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Abstract
The Voronoi diagrams technique, introduced by Cabello [SODA’17] to compute the diameter of
planar graphs in subquadratic time, has revolutionized the field of distance computations in planar
graphs. We present novel applications of this technique in static, fault-tolerant, and partially-dynamic
undirected unweighted planar graphs, as well as some new limitations.

In the static case, we give n3+o(1)/D2 and Õ(n · D2) time algorithms for computing the diameter
of a planar graph G with diameter D. These are faster than the state of the art Õ(n5/3)
[SODA’18] when D < n1/3 or D > n2/3.
In the fault-tolerant setting, we give an n7/3+o(1) time algorithm for computing the diameter of
G \ {e} for every edge e in G (the replacement diameter problem). This should be compared
with the naive Õ(n8/3) time algorithm that runs the static algorithm for every edge.
In the incremental setting, where we wish to maintain the diameter while adding edges, we
present an algorithm with total running time n7/3+o(1). This should be compared with the naive
Õ(n8/3) time algorithm that runs the static algorithm after every update.
We give a lower bound (conditioned on the SETH) ruling out an amortized O(n1−ε) update
time for maintaining the diameter in weighted planar graph. The lower bound holds even for
incremental or decremental updates.

Our upper bounds are obtained by novel uses and manipulations of Voronoi diagrams. These
include maintaining the Voronoi diagram when edges of the graph are deleted, allowing the sites of
the Voronoi diagram to lie on a BFS tree level (rather than on boundaries of r-division), and a new
reduction from incremental diameter to incremental distance oracles that could be of interest beyond
planar graphs. Our lower bound is the first lower bound for a dynamic planar graph problem that is
conditioned on the SETH.
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1 Introduction

The diameter problem asks to compute the largest distance in the graph. It is one of
the most basic and extensively studied problems in the graph algorithms literature, and
moreover, it is prominent in Fine-grained Complexity where it has driven the development
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4:2 What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?

of innovative hardness reductions [1,4,5,9,11,17,29,36,67]. Assuming the strong exponential
time hypothesis (SETH), there is also no truly subquadratic algorithm for diameter [5, 67]
in undirected, unweighted graphs with treewidth Ω(log n). For graphs of bounded treewidth,
the diameter can be computed in near-linear time [5] (see also [41,50] for algorithms with
time bounds that depend on D). Near-linear time algorithms were developed for many other
restricted graph families, see e.g. [8, 14,31–34,40,43,49,66].

One of the outstanding questions that has remained open despite a decade of major
developments in algorithms and conditional lower bounds for graph problems is whether
diameter can be solved in near-linear time in planar graphs. Until 2017, only logarithmic
improvements over the natural O(n2) bound (of computing all-pairs shortest-path, APSP)
had been known [23,72]. The consensus was that truly subquadratic time is impossible and
the focus of the community was on proving a hardness result, e.g. under SETH. But then, in
a celebrated paper, Cabello [22] gave a subquadratic Õ(n11/6) time algorithm, that was later
improved to the current-best Õ(n5/3) bound [45].

The breakthrough in Cabello’s work [22] is his novel use of Voronoi Diagrams (VDs)
in planar graph algorithms. This new machinery has revolutionized the field of distance
computation problems in planar graphs and has lead to several breakthroughs [26,28,35,47,63]
including a surprising and almost-optimal distance oracle - a problem that had hitherto seen
many gradual improvements using different techniques both in the exact [10, 21, 26, 30, 35, 39,
42, 47, 56, 63–65,73] and the approximate [24, 48, 54, 55, 58, 69, 74] settings. Consequently, the
main meta question occupying the minds of researchers in planar graph algorithms is: what
else can Voronoi diagrams do for us?

1.1 Dynamic Planar Diameter
It is natural to expect VDs to produce breakthroughs in the domain of dynamic planar graphs.
Dynamic data structures that support updates and queries to a graph have remarkable
applications in theory (as a subroutine in static algorithms) and practice (for changing
inputs). Many ingenious algorithms for basic problems in dynamic planar graphs have been
developed in the last few decades, including connectivity, distances, and cuts [6, 18,19,25,
28, 37, 42, 51–53,55, 56, 59, 62, 68, 69], but large (polynomial) gaps remain compared to the
lower bounds [3]. Only few of these works [27,28] use VDs and only in a limited way (they
recompute the VD from scratch after every update). It is clear that major advancements
await if one is able to maintain the VD machinery dynamically in a meaningful way. In this
paper, we investigate this possibility by focusing on the diameter problem.

