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—— Abstract

One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the
MurtipLE TSP: a set of m > 1 salespersons collectively traverses a set of n cities by m non-trivial
tours, to minimize the total length of their tours. This problem can also be considered to be a variant
of UNCAPACITATED VEHICLE ROUTING, where the objective is to minimize the sum of all tour lengths.
When all m tours start from and end at a single common depot vg, then the metric MULTIPLE TSP
can be approximated equally well as the standard metric TSP, as shown by Frieze (1983).

The metric MULTIPLE TSP becomes significantly harder to approximate when there is a set D
of d > 1 depots that form the starting and end points of the m tours. For this case, only a
(2 — 1/d)-approximation in polynomial time is known, as well as a 3/2-approximation for constant d
which requires a prohibitive run time of n®@® (Xu and Rodrigues, INFORMS J. Comput., 2015). A
recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm
for metric MULTIPLE TSP with run time n®(®
TSP.

In this paper we overcome the n®@ time barrier: we give the first efficient approximation
algorithm for MULTIPLE TSP with a variable number d of depots that yields a better-than-2 approx-
imation. Our algorithm runs in time (1/¢)°@1°¢% . n©M "and produces a (3/2 + &)-approximation

, which reduces the problem to approximating metric

with constant probability. For the graphic case, we obtain a deterministic 3/2-approximation in
time 2¢ . n®W,
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1 Introduction

The TRAVELING SALESPERSON PROBLEM (TSP) is one of the best-studied problems in
combinatorial optimization: given a complete graph G on n nodes together with edge weights
w: E(G) — R, we seck a tour that starts at some node vy € V(G), then visits all other
nodes of G exactly once, and returns to the origin vy in such a way that the overall tour
weight is minimized, which is the sum of the weights of the edges traversed by the tour.
TSP is one of Karp’s 21 NP-complete problems [15], which motivates the design of efficient,
polynomial-time approximation algorithms for it. Recall that an a-approximation for a
minimization problem returns, for any instance I, in polynomial time a solution of value at
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most « - OPT(I), where OPT(I) denotes the value of an optimal solution for I. Of special
importance in this regard is METRIC TSP, when the edge weight function w obeys the
triangle inequality. For METRIC TSP, the tree doubling heuristic yields a 2-approximation,
which was improved to a 3/2-approximation by Christofides [7] and Serdyukov [24] in the
1970s. This approximation factor stood unchallenged for many decades until its recent
improvement to a (3/2 — 1073¢)-approximation by Karlin et al. [14].

Due to its ubiquity, a large variety of extensions of the TSP have been studied. Among
the most prominent ones is the MULTIPLE TSP, where a set of m > 1 salespersons (all
starting from some common node vq called a depot) jointly traverse the entire set of n nodes,
in order to minimize the overall tour length. That is, the goal is to find a collection of
m pairwise edge-disjoint cycles C1,...,Cy, (all intersecting in some node vg) in G whose
union covers all nodes of the graph and such that the sum of the weights of the cycles is
minimized. This character of having to solve both a partitioning and a sequencing problem
simultaneously gives rise to considerable added complexity, akin to that encountered in
vehicle routing problems. Indeed, one could interpret this problem as a variant of the
UNCAPACITATED VEHICLE ROUTING PROBLEM; we, however, will adhere to the TSP-style
naming convention, since this is more prevalent in the literature. Let us just mention here
that for metric edge weights, MULTIPLE TSP has the same approximation guarantee as
the standard (single-person) metric TSP; in particular, METRIC MULTIPLE TSP admits a
(3/2—10736)-approximation in polynomial time by the results of Karlin et al. [14]. Frieze [10]
analysed the case of METRIC MULTIPLE T'SP when each of the tours has to contain at least
one edge and intersect a common depot vg; he provided a 3/2-approximation for this setting
in polynomial time. The MULTIPLE TSP is studied in more than 1,300 publications; an
extensive survey is provided by Bektag [1].

In this paper we study an extension of the MULTIPLE TSP, where a set D C V(G) of
nodes is distinguished as depots. Formally, the MuLTI-DEPOT MULTIPLE TSP (MDMTSP)
takes as input a complete graph G on n nodes together with edge weights w : E(G) — Rx,
as well as a set D C V(G) of d = |D| depots and an integer m > 1 denoting the number of
salespersons available. Now again we are seeking a set of m pairwise edge-disjoint cycles
Ci,...,Cy, in G whose union covers all nodes of the graph and such that the sum of the
weights of the cycles is minimized, but in addition each cycle must contain some depot
from D. Such set of cycles is an optimal solution for the MDMTSP instance, and we denote
the value of some optimal solution by OPT(G, D, w) (or simply OPT if the instance is clear
from the context). The MDMTSP is motivated by several applications of high practical impact,
like motion planning of a set of unmanned aerial vehicles [17, 21, 31] and the routing of
service technicians where the technicians are leaving from multiple depots [20].

