to denote the objective values obtained by our algorithm and an
optimal solution of an input instance, respectively. By the theorem proved in the offline
model, we have ALG(Ĩ) ≤ (1 + ϵ)OPT(Ĩ) for any ϵ > 0. In the analysis, we show that our
objective value can be split into two parts: ALG(I) ≤ 2ALG(Ĩ) + 2OPT(I), and therefore,
due to OPT(Ĩ) ≤ OPT(I), a competitive ratio of (4 + 2ϵ) can be proved.
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The lower bound is shown by a hard instance I = (J, p∧ = 1, p∨, c = 1, B = n
2 ), where

the adversary always lets our tested jobs have lower processing time 1 and the processing
time of any other job be 0. Apparently, any deterministic algorithm’s objective value is
n(n + 1)/2, while an optimal solution can achieve a total completion time of n(n + 2)/8,
which implies a lower bound of 4. 2

3.3 SLTBM under Makespan Minimization

▶ Theorem 3. The offline SLTBM problem is NP-hard and admits an FPTAS, while for
oblivious SLTBM, an almost tight competitive ratio of 2 + ϵ can be obtained (for any ϵ > 0).

The offline SLTB problem under makespan minimization is closely related to the classical
0-1 knapsack problem. The classical 0-1 knapsack problem aims to select a subset of items
such that (i) the total weight of the selected items does not exceed a given capacity; (ii) the
total value of the selected items is maximized. To see the connection, consider the testing cost
of each job as the weight of each item and the profit of testing a job (p∧

j − p∨
j ) as the value

of an item. Then we build on the algorithmic idea of the knapsack dynamic programming
and design an FPTAS for the offline setting.

We use the same framework as the total completion time minimization model for the
oblivious setting and obtain a (2 + ϵ)-competitive algorithm. The ratio becomes better here
since, for the makespan objective, we have ALG(I) ≤ ALG(Ĩ) + OPT(I), saving a factor of
2. The lower bound proof is also based on the same hard instance I = (J, p∧ = 1, p∨, c =
1, B = n/2). Any deterministic algorithm’s makespan is n while the optimum is n/2, giving
a lower bound of 2.

4 Offline Setting for SLTB under Total Completion Time Minimization

This section considers the Scheduling with a Limited Testing Budget problem under total
completion time minimization (SLTBTC) in the offline setting and aims to show the following
theorem.

▶ Theorem 4. There exists a PTAS for SLTBTC.

For convenience, we refer to a problem instance as a pair I = (J, B), dropping the
processing time and cost vectors p∨, p∧, and c (which we assume to be implicitly given).
Moreover, in this section, we consider the job positions I = [n] in reverse order to simplify
the calculations. That is, a job j scheduled in position i ∈ I is processed as the i-th last job.

4.1 ILP Formulation and Fixations

We start by introducing our ILP formulation of the SLTBTC problem and defining the term
fixation of a (relaxed) instance of our ILP. Such fixations allow us to formally fix the values
of certain variables in the (relaxed) ILP when analyzing our algorithm.

2 Since in the worst-case, the upper and lower processing times of jobs tested by the algorithm are equal,
it does not help if the algorithm can be adaptive, i.e., change its testing strategy based on such an
information.

ESA 2023



38:8 Scheduling with a Limited Testing Budget

ILP Formulation. Our ILP has indicator variables xj,i,t that are 1 if job j is scheduled at
position i of type t and 0 otherwise. The contribution of such a job to the total completion
time is3 i · pt

j . We have constraints to ensure that each of the n positions schedules one job,
that each job is scheduled once, and that the cost of tested jobs do not exceed the budget.
The equivalence between ILP solutions and SLTBTC schedules is formalized in Lemma 5.

Consider an instance I = (J, B) of the SLTBTC problem. We define an ILP ILPI , with
the variables xj,i,t for each job j ∈ J , position i ∈ I and type t ∈ T .

min
∑

j∈J,i∈I,t∈T

i · pt
j · xj,i,t

s.t.
∑

j∈J,t∈T

xj,i,t = 1 ∀i ∈ I (1)
∑

i∈I,t∈T

xj,i,t = 1 ∀j ∈ J (2)

∑
j∈J,i∈I

cjxj,i,∨ ≤ B (3) xj,i,t ∈ { 0, 1 } ∀j ∈ J, i ∈ I, t ∈ T (4)

For ILPI with variable set XI := {xj,i,t | j ∈ J, i ∈ I, t ∈ T }, a solution x : XI → R assigns
each variable in XI a value. Solution x is called valid if it satisfies the four constraints
and invalid otherwise. For a (possibly invalid) solution x for I we define its cost as
CI(x) :=

∑
j∈J,i∈I,t∈T i · pt

j · xj,i,t and its budget use BI(x) :=
∑

j∈J,i∈I cjxj,i,∨ (we omit I
from CI and B if it is clear from the context). We refer to the different constraints as (1)
position constraints, (2) job constraints, (3) budget constraint, and (4) integrality constraints.