The state-of-the-art algorithm recomputes the diameter from scratch after every update
in time Õ(n5/3). This is not surprising since the only useful technique against diameter (in
static graphs) is based on VDs, and we do not know how to make VDs dynamic.

The first question that comes to mind is: Suppose, optimistically, we could make VDs
as dynamic as possible; what time bound would we hope to get? Clearly, we cannot get
O(n2/3−ε) time per update until we break the Õ(n5/3) bound for static graphs. Moreover, a
conditional n2/3−o(1) lower bound (under the APSP or Online Matrix Vector Conjectures)
follows from the reductions of Abboud and Dahlgaard [3]. So perhaps dynamic VDs would
lead to a matching O(n2/3) upper bound? Our first result rules out this possibility with an
n1−o(1) lower bound under SETH.

▶ Theorem 1 (Lower Bound on Dynamic Diameter). If the diameter of a dynamic undirected
planar graph on n nodes can be maintained with O(n1−ε) amortized time per weight-change,
then SETH is false. This holds even if the dynamic algorithm is allowed to preprocess the
initial graph in poly(n) time, and even in the partially-dynamic setting where weights only
increase or only decrease.
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Notably, this is the first lower bound for a dynamic planar graph problem that is based
on the SETH (as opposed to other conjectures) and only the second example of such a result
if we consider static planar graph problems as well [2, 46].

Towards Dynamic Voronoi Diagrams. A large gap of n2/3 remains despite our lower bound
and it is likely that it can be closed if we can indeed make VDs dynamic.1

In this paper, we take a small (but arguably the first) step towards this goal: we give
an efficient algorithm for updating the VD after the deletion of one edge in the graph,
much faster than recomputing it from scratch. (We refer to Section 5 for an overview and
all the details.) This small step already has interesting applications. While it applies for
general (weighted) planar graphs, the applications we have found only gain an advantage in
unweighted planar graphs.

A concrete application is a faster algorithm for the replacement diameter: given a
graph G return the diameter of G \ {e}, the graph obtained by removing the edge e, for
all edges e. The trivial algorithm for this problem makes O(n) calls to a static diameter
algorithm, one for each edge, and achieves Õ(n8/3) running time. We improve this upper
bound by an n1/3 factor to n7/3+o(1) by utilizing our efficient updates to VDs, along with
other tricks that are also based on VDs (but not in a dynamic way).

▶ Theorem 2 (Replacement Diameter). Given an unweighted undirected planar graph G =
(V, E), there is an n7/3+o(1) time algorithm that for every edge e ∈ E outputs the diameter
of Ge = (V, E \ {e}).

An additional new result is a faster algorithm for diameter in the incremental setting
where we start from an empty graph and need to maintain the diameter while O(n) edges
are being added (without violating the planarity). The trivial algorithm recomputes the
diameter after every update in a total of Õ(n8/3) time, and we improve it to n7/3+o(1).

▶ Theorem 3 (Incremental Diameter). There is an algorithm that maintains the diameter
of an unweighted undirected planar graph undergoing edge insertions in a total of n7/3+o(1)

time.

This result is based on an elegant reduction from incremental diameter to incremental
distance oracles that could be of interest beyond planar graphs. Its analysis relies on recent
works on the bipartite independent set queries introduced by Beame et al. [13].

1.2 Static Planar Diameter
Back to diameter in static graphs, what else can we hope to get from VDs? Of course, the
biggest open question is whether the n5/3 bound can be improved to n1+o(1), or whether one
can prove a super-linear lower bound. Toward this question, we would like to understand the
hard/easy cases, and a natural parameter to consider is D – the diameter itself.

One of the main algorithmic contributions of this paper, that is crucial to the afore-
mentioned upper bounds, is an algorithm beating n5/3 when D is large (in the range
[n2/3+ε, n]). Notably, it implies that anyone seeking a tight conditional lower bound cannot
use constructions with very large diameter.