The theoretical aspects of MDMTSP have been studied in many research papers [1, 2, 3, 6,
13, 16, 25, 26, 28, 29, 30]. At this point, let us issue a word of caution. There are quite a
few other varieties of (MDM)TSP considered in the literature, all subtly different from each
other. For a compact overview of possible variations, there is the review paper of Bektag [1].
For the scope of this paper, we consider the metric MDMTSP where the edge weights form a
metric. This allows us to assume that m = d throughout. This assumption is made for the
following two reasons: on the one hand, the case m > d is negligible as the objective function
(the total weight of all tours) is invariant for multiple tours starting from a single depot (if
weights satisfy the triangle inequality, it is easy to show that there is always an optimal
solution in which at most one route will start and end at each depot). On the other hand,
in the case m < d we can try each selection of d = m depots by paying a multiplicative
factor of (?) in the run time only. Thus, any instance of metric MDMTSP is specified by a
triple (G, D, w), where G is a complete graph on n nodes, D C V(@) is the set of depots,
and w : E(G) — Rx( is a metric.
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The polynomial-time approximability of metric MDMTSP is not fully understood. That
there is a set D of depots (and not just a single depot vg), each one of which must be visited
by one of the tours, makes the approximability of the problem much harder compared to
metric MULTIPLE TSP (i.e., the version without depots). The added complexity arises from
the fact that we not only have to give a good order in which to visit nodes, as in the TSP, but
we also have to partition the nodes appropriately. In particular, the Christofides-Serdyukov
algorithm [7, 24] no longer yields a 3/2-approximation in this setting. The original analysis
of Christofides’ and Serdyukov’s algorithms relies on all odd-degree nodes of some spanning
structure F' lying on the same tour, so a parity-correcting edge set J can be computed that
weighs at most % OPT. This fact is not available in the multi-depot setting, so in polynomial
time we can only guarantee a 2-approximation by using the spanner F' for J also. However,
this only achieves a tight approximation ratio of 2 — é for the multi-depot setting, as shown
by Xu et al. [30] (see Figure 1 for a version of their lower-bound example), because the
matching can have weight % OPT.

Figure 1 An instance on which Algorithm 1 achieves approximation ratio arbitrarily close to 2.
Square nodes are depots and all edges have unit weight. Dashed edges indicate a tour of length d,
dotted edges a minimum CSF with weight d — 1 that requires a join of weight d — 1 to complete.

To avoid this issue, the constrained spanning forest needs to be rearranged such that there
is again a matching of weight %OPT, as in the work of Xu and Rodrigues [28] — this
rearrangement though requires n®(®

Similarly, the algorithmic approaches to metric TSP based on solving a linear program (LP)

time.

are also unlikely to give a-approximation algorithms with a < 2 for metric MDMTSP. To this
end, consider the following multi-depot version of the subtour-elimination L.p, MDMTSP-LP:

minimize Z WeLe
e€E(G)
subject to Z Te = 2, VveV(G)\D
eco(v) (MDMTSP-LP)
Y @2 YUCV(G)\D
ees(U)

z. €[0,2], Vee€ E(G)

In Figure 2 we give a construction to show that MDMTSP-LP has integrality gap 2.

If one gives up on the polynomial run time of the approximation algorithm, then smaller
approximation factors are possible. Xu and Rodrigues [28] show how to obtain a 3/2-
approximation, but their algorithm requires time n®@ which is polynomial only if the
number d = |D| of depots is constant. Another 3/2-approximation for MDMTSP with run
time n®@ follows from the recent work of Traub, Vygen and Zenklusen [26]. They in fact
show the much stronger result that any A-approximation algorithm for metric TSP also
gives a (A + ¢)-approximation algorithm for metric MDMTSP with an additional run time
factor of n©(@/¢) In summary, the state-of-the-art for metric MDMTSP is that there is no
a-approximation known for MDMTSP for any absolute constant a < 2 which runs in time

7,Lo(d) )
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Figure 2 An instance on which the multi-depot subtour-elimination LP has integrality gap
arbitrarily close to 2. The square nodes are the depots and all edges have unit weight. The dashed
edges are assigned x. = 0.5 by the LP, the other edges z. = 1. The LP then has optimum value at
most £+ 6, whereas the MDMTSP has optimum value 2(¢ 4 4).

1.1 Our Results

Our main result is a novel approximation algorithm for metric MULTIPLE TSP on d depots
with a significantly improved run time. That is, we provide the first algorithm for metric
MDMTSP which breaks the n®(@ time barrier to obtain an approximation ratio strictly better
than 2. Given an instance (G, D,w) of metric MDMTSP, we say a collection C1,...,Cy of
cycles is a tour if they jointly cover all nodes of G and each cycle contains exactly one depot
from D.