▶ Lemma 5. Let I = (J, B) be an instance for SLTBTC. For each valid solution x to ILPI
there exists a schedule S for I with C(S) = C(x) and vice versa. Each can be computed from
the other in polynomial time.

Relaxation and Fixations. Our algorithm and analysis use relaxed variants of ILPI that fix
certain ILP variables (indicating that, e.g., certain jobs must be tested). It also keeps track
of crowded positions, in which our algorithm may (temporarily) schedule two jobs (violating
the position constraints). We introduce the notion of a fixation F to formally define these
relaxed variants LPI,F of ILPI . 4

▶ Definition 6. A fixation F = (J(F), X(F), IC(F)) of an SLTBTC instance I consists of:
1. a set of tested jobs J(F) ⊆ J ,
2. a set of fully-fixed variables X(F) ⊆ XI where j /∈ J(F) for all xj,i,t ∈ X(F), and
3. a set of crowded positions IC(F) ⊆ I.

For a set operator ◦ ∈ {∪,∩, \ } and a set of positions Ī ⊆ I, we use the notation
F ◦ Ī := (J(F), X(F), IC(F) ◦ Ī) to express the change to the crowded positions of F .

Given a fixation F , we define the following relaxed variant LPI,F of ILPI :
1. For each xj,i,t ∈ XI we relax the integrality constraint to 0 ≤ xj,i,t ≤ 1 (unit constraints).
2. For each xj,i,t ∈ X(F), we add the constraint xj,i,t = 1 (fully-fixed constraints).
3. For each j ∈ J(F), we add the constraint

∑
i∈I xj,i,∨ = 1 (tested job constraints).

4. For each i ∈ IC(F), we relax the position constraint to
∑

j∈J,t∈T xj,i,t ∈ { 0, 1, 2 }.
The resulting LP is omitted in this version and can be found in the full version [8].

3 Remember that we consider the position in reverse order. Thus, the job at position i is the i-th last job.
4 Our PTAS will enumerate through a polynomial number of fixations, and solve the problem for each

one of them. The approximation guarantee is then derived for the fixation that is consistent with the
optimal solution.
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4.2 Graph-theoretic Perspective & Paths
Consider an SLTBTC instance I = (J, B) with fixation F and a (fractional) solution x to
LPI,F . The main building block of our algorithm is a rounding scheme based on the following
graph-interpretation of I and corresponding paths based on the current solution x:

▶ Definition 7. The instance graph GI := (J ·∪ I, E) is a bipartite multi-graph between the
jobs J and positions I with exactly two edges between any pair j ∈ J and i ∈ I. We identify
the edge set E with the variable set XI and refer to a variable xj,i,t ∈ E = XI also as an
edge of type t ∈ {∨,∧} between j and i.

▶ Definition 8. A path P in solution x is a weighted path from is ∈ I (start position) to
ie ∈ I (end position) in GI , where the weight of an edge xj,i,t ∈ P is its value in x. P is
called integral if all its weights are integral and fractional if they are all (strictly) fractional.

Nodes and edges in P must be pairwise distinct, except for possibly equal start and end
positions is = ie, in which case we refer to P also as a cycle. We define J(P ) as the path’s
set of jobs, I(P ) as its set of positions, and K(P ) := I(P ) \ { is, ie }. Moreover, X(P ) is the
sequence of edges/variables from start to end position in P . We say the i-th edge in X(P ) is
even/odd if i is even/odd, such that P reaches j ∈ J(P ) via an odd edge xO

j and leaves j via
an even edge xE

j . We similarly use tO
j and tE

j to denote the type of xO
j and xE

j , respectively.

Next, we define shift operations, which move workload along paths by increasing the
volume of one job at any position i ∈ I(P ) while decreasing the volume of another job at i.

▶ Definition 9. A δ-shift of a path P in x decreases the value of all odd edges (variables) of
P by δ and increases the value of all even edges (variables) of P by δ.