1 It is tempting to think that Theorem 6 implies a dynamic diameter algorithm with update time Õ(n1.6);
Use an r-division and maintain for each piece the DDG and bisectors. Upon an update of an edge in a
piece P , recompute the DDG of P (using MSSP) and the bisectors of P (using Theorem 6). For each
vertex in the graph, recompute all additive weights using FR-Dijkstra, and compute the furthest vertex
in each piece using Theorem 6. The caveat is that this approach does not handle properly the case
where both endpoints of the diameter path belong to the same piece (not necessarily P ). The reason is
that the VD mechanism only handles paths that visit at least one boundary node.
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▶ Theorem 4 (Static Large Diameter). The diameter can be computed in n3+o(1)/D2 time
on an unweighted undirected planar graph with diameter D.

Our new algorithm applies VDs in a novel way, where the VD sites lie on a BFS tree
level, as opposed to lying on the boundary of pieces in an r-divisions.

While our result is the first to address the large D case, the other extreme of small D has
already been studied. Eppstein [41] gave the first near-linear time algorithm for constant D,
with an exponential dependence on D. This dependency was later improved as a byproduct
of new (1 + ε)-approximation algorithms for diameter [15,24,41,70]. The state of the art is
Õ(n ·D5) using the (1+ε)-approximation Õ(n · (1/ε)5)-time algorithm of Chan and Skrepetos
[24] with ε = 1/D. The final result of this paper is an improved bound of Õ(nD2) which
increases the range in which the n5/3 bound can be beaten from D < n2/15−ε to D < n1/3−ε.

▶ Theorem 5 (Static Small Diameter). The diameter can be computed in Õ(n · D2) time on
an unweighted undirected planar graph with diameter D.

Our algorithm exploits VDs in a more natural way than that of Chan and Skrepetos [24],
if our goal is solve the small D case exactly (recall that their focus is on approximations). It
remains an interesting open question whether the Õ(n · (1/ε)5) time approximation algorithm
can be improved. This is related to another challenge of computing approximate VDs faster
than exact, which we do not address in this paper.

2 Preliminaries

A recursive decomposition tree T of a planar graph G is the tree obtained (in linear time)
by recursively separating G with a separator of size

√
|G|. T is a binary tree whose nodes

correspond to subgraphs of G (called pieces), with the root being all of G and the leaves
being pieces of constant size. We identify each piece P with the node representing it in T
(we can thus abuse notation and write P ∈ T ), and with its boundary ∂P (i.e. vertices that
belong to some separator along the recursive decomposition used to obtain P ). An important
property for us (see e.g. [47, Lemma 3.1]) is that the sum of |P | · |∂P ′| over all pairs of
siblings P, P ′ in T is Õ(n1.5).

An r-division [44] of a planar graph G is a decomposition of G into Θ(n/r) pieces, each
of them with O(r) vertices and O(

√
r) boundary vertices (vertices shared with other pieces).

It is possible to compute an r-division in O(n) time [57] with the useful property that the
boundary vertices of each piece lie on a constant number of faces of the piece (called holes).

The dense distance graph (DDG) of a piece P is the complete graph over the boundary
vertices of P . The length of edge uv in the DDG of P equals to the u-to-v distance inside P .
Note that the DDG of P is non-planar. The DDG of an r-division is the union of DDGs of
all pieces of the r-division. Thus, the total number of vertices in the DDG is O(n/

√
r), and

the total number of edges is O(n). The DDG of an r-division can be computed in Õ(n) time
using the MSSP algorithm [56]. Fakcharoenphol and Rao [42] described an Õ(n/