» Theorem 1. There is an algorithm that, given any € > 0, in time (1/)©(dlogd) . pO1)
computes a tour T for any set of n cities with metric distances and d depots. The algorithm is
randomized, and with constant probability the length of the tour T is at most (3/2+¢) - OPT.

Thus, our result significantly improves on the previously best run time n®® by Xu and
Rodrigues [28] at the cost of some small additive € in the approximation factor.

To break through the barrier of 2 on the approximation ratio, we need to rework the
initial spanner F' to be “correctly aligned” with the optimal solution so that each subtour
contains an even number of odd-degree nodes, as initially proposed by Xu and Rodrigues [28].
We show that an approximate reworking can be done in time f(d,¢) -nPW for some suitable
function f, resulting in a (3/2 + ¢€)-approximation. To this end, firstly, we give a reduction
of metric MDMTSP to a related routing problem which is known as the RURAL POSTPERSON
PROBLEM (RPP). In the RPP, we are given an edge-weighted graph G and a set R of required
edges, and are asked to compute a minimum-weight edge set F' such that R U F is connected
and Eulerian. Our reduction reveals an approximation algorithm with run time O(n? +1t) to
compute solutions no worse than 2 OPT +2w(T'), where w(T) is the weight of a single-person
TSP tour T through the depots and t denotes the time to compute 7. Then we use a
randomized algorithm of Gutin et al. [11] for the RPP, and an approximate weight reduction
scheme of van Bevern et al. [27], to construct a (1 + €)-approximation algorithm for a variant
of RPP with depots.

We are then in a position to speed up the reworking of the inital spanner due to two
key insights. Firstly, we allow for some misalignment to remain, as long as it is only due
to the presence of some light edges, limiting the number of edges we have to consider for
removal from F. Secondly, we employ the constructed approximation algorithm for the RPP
to complete our now disconnected spanner to a tour. Doing this provides a large speedup
over the algorithm of Xu and Rodrigues, who first need to guess a set of edges to reconnect
their spanner, and then employ a matching algorithm to obtain a tour. Using the RPP allows
us to do both of these steps simultaneously, and considerably faster.

An important special case of metric TSP is when the metric w is induced by the shortest
paths in a graph. This version is also known as GRAPHIC TSP, and has been studied
extensively from the perspective of approximation algorithms [18, 23]. For MDMTSP on
graphic metrics, we obtain a deterministic algorithm with slightly better approximation
factor and a reduced run time.
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» Theorem 2. There is an algorithm that, given any graph G on n nodes and set D C V(G)
of d depots, in time 2% - n°MY) computes a tour T of length at most % -OPT.

1.2 Related work

In the case of a single salesperson, i.e. m = 1, Bérczi et al. [4] gave a polynomial-time
3/2-approximation for the many-visits version of metric MDMTSP, that is, when each node v

is equipped with a request r(v) (encoded in binary) of how many times it should be visited.

In a different work, Bérczi et al. [5] have shown constant-factor approximation algorithms
with ratio at most 4 for variants of metric MDMTSP where each tour has to visit exactly one
depot (and thus, d < m).

For the RPP, which asks for a minimum-weight tour traversing all edges of a given subset R
of edges of a graph, there is a polynomial-time approximation algorithm (cf. Frederickson [8]
or Jansen [12]) similar to the approach of Christofides-Serdyukov for metric TSP. The weight
of a solution can be bounded by (3 OPT +w(R))/2, where w(R) is the weight of R.

Oberlin et al. [19] studied heuristic approaches for MDMTSP where d = m and each
salesperson is located at its own depot.

For the objective of minimizing the longest tour length of any salesperson (rather than
the sum of all the tour lengths), Frederickson et al. [9], among other routing problems,
considered the case of a single depot (d = 1), and presented a (p + 1 — 1/m)-approximation

algorithm where p is the approximation ratio of an algorithm for the single-salesperson TSP.

2 Preliminaries

Let U be a finite universe. For a function w : Y — R and a multiset U C U we write w(U)
to mean ) ., w(u), where the sum has an additional summand for each copy of an element
in U, i.e. it considers multiplicities. The disjoint union (J;A; of some sets {A;}; is considered

to be the multiset of all items in the collection. For brevity we often write 24 to mean AU A.

Throughout this paper, we consider the multiple-depot version of the metric MULTIPLE
TSP, or metric MDMTSP for short. We will generally represent the metric by an edge-weighted
graph whose shortest-path metric we assume to be the metric in use. Notice that this makes
no difference in our setting since we are allowed to traverse edges multiple times; only if this
is forbidden does the non-metric case become relevant.

» Definition 3. An instance (G, D,w) of metric MDMTSP consists of a complete graph G,
a set D C V(G) of d depots, and a metric w : E(G) —» Ry on V(G). A multiset of edges
T C E(Q) is called a tour of (G, D,w) if

(P1) the multigraph (V(G),T') has even degree at every node in V(G),

(P2) and each connected component of (V(G),T) contains at least one node from D.