Shift operations (see Figure 1) change the budget use B(x) at a path-dependent (positive
or negative) budget rate (defined below) and might create crowded positions. Our algorithm’s
first two phases (Sections 4.3 and 4.4) carefully pair shift operations such that performing
paired shifts does not increase the budget and does not create too many crowded positions.

Define the budget rate of a path P to be ∆(P ) :=
∑

j∈J(P ) cj · (1|tE
j

=∨ − 1|tO
j

=∨). Let P

be a path in a solution x for LPI,F without crowded positions (i.e., IC(F) = ∅). P is called
y-alternating (or simply alternating) if all odd edges have weight y and all even edges have
weight 1− y. Lemma 10 below formalizes the effect of a δ-shift in terms of the path’s budget
rate. Since our analysis can be restricted to paths with very specific, alternating edge values,
we also formalize such alternating paths and show how they are affected by δ-shifts (see also
Figure 2).

▶ Lemma 10. Let P be a path in a solution x for LPI,F without crowded positions (i.e.,
IC(F) = ∅). Shifting P in x by δ yields a (possibly invalid) solution x̃ with B(x̃) =
B(x)− δ ·∆(P ). If P is y-alternating in x, then it is (y − δ)-alternating in x̃.

4.3 First Phase: Eliminating all but one cycle
Consider an optimal valid solution x to LPI,F without crowded positions (i.e., IC(F) = ∅).
Lemma 11 below is our main tool for rounding fractional variables in x. Consider a set of
variables that form a fractional path in x. Essentially, we want to use a shift operation from
Definition 9 on such a path to make some of its variables integral. If such a shift increases
the budget use B(x) (rendering the solution invalid), we can suitably shift a second path
(possibly using a negative δ) in parallel to ensure that the budget use B(x) does not increase.
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path P

I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6
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(a) Path P with start and end positions i3 and i6.

path P
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J
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0.
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(b) Same path P after the shift.

Figure 1 A path P in a solution x before and after a shift by δ = 0.2. Edges are labeled with
their type (∨ or ∧) and weight from a given solution x. Odd edges are red, and even edges are blue.
The budget rate computes as ∆(P ) = cj2 (1− 0) + cj3 (1− 1) + cj5 (0− 1) = cj2 − cj5 .

path P
I

J
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path P ′
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(a) Alternating paths P (solid) and P ′ (dashed).

path P
I

J

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4 j5 j6

∨∨ ∧ ∧ ∨∨

0.
1 0.

0

path P ′

1.00.
90.1
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(b) Same paths by δ = 0.3 and δ′ = 0.6, respectively.

Figure 2 Illustration of Lemma 11 for alternating paths P = (i3, . . . , i4) (solid) and P ′ =
(i4, . . . , i6) (dashed) with budget rates ∆(P ) = cj3 := 2 and ∆(P ′) = cj5 := 1. Shifting P by δ = 0.3
and P ′ by δ′ = 0.6 keeps the budget use constant. P and P ′ stay alternating, P ′ becomes integral,
and i3, i4, i6 (the start/end positions) violate the position constraints after these shifts.

Such shifts might also cause the violation of the position constraints at the path’s start
and end positions. We keep track of such violations by adding those positions to the crowded
position set IC(F) of the fixation F . Lemma 11 formalizes this approach (see also Figure 2).

▶ Lemma 11. Consider x a valid solution for LPI,F . Let P be a fractional path in x with
∆(P ) = 0 or P, P ′ be two fractional paths in x with X(P ) ̸= X(P ′) and ∆(P ), ∆(P ′) ̸= 0.
We can efficiently shift P (and P ′, if existing) in x to yield a valid solution x̃ for LPI,F̃ with:
1. C(x̃) ≤ C(x) and B(x̃) = B(x)
2. F̃ = F ∪ I ′, where I ′ is the set of all start and end positions of non-cyclic paths involved.
3. x̃ contains more integral variables than x.

Lemma 11 allows us to shift along general paths (instead of cycles) at the cost of creating
crowded positions. We rely on this in Section 4.4 and deal with the crowded positions in
Section 4.5. However, to keep the number of crowded positions small and reduce their impact
on the final solution, we apply Lemma 11 on cycles for as long as possible. This avoids the
creation of crowded positions since shifts along cycles cannot change the net workload at
any position. Indeed, note that given any node in a path P that is incident to a fractional
edge must have a second fractional edge, or it would violate its job/position constraint. This
allows us to complete any fractional path to a cycle. Thus, we can keep applying Lemma 11
to cycles (not creating crowded positions) until there is at most one cycle with a non-zero
budget rate left (a blocking cycle). Let x be a solution to LPI,F . A path P of x is called
critical if X(P ) = {xj,i,t ∈ XI | xj,i,t ∈ (0, 1) }. A blocking cycle of x is a critical cycle P

with ∆(P ) ̸= 0. Lemma 12 formalizes the idea above.