We denote by OPT(G, D, w) the minimum weight of any tour of (G, D,w). If the instance is

clear from the context, we may only say OPT.

Edge sets are generally allowed to be multisets, and graphs can have parallel edges.
Imitating the general framework of Christofides-Serdyukov [7, 24|, we first compute an edge

set F', called a constrained spanning forest (CSF), that ensures the connectivity property (P2).

We then compute an additional set of edges J such that F'U J has property (P1).

» Definition 4. Let G be a graph and let D C V(G). A constrained spanning forest in (G, D)
is a set F C E(G) of edges such that the graph (V(G), F) is acyclic and every connected
component of (V(G), F) contains at least one node from D.

39:5
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We will make use of the following result.

» Theorem 5 (Rathinam et al. [21]). Given any graph G on n nodes and m edges with
weights w : E(G) — R and a set D C V(G), a minimum-weight CSF of (G, D,w) can be
computed in time O((n 4+ m)logn).

Proof. The computation of a minimum-weight CsF for (G, D, w) can be reduced to computing
a minimum-weight spanning tree in a graph G’ with edge weights w’. The graph G’ is obtained
from G by adding a single root node r connected to every depot by an edge of some weight
less than the weight all other edges in G. Kruskal’s algorithm is guaranteed to choose these
edges for the minimum-weight spanning tree in (G',w’), and after removing r we are left
with a minimum-weight cSF for (G, D, w). <

Traditionally, property (P1) is obtained by computing a minimum-weight matching on the
odd-degree nodes of the CSF, as in Algorithm 1. However, this algorithm only achieves a

Algorithm 1 Algorithm MULTI-DEPOT CHRISTOFIDES-SERDYUKOV.

Input: A metric MDMTSP instance (G, D, w).
Output: A tour T with w(T) < 20PT.

1 Compute a minimum-weight csr F for (G, D, w);

2 Let U be the set of nodes with odd degree in F

3 Compute a minimum-weight perfect matching M in G[UJ;
Result: T:= FUM

tight approximation ratio of 2 — % for the multi-depot setting, as shown by Xu et al. [30]
(see Figure 1 for a simplified version of their lower bound example), because the matching
can have weight % OPT. To avoid needing such an expensive matching, the constrained
spanning forest needs to be rearranged such that there is again a matching of weight % OPT,
as in the work of Xu and Rodrigues [28].

3 Reducing Multi-Depot Multiple TSP to Rural Postperson Problem

In this section we show a reduction from the metric MDMTSP to the RPP. Recall that in the
RPP there is a required set R of edges that a tour should traverse, rather than a set of nodes.

» Definition 6 (Rural Postperson Problem). An instance (G, R, w) of RPP consists of a graph G,
a set R C E(G) of required edges, and o metric weight function w : E(G) — Rx>. A solution
is multiset J C E(G) for which (V, R0 J) is Eulerian, and which has only one non-singleton
connected component.r The weight of a solution J is w(J) =Y., w(e). The goal of RPP is
to compute an optimal solution, which is a solution of minimum weight OPT(G, R, w).

There is a polynomial-time approximation algorithm for RPP [8, 12] which computes a
solution J C E(G) such that w(RUJ) < 3w(RUJ*), i.e. w(J) < 2 OPT +1w(R), where J*
is some optimal solution. Due to the first inequality and the unavoidable weight of R, the
algorithm is known as a 3/2-approximation for RPp. This situation is very similar to the
current approximation status of metric MDMTSP, where we can obtain a 3/2-approximation
if we allow for some additional additive term. This observation motivates the following
reduction from metric MDMTSP to RPP.

! This means that nodes not incident to any edge from R do not need to be visited by the computed tour.
For metric cost functions, however, one can always reduce to the case where R spans G.
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» Observation 7. For each instance (G, D,w) of MDMTSP there is an instance (G', R,w') of
RPP such that any solution to the RPP instance can be transformed in polynomial time into a
solution to the MDMTSP instance of the same weight.

Proof. First, compute any TSP tour S on the depots in G, that is, on G[D]. Then, for each
node v € V'\ D, introduce a second node v’, as well as an edge e, = {v,v'}, and set its weight
to w'(e,) = 0. For each edge e € E(G) set w'(e) = w(e), and set R to be the union of S and
two copies of each e,. The any solution to the constructed instance of RPP corresponds to
an MDMTSP tour for (G, D, w) of the same weight. <

Notice that this reduction, together with the 3/2-approximation for RPP, allows us to compute
a solution to MDMTSP of weight at most 2 OPT +1w(S). In particular, if all depots are
pairwise close to each other this is already a better-than-2 approximation.

In Section 5 we will in some sense show a stronger result that there is also a (Turing)
reduction from MDMTSP to the special case of RPP where (V| R) has few connected components,
which has been shown by Gutin et al. to be tractable [11]:

» Proposition 8 (Gutin et al. [11]). There is a randomized algorithm for RPP that for any
instance (G, R,w), where (V(G), R) has k connected components and w takes only integer
values, in time 2°%) (n + OPT(G, R, w))°M produces a solution. With constant probability,
the computed solution is optimal.

However, as our reduction is only (1+¢)-approximate with respect to the solution qualities,
and needs time exponential in d and &, we need to remove the polynomial dependence on
OPT(G, R, w) in Proposition 8. To this end, we will adapt an approximate weight reduction
scheme by van Bevern et al. [27]:

» Lemma 9 (adapted from van Bevern et al. [27, Lemma 2.12]). Let (G, R,w) be an instance
of RPP with integral weighs, lete > 0, and let § = max{w(e) | e € E(G)}. Then in polynomial
time we can compute a weight function w' : E(G) — N>o such that
max{w'(e) | e € E(G)} < 2|E(G)|/e,
and for all a > 1, any solution J to (G, R,w") with weight w'(J) < a OPT(G, R, w’) also
fulfills w(J) < «OPT(G, R,w) + &8, as long as J contains at most two copies of each
edge.

Proof. The rounding scheme simply sets w’(e) := |w(e) - Zlfi(g)u for each edge e of G. This
yields the first condition, by definition. For the second condition, observe that for any J we
have

€ B / € B

(@) ) =) = S

e-f
2|E(G)|

e-p
E(G)|

|J|§2‘ w'(J) +ep .
Hence, the two weight functions are equivalent up to scaling by a constant and the addition
of at most 0. <

Notice that the restriction on J having at most two copies of each edge is never a problem:
whenever a solution to the RPP has three or more copies of one edge, we can delete two of
them to obtain a cheaper solution.

We will combine Proposition 8 and Lemma 9 to obtain an approximation for k-component
RPP whose run time does not depend on OPT.
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» Corollary 10. There is a randomized algorithm that, for any e > 0, in time 2°®) (n+ é)o(l)
computes a solution J for any instance (G, R,w) of RPP where (V(G), R) has k connected
components. The computed solution J has the property that, with constant probability,
w(J) < OPT(G, R,w) + emax{w(e) | e € J* U R}, where J* is some optimal solution to the

instance.

Proof. We first guess the weight 3 of the most expensive edge in J* U R, where J* is some
optimal solution. There are only |E(G)| options, so the guessing generates only polynomial
overhead. All edges that are more expensive than § can be removed from the instance to
get some graph G’. Now we apply Lemma 9 to get an instance with weights w’ bounded by
2|E(G)|/e and use the exact algorithm from Proposition 8 to get a solution J to (G, R, w’)
in time 290%) (n + %)0(1). From Lemma 9 with a = 1 we know that
w(J) < OPT(G, R,w) + B < OPT(G, R,w) + e max{w(e) | e € J* U R},
which proves the claim. |

We will be using this algorithm to complete partial solutions to instances of MDMTSP.
We will need only a slight modification that allows for the presence of depots as follows.

» Definition 11 (Depot Rural Postperson Problem). An instance (G, D, R, w) of the DEPOT
RURAL POSTPERSON PROBLEM (DRPP) consists of an RPP instance (G, R,w) and some
depots D C V(G). A solution is a multiset J C E(G) such that (V,RU J) is Fulerian and
each non-singleton connected component of (V, RUJ) contains at least one depot. The weight
of a solution J is w(J) =Y . ;w(e). The goal is to compute an optimal solution, which is
a solution of minimum weight OPT(G, D, R, w).

The depot version DRPP can be reduced to regular RPP quite easily.

» Corollary 12. There is a randomized algorithm that, for any instance (G, D, R, w) of DRPP
where (V(G), R) has k connected components and any € > 0, in time 20F198F) (n 4 %)0(1)
computes a solution J such that, with constant probability, w(J) < (14+¢) OPT(G, D, R, w) +
ew(R).

Proof. Note first that each connected component of (V(G), R) can be assumed to contain
at most one depot, so |D| < k. Some optimum solution J* induces a partition of the con-
nected components of (v(G), R) where each partition class corresponds to those components
connected to some specific depot. There are at most |D|¥ € 20(klogk) hogsible partitions, so
we can try each partition, solve the regular RPP instance on each of the |D| classes of the
partition using the algorithm from Corollary 10, and return the best solution we found. <«

4 Intuition for the Algorithm

The algorithm of Xu and Rodrigues [28] executes, at a very high level, the following steps:

1. Compute a minimum-weight constrained spanning forest F for (G, D, w).

2. Guess a set X of at most |D| — 1 edges such that they are in F' but not in some fixed
optimal tour 7.

3. Discard the guessed edges X from F. This leaves at most 2|D| connected components in
(V, F\ X). If we have guessed correctly, every subtour of 7' now contains an even number
of odd-degree nodes. There must exist some edges A from T such that (F\ X)U A is a
csF for (G, D) with w((F\ X)U A) < w(T). The value |A] is at most |D|, so we also
guess A.
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4. Since A contains only edges from T, every subtour of T still contains an even number
of odd-degree nodes with respect to (V, (F'\ X)U A). If we compute an odd-join J for
(F\ X)UA, we have w(J) < £ OPT, so return ((F\ X) U A) U J.