▶ Lemma 12. Let I be an instance, F be a fixation with IC(F) = ∅, and x be a valid
optimal solution to LPI,F . Then we can compute in polynomial time a valid optimal solution
x̃ to LPI,F such that all variables in x̃ are integral, or we find a blocking cycle of x̃. Further,
if P is a blocking cycle of x, then P is alternating.
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4.4 Second Phase: Rounding the blocking cycle
Assume that we used Lemma 12 to compute a blocking cycle P for a solution x to LPI,F
with IC(F) = ∅. Because P is critical, all fractional variables are in X(P ). Also, since
∆(P ) ̸= 0, applying Lemma 11 directly is impossible. Instead, we cut up P repeatedly into
two paths P1, P2, and then use Lemma 11 on these paths (see Algorithm 1). Cutting is done
by selecting any position i ∈ K(P ), and separating the path at i: P1 will be the path starting
at the start position of P and end at i. P2 will be the path starting at i and ending at the
end position of P . We abbreviate this operation by P1, P2 ← Cut(P, i). The drawback of
this approach is that Lemma 11 does not guarantee that the resulting solutions still fulfill
the position constraints of the start/end positions of P1, P2, respectively. That is why we
add them to IC(F) in the process.

Algorithm RepeatedCut starts with a solution x̃ and a critical path P̃ . It cuts P̃ at
some position i ∈ K(P̃ ) that is selected by a procedure SelectCutPosition (which is
described later in Algorithm 2 in the next subsection). The algorithm then applies Lemma 11
to the two resulting paths, making at least one of them integral (as guaranteed by Lemma 10).
After that, x̃ and P̃ are updated accordingly. RepeatedCut finishes when |K(P̃ )| = 0 (and
therefore P̃ cannot be cut into two paths anymore). In such a case, RepeatedCut will
reschedule that job to obtain an integral solution. It is also possible that no path remains
after the application of Lemma 11. For such a case, x̃ is already integral. Thus, in both
cases, the resulting integral solution x̃ is returned.

Algorithm 1 RepeatedCut.

Input: A valid solution x for LPI,F with IC(F) = ∅, a blocking cycle P of x.
1: P̃ , x̃← P, x

2: while ∆(P̃ ) ̸= 0 do
3: if K(P̃ ) = ∅ then
4: j ← unique job in J(P̃ ); i1, i2 ← remaining two positions in I(P̃ )
5: In x̃, reschedule j into position min(i1, i2) of type ∨ if tO

j = tE
j = ∨ and ∧ else

6: return x̃

7: i← SelectCutPosition(P̃ )
8: P1, P2 ← Cut(P, i)
9: Apply Lemma 11 to P1, P2 in x̃, changing x̃ accordingly

10: if both paths became integral then return x̃

11: P̃ ← the remaining fractional path
12: Apply Lemma 11 to P̃ in x̃, changing x̃ accordingly
13: return x̃

In the following, we make statements about the state of the variables involved in the
execution of RepeatedCut at the beginning of an iteration of its while-loop. Consider
the state of RepeatedCut (called on path P ) at the beginning of the l’th iteration of the
while-loop (l ≥ 1). We denote by IC

l the start/end position of P together with all positions
selected by SelectCutPosition so far, and IC

∗ the start/end position of P together with
all positions selected by SelectCutPosition throughout the algorithm. Similarly, denote
by x̃l,P̃l the values of x̃,P̃ at that point, respectively, and x̃∗ for the returned solution by
RepeatedCut. Denote F̃l := (J(F), X(F), IC

l ) and F̃∗ := (J(F), X(F), IC
∗ ).

▶ Lemma 13. The following is a loop invariant of RepeatedCut for iteration l ≥ 1: x̃l is
a valid solution for LPI,F̃l

and P̃l is a critical fractional alternating path in x̃l, of which the
start and end positions are in IC

l . Also, x̃∗ is an integral valid solution for LPI,F̃∗
.