Since the algorithm needs to guess 2|D| edges in total (in step 2), it can be implemented in

time n®@, We modify this guessing step by considering for discarding (in step 3) only very

heavy edges, and by sidestepping the guessing of A; instead of computing first a connected
structure and then a join we do this simultaneously, using the algorithm for RPP. Specifically:

In step 2, we only consider edges that are very expensive relative to the total weight
of the forest F. If the targeted edge e is not in this collection, we do not delete it but
instead use it as part of the augmenting set A, doubling the edge. This also fixes parity,
but requires us to relax w((F\ X)UA) < w(T) to w((F\ X)UA) < (1+¢e)w(T). The e

can be controlled by how expensive relative to I’ we allow these non-deleted edges to be.

In step 3, we do not actually guess A, we merely use its existence. We instead solve an

instance of DRPP with at most 2d connected components for which A U J is a solution.

Using the algorithm from Corollary 12, we can compute a (1 + £)-approximation for the
DRPP in time f(d,e) - n®™®). We use the solution .J' as a replacement for A U .J knowing
w(J') < (1+¢&)w(AUJ). Combining inequalities for J and F' gives:

w((F\ X)UJ) < (1 +e)w(((F\ X)UA)UJ) < (1 —&-a)gOPT .

An illustration of the augmentation scheme can be found in Figure 3.

Figure 3 Illustration of the augmenting edges explored by our algorithm. Blue solid edges
represent a CSF, dashed red edges an optimal tour. Note that the tours of d2 and ds have an odd

number of nodes with odd degree in the ¢sr. Our algorithm considers two options to remedy this.

We either add two copies (green, dotted) of the edge e to the optimal tour, if e is considered to be
light enough. This joins the tours of d2 and ds to a single tour with an even number of odd-degree
nodes. If e is considered too heavy for this, we remove e from the CSF and replace it with the edge é
(black, dotted). As é comes from the optimal tour, this keeps the cost of the cSF below OPT and it
fixes the parities.
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5 Towards Faster Parity Correction

In this section, we give a formal version of the algorithm described in the previous section,
which we state as Algorithm 2. We prove this algorithm to be a (3/2 4+ O(¢))-approximation
for metric MDMTSP in Theorem 17. We will restate and reprove some of the results of Xu
and Rodrigues [28] to ensure completeness of the presentation and to integrate properly our
changes to their algorithm.

To this end, let us fix some notation throughout this section. Let (G, D, w) be a metric
MDMTSP instance with D = {dy, ..., d}, an optimal tour T, and the minimum-weight CSF F'
for (G, D,w) that was computed Algorithm 1. We denote by T} be the connected component
of T containing d;, by F; the subtree of F' containing d;, and U; the set of nodes in T; that
have odd degree with respect to the edges in F'. We take U = |, U;.

By minimality of F', we already know that w(F') < w(T) = OPT. To extend F' to an
MDMTSP tour, we try to compute a minimum-weight matching between the nodes in U. It is
a standard argument from the analysis of the Christofides-Serdyukov algorithm that if |U;]
is even, T; contains two disjoint matchings for the nodes in U;. So if every U; has even
cardinality, then any minimum-weight matching has weight at most % OPT. But this is not
the case, since a tree F; might contain nodes from many different tours, so the odd-degree
nodes are distributed arbitrarily. To record this “misalignment” between the trees and
subtours we introduce the concept of an alignment graph.

» Definition 13 (Alignment Graph). The alignment graph H for (G, F,T) is constructed as
V(H) =D, and

E(H)={{d;,d;} | e € F s.t. |enV(T;)| =lenV(T;)| =1} .
We also define a weight function wy : E(H) — R4 as
wy ((d;, dj)) == min{w(e)le € F, |V(T;) Ne| =|V(T;) Nel =1} .

In the following, we assume that H is connected, otherwise the analysis holds independently
for each connected component.

Now we take Dyqq to be the collection of depots d; for which |U;| is odd, and Ay to
be any Dgqq-join in H. The join Ay can be used to augment the original tour T to be
connected. To do this we transfer the join to the original graph to ensure that it contains
a “cheap” matching. For every edge e = {d;,d;} € E(Ag), pick an edge in é € E(F') with
w(é) = wr(e) and [éNV(T;)| = |éNV(T;)] = 1. Denote by A the collection of these é.
Observe that every node in T'U 24 has even degree, and every connected component of the
graph contains an even number of nodes from U. Hence, there exists a U-join J in G with
w(J) < sw(T U24).

Now notice that, if the edges in A have weight at most ew(F'), this inequality yields that
Algorithm 1 already achieves a good approximation ratio, specifically

w(F)+wM) <wF)+w(lJ) <1 +e)w(F)+ %w(T) < (% +e)w(T) .

Based on this observation, we are willing to augment 7" with low-weight edges from F to find
a low-weight matching. Therefore, we need to distinguish between heavy and light edges.

» Definition 14. Let € > 0. An edge e € I is e-light if w(e) < § - w(F); else, it is e-heavy.

We now try to replace the e-heavy edges in A with some other edges from T
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Algorithm 2 Algorithm EXTENDED MULTI-DEPOT CHRISTOFIDES-SERDYUKOV.

Input: A metric MDMTSP instance (G, D,w) and a parameter € > 0.
Output: A tour T such that w(T') < (3/2 + ¢) OPT with constant probability.
Compute a minimum-weight CSF F for (G, D, w);
Let T be the currently best MDMTSP solution, initially 2F;
Let Y be the set of edges in F' which are e-heavy;
foreach X CY, |X| < |D| do
F':=F\X;
Compute a solution M for the DRPP instance (G, D, F’,w) using Corollary 12 ;
if w(MUF') <w(T) then
‘ set T =MUF';
end

© w0 N O ks W N -

end
Result: T

=
o

» Lemma 15 (compare [28, Section 2]). Let X C A. Then there exist a set A C E(T) of
edges such that (F\ X)U A is a CSF for (G, D) with w((F\ X)U A) < w(T).

Proof. Consider the forest F’ obtained from T by removing exactly one edge from each
subtour. F contains only edges from T, so it is disjoint from X. By a standard matroid
exchange argument, for each e € X there is a é € F’ such that F — e + & is a CSF and
w(e) < w(é). This process can then be iterated to remove all of X. The collection of these é
is A, giving w((F\ X)UA) < w(F') < w(T). <«

This process of replacing augmenting edges from A with edges out of T" also fulfills the
key goal of putting an even number of odd-degree nodes into every connected component of
some augmented MDMTSP solution. Consider the following lemma, which is in substance a
version of a statement by Xu and Rodrigues [28, Theorem 2].

» Lemma 16. Let A, X, A be as in Lemma 15. Then every connected component of TU(A\ X))
contains an even number of nodes that have odd degree in (F\ X) U A.

Proof. Notice first that the connected components of T'U (A \ X) are the union of some of
the subtours of T'. Since the edges in A belong to some tour, adding them to F \ X flips
the parity of the degrees of two nodes on the same tour, so the total parity of odd-degree
nodes on that tour does not change. We can therefore restrict ourselves to considering the
odd-degree nodes with respect to F'\ X.

Recall that originally A was constructed from a Dygq-join Ay in the alignment graph H.
So X corresponds to some edge set Xy C Apy, and we know that Ay \ Xp constitutes
an (DOddAUee XHe)—join7 where A denotes the symmetric difference. For multisets, the
symmetric difference of some sets contains an item if and only if it is contained an odd
number of times in their disjoint union. At the same time, removing an edge e € X from F
with corresponding {d;,d;} € Xp changes the degree of one node in V(T;) and one node
on V(T;). So, the depots whose tours contain an odd number of odd-degree nodes with
respect to F'\ X are precisely (DoddAUee x5 €)s 80 A\ Xp joins them correctly. <

We are now ready to prove that Algorithm 2 returns a (3/2 + O(¢))-approximation, with
constant probability.

» Theorem 17. The tour returned by Algorithm 2 has weight at most (3/2 + O(e)) OPT,
with constant probability.
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Proof. Set T’ to be the tour returned by the algorithm. Now let A be the augmenting edge set
for some optimal tour as before and X the set of e-heavy edges in A. We look at the iteration
of the algorithm where that X is considered for removal. From Lemma 15 we know that there
exists some edge set A with w(F\ XUA) < OPT and Lemma 16 implies that there is an edge
set J such that F/\ X U AU J is Eulerian, contains a depot in each connected component, and
w(J) < 3w(T U (A\ X)). Therefore, AU J is a solution to the DRPP instance (G,D, F',w).
Hence, the M computed in the algorithm fulfills w(M) < (1 +¢e)w(AUJ) +ew(F’). Putting
all these inequalities together yields

w(T") = w(M) +w(F \ X)

< (w(F) —w(X) +w(A)) + (%(w(T) +w(A\ X))+ e(w(A)
1

<w(T) + 5 (w(T) +d- gw(F)) + e(w(A) + w(J) + w(F)) <

where we use that A\ X contains at most d edges, and all of them are e-light. |

Notice that this algorithm will give a (3/2 + ¢)-approximation when called with /4 as the
parameter of approximation. The additional run time cost will vanish in the O-notation. The
probability of success for this algorithm is the same as that for the algorithm in Proposition 8.
Notice that while that algorithm is called many times, we only need it to succeed for one
specific choice of X. If it fails in one of the other attempts, we do not care.