Based on Lemma 13, we can analyze the objective obtained by RepeatedCut:
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▶ Lemma 14. Consider an application of RepeatedCut on solution x for LPI,F and a
blocking cycle P . It returns in polynomial time a solution x̃ with C(x̃) ≤ C(x) + Z, where Z

is either 0 or the contribution of job j rescheduled by RepeatedCut in line 5 and j /∈ J(F̃∗).

4.5 Third Phase: Dealing with crowded positions

Lemma 14 guarantees that applying the algorithm RepeatedCut will return us an integral
solution. However, that solution is valid for LPI,F where IC(F) still contains some positions.
Some of these positions may schedule two jobs, which makes this schedule not valid for ILPI .
Our general strategy in this subsection is to move the jobs such that the cost of the solution
does not increase too much. In Observation 15, we move each job to a new position and
bound the cost created by that operation.

▶ Observation 15. Let x be an integral solution to LPI,F for some fixation F . Consider a
job j ∈ J that is scheduled in position i ∈ I of type t ∈ T . Then rescheduling j into position
i′, i.e., setting xj,i,t ← 0 and xj,i′,t ← 1 produces a (possibly invalid) solution x̃, in which
the contribution of j increases by a factor of i′/i compared to x.

As mentioned above, there are still some positions that schedule two jobs. To obtain an
integral valid solution for ILPI , we have to move the jobs in the schedule to new positions,
such that there is exactly one job per position scheduled. We want to use Observation 15
to bound the increase in contribution for each job moved this way. Generally, we move the
jobs as follows: For a position i that schedules two jobs j, j′, we (arbitrarily) distribute j, j′

among positions i, i + 1, thereby moving all jobs from positions i + 1, . . . , n to one higher
position. Following this strategy, jobs in higher positions may get moved multiple times.

To bound the contribution in terms of Observation 15, we set up a charging scheme: Each
position with two jobs scheduled should be charged to a distinct set of 1/ϵ smaller positions
that schedule one job, where ϵ is the accuracy parameter of our algorithm (1/ϵ ∈ N). In the
following, we will always use the following function SelectCutPosition for RepeatedCut:

Algorithm 2 SelectCutPosition.

Input: A path P̃ with |K(P̃ )| ≥ 1
Output: A position i ∈ K(P̃ )
1: if |K(P̃ )| ≥ 2/ϵ + 1 then
2: I ′ ← the smallest 2/ϵ + 1 positions in K(P̃ )
3: return the position that appears as (1/ϵ + 1)-st position in P̃ of the positions in I ′

4: else
5: return any position in K(P̃ )

We care about two properties of the position selected by SelectCutPosition. First,
when we cut P̃ into P1, P2 in line 8 of RepeatedCut, K(P1),K(P2) should each contain
at least 1/ϵ positions. This way, whichever of these paths becomes integral, there will
be 1/ϵ positions that will never be selected by SelectCutPosition in the future. This
is important for our charging scheme to have enough positions to charge to. Second, we
specifically care about the selected positions being the smallest positions that appear in
K(P̃ ). This essentially allows us to charge each position with two jobs scheduled exclusively
to smaller positions, independent of which of the two paths becomes integral.

We represent the charging scheme using a charging function (formally defined in Defini-
tion 16). Essentially, for a set of positions Ī ⊆ I, it charges each position in Ī to its distinct
1/ϵ many smaller positions.



C. Damerius, P. Kling, M. Li, C. Xu, and R. Zhang 38:13

24

2316

22

1312

21

1514

21

1514

(a) Illustration of µl (e.g., µl(24) = { 16, 23 }).
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(b) Illustration of µl+1 (e.g., µl+1(26) = { 16, 23 }).
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(c) Path P̃l (solid and dashed), and path P̃l+1 (solid) after one iteration of the while-loop in RepeatedCut.

Figure 3 An update step of Lemma 17 for ϵ = 1/2. The inner positions of P̃l are K(P̃l) =
{ 17, 20, 21, 22, 24, 25, 26, 27 }. Its 2/ϵ + 1 = 5 smallest positions appear in order 22, 17, 20, 21, 24. P̃l

is cut at the (1/ϵ + 1) = 3-rd of these positions (20) into two paths, which are then shifted such
that the dashed one becomes integral and the solid one becomes P̃l+1. I+

l+1 loses positions 21 and
24 compared to I+

l , as these positions belonged to the dashed path, which became integral. I+
l+1

now consists of all remaining 2/ϵ + 1 = 5 inner positions K(P̃l+1) = { 17, 22, 25, 26, 27 }. We set
µl+1(25) = µl(21), µl+1(26) = µl(24), and µl+1(27) = { 21, 24 } (the lost positions from I+

l ).

▶ Definition 16. Let x be a solution to LPI,F for an instance I and a fixation F . Let P be a
critical path in x. For a set Ī ⊆ I, a charging function for Ī is a function µ : Ī → P(I \ Ī) such
that for all i ∈ Ī: (1) |µ(i)| = 1/ϵ, (2) ∀i′ ∈ µ(i) : i′ < i and (3) ∀i′ ∈ Ī : µ(i) ∩ µ(i′) = ∅.

Consider the l’th iteration of the while-loop in RepeatedCut. We define the charging
set I+

l := Ī ∪ IC
l , where Ī contains the smallest 2/ϵ + 1 positions in K(P̃l) (or all of them, if

|K(P̃l)| < 2/ϵ + 1). Similarly, define I+
∗ := IC

∗ .

Lemma 17 shows how to obtain a charging function µ∗ : I+
∗ → P(I \ I+

∗ ) from a charging
function µ1 : I+

1 → P(I \ I+
1 ). We do this by updating the charging function with every

iteration of RepeatedCut’s loop. Figure 3 exemplifies the update of the charging function.

▶ Lemma 17. If there exists a charging function µ1 : I+
1 → P(I \ I+

1 ), then there also exists
a charging function µ∗ : I+

∗ → P(I \ I+
∗ ).

We now use Observation 15 together with a charging function (of which we assume the
existence for now) on a solution x for LPI,F produced by RepeatedCut to find a solution
for ILPI with not too much more cost. Lemma 18 will allow us to produce such a solution.

▶ Lemma 18. Let x be a solution returned by RepeatedCut for LPI,F , and let µ∗ be a
charging function for I+

∗ . Then we can find a valid solution x̃ in polynomial time for ILPI
such that the contribution of each job increases by a factor of at most (1 + ϵ) compared to x.

Consider a solution x returned by RepeatedCut for LPI,F . To be able to apply
Lemma 18 and find a solution for ILPI , we need to make sure that we can find a charging
function µ1 for I+

1 . Furthermore, we still need to bound the contribution created by the job
j in line 5 of RepeatedCut as of Lemma 14. To do this, we choose a proper fixation F∗

and show that a charging function can then be derived.

▶ Definition 19. Let x∗ be an optimal solution to ILPI for an instance I. For i ∈ I, let
further ji ∈ J and ti ∈ T such that x∗

ji,i,ti
= 1. Using M := (2/ϵ + 1)/ϵ, we define the

fixation F∗ by

X(F∗) = {xji,i,ti | i ∈ [M ] } J(F∗) = { j ∈ J | p∧
j > min

i∈[M ]
pti

ji
} IC(F∗) = ∅

▶ Lemma 20. Let x be a solution returned by RepeatedCut for LPI,F∗ . Then there exists
a charging function µ1 for I+

1 .
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Essentially, we brute-force which jobs will be scheduled in the last few positions. This
will make sure that these positions are not in I+

1 , and as such can be used for the charging
function µ1. Assuming that we brute-forced correctly, an optimal solution will also test all
jobs with a larger upper processing time than any of the brute-forced jobs. This is because
an optimal solution will always schedule in order of increasing processing times. Finally, we
can piece together all of the above lemmas and prove the main theorem (Theorem 4). The
detailed proof can be found in [8].

5 Conclusion

We initiated the study of Scheduling with a Limited Testing Budget, where we have a
limited budget for testing jobs to potentially decrease their processing time. We provided
NP-hardness results, a PTAS, as well as tight bounds for a semi-online (oblivious) setting.

Our results open promising avenues for future research. For the setting where we minimize
the total completion time, it remains open whether NP-hardness holds for uniform testing
cost. Also, while our LP-rounding-based PTAS achieves the best possible approximation, it
remains open whether there is a faster, combinatorial algorithm. Another natural direction
would be to consider the case of multiple machines.

Another exciting direction is the following bipartite matching with testing problem that
generalizes our problem, arising from the graph-theoretic perspective in Section 4.2: Consider
a bipartite graph G := (L∪R, E) in which each edge e ∈ E has a cost ce that can be reduced
to če via a testing operation. Given the possibility to test edges before adding them to the
matching, we seek a min-cost perfect matching that respects a given testing budget.
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