It remains to analyze the run time of this algorithm. We see that Y, the set of e-heavy
edges, has size at most %, so there are only (g)d possible values for X to be tried. Note
also that each loop iteration requires the approximate solution of a DRPP instance with O(d)
components which can be done in time 294108 d) (5 4 1)O1),

= The total run time then is
(1/£)0dlogd) . nOM) " showing Theorem 1.

6 A Deterministic 3/2-Approximation for Graphic MDMTSP

In this section we provide a deterministic 3/2-approximation for MDMTSP when the metric is
the shortest-path metric of an unweighted graph. The run time of the algorithm is 2¢ - n@1),

Let (G, D) be an instance of graphic MDMTSP, where G this time is the unweighted
graph inducing the shortest-path metric. Note that we can assume G to be connected. This
allows us to construct TSP tours that are not much more expensive than optimal solutions to
MDMTSP, which re-enables the original analysis of the Christofides-Serdyukov Algorithm.

For a given optimal MDMTSP tour 7', we can extend it to a TSP tour by introducing at
most 2(d — 1) edges. To do this, contract the subtours of T, find a spanning tree in the
contracted graph, and double all the edges of that tree. We then see that the solution F'U M
returned by Algorithm 1 fulfills

w(F O M) < w(T) + %(w(T) +2d—1)) = gw(T) bd—1.

Notice that the additive term d — 1 is likely to be very small, since we know w(T') > n —d.
A similar argument can also be made for metrics which are continuous in the sense that the
space cannot be partitioned into two very distant parts.

» Observation 18. Let (G, D, w) be an integer-weighted instance of MDMTSP for which there
exists a constant L such that, for allU C V(G), it holds min{w(u,v) |u € U,v ¢ U} < L.
Then Algorithm 1 returns a solution T for (G, D, w) with w(T) < 2 OPT(G, D,w)+ L(d—1).



M. Deppert, M. Kaul, and M. Mnich

Since we know w(T) to be in Q(n — d) also in this case, Algorithm 1 gives an asymptotic
3/2-approximation for any constant d and L. We can even get rid of the additive term in
the graphic case (i.e. L = 1) with some additional run time.

» Observation 19. There is a 3/2-approzimation algorithm for graphic MDMTSP with run
time 2¢ . nC)

Proof. Let T be some fixed optimal tour. We start by guessing the set D’ C D of depots
whose subtours in T contain at least one edge, generating on overhead of 2¢. Then we
know that 7" contains a csF F” for (G, D’) with weight |E(T)| — |D’|. As before, we connect
together all subtours of the depots in D’ with |D’| — 1 edges, and double these edges. Then
the tour F U M returned by Algorithm 1 fulfills

. 1 3
|E(EUM)| < [BE(T)| = [D]+ 5(IE(T) +2(D] - 1)) = S[E(T)] - 1,
and that proves the claim. |

For the special case where we require each depot to have a non-empty tour, we do not even
have to guess the correct subset of depots in Observation 19, yielding a 3/2-approximation
in truly polynomial time.

7 Discussion

We have shown that metric MDMTSP admits a randomized (3/2 + ¢)-approximation algorithm
in time (1/£)@(@legd) . nOM) filling in the gap between the best-known polynomial approxi-
mation factor, 2, and the 3/2-approximation of Xu and Rodrigues in time n®@
there remain a number of natural openings for improving on our result:

. However,

Can our algorithm be derandomized? Since we rely on the algorithm of Gutin et al. [11]
to solve RPP instances, this would require a derandomization of their result. However,
their algorithm relies on the Schwartz-Zippel Lemma [22, 32] for which no deterministic
alternatives have been found in the last 40 years.

Can the approximation factor be improved from 3/2 + ¢ to 3/27 We loose some ap-
proximation quality both when determining which edges to delete from the CsF, and
when solving RPP. Improving the first point would require a further refinement of the
tree-rearrangement technique introduced by Xu and Rodrigues [28]. For the second point,
the RPP algorithm of Gutin et al. would need to be sped up to run in strongly polynomial
time. Again, their algorithm relies on algebraic techniques for which derandomization
appears difficult, so a major technical innovation for k-component RPP is maybe necessary.

Does there exist some polynomial-time a-approximation algorithm for MDMTSP with
a < 2?7 We know from Traub et al. [26] that any a-approximation algorithm for single-
salesperson TSP implies a (« + €)-approximation for MDMTSP for any constant number
of depots, i.e. in time n®@. For instances with many depots however, the problem
remains intractable. It is of particular interest that two major technical tools for the
classical Tsp, Christofides’ Algorithm and the Subtour-Elimination LP, fail to achieve
better-than-2-approximations in the multi-depot regime (see Figure 1 and Figure 2). It
appears that to make progress on a polynomial-time algorithm some novel structural
insights would be required.
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