√
r) time

implementation of Dijkstra’s algorithm (nicknamed FR-Dijkstra) on the DDG.
The difficult case for computing the diameter is when the furthest pair of vertices lie in

different pieces. Consider some source vertex s outside of some piece P . For every boundary
vertex u of P , let d(u) denote the s-to-u distance in G. The additively weighted Voronoi
diagram of P with respect to d(·) is a partition of the vertices of P into pairwise disjoint
sets (Voronoi cells), each associated with a unique boundary vertex (site) u. The vertices
in the cell Vor(u) are all the vertices v of P such that u is the last boundary vertex of P

on the shortest s-to-v path. In other words, every site u of P has additive weight d(u), the
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additive distance from a site u to a vertex v of P is defined as d(u) plus the length of the
shortest u-to-v path inside P , and the cell Vor(u) contains all vertices v of P that are closer
(w.r.t. additive distances) to u than to any other site in S. The boundary ∂Vor(u) of a cell
Vor(u) consists of all edges of P that have exactly one endpoint in Vor(u). For example, in a
Voronoi diagram of just two sites u and v, the boundary of the cell Vor(u) is a uv-cut and
is therefore a cycle in the dual graph. This cycle is called the uv-bisector. The complexity
|∂Vor(u)| of a Voronoi cell Vor(u) is the number of faces of P that contain vertices of Vor(u)
and of at least two more Voronoi cells. For every source s, computing the furthest vertex
from s in P thus boils down to computing, for each site u, the furthest vertex (w.r.t. additive
distance) from u in Vor(u), and then returning the maximum value among all sites u.

▶ Theorem 6 ([45]). Let P be an edge-weighted planar graph with r vertices. Let S be a set
of b sites that lie on the boundaries of Õ(1) faces2 of P . The uv-bisectors of all pairs u, v ∈ S

and all possible additive weights d(u), d(v) can be computed and represented in Õ(rb2) time
and space. Then, given any additive weights d(·) to S, a representation of the Voronoi
diagram w.r.t these weights can be constructed in Õ(|S|) time. With this representation,
for any site u ∈ S we can query the maximum distance from u to a vertex in Vor(u) in
Õ(|∂Vor(u)|) time.

3 Static Diameter

3.1 An n3+o(1)/D2 Algorithm
In this subsection we prove Theorem 4, stating that the diameter can be computed in
n3+o(1)/D2 time on an unweighted undirected planar graph with diameter D. We first
present a randomized Õ(n4/D3) time algorithm, and then show how to improve it to
n3+o(1)/D2. We then show how to derandomize both algorithms. We begin with two simple
observations about the BFS levels when the diameter is ≥ D.

▶ Observation 7. Let s be any node in a graph of diameter ≥ D. Then at least one out of
the D/2 middle levels of the BFS tree rooted at s has size O(n/D).

▶ Observation 8. Let s be any node in G and let Li be the set of nodes at level i in the
BFS tree rooted at s. Let Gi be the subgraph of G that is induced by

⋃
j≥i Lj . Then for each

connected component C of Gi the nodes in Li ∩ C lie on a single face.

Proof. To see that the vertices of Li ∩C all lie on the same face in Gi, consider the embedding
of the component C of Gi inherited from the embedding of G. Viewing C as a graph obtained
from G by deleting edges and vertices, one can start from any vertex of Li and follow a curve
in the plane that only goes through deleted edges and vertices until reaching the root s of
the BFS tree. Hence all vertices of Li lie on a single face of C, and hence also of Gi. ◀

A randomized algorithm. We first compute in O(n) time a 2-approximation (lower bound)
D̃ of D by computing a BFS tree and choosing D̃ to be the furthest root-to-leaf distance.
Then, we repeat the following procedure θ(n log n/D̃) times, and return the largest distance
found:

2 Theorem 1.1 in [45] is phrased for a constant number of faced (called holes). However, as pointed in
footnote 8 in [45], the dependency of the running time on the number of holes is polynomial, so the
theorem applies also to the case of a polylogarithmic number of holes.

ESA 2023



4:6 What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?

1. Randomly sample a source s, compute its BFS tree. Let D′ be the depth of this tree.
Note that D ≥ D′ ≥ D/2. Let S = Li be the set of nodes at level i satisfying both
D′/4 < i < 3D′/4 and |S| = O(n/D′) = O(n/D). By Observation 7, such a set exists.
Let Gi be the subgraph of G induced by

⋃
j≥i Lj .

2. Compute d(v, b) for all v ∈ G and all b ∈ S.
3. For each connected component C of Gi:

a. Compute all bisectors in C of sites C ∩ S (that lie on a single face by Observation 8).
b. For each node v in G \ Gi, compute the VD of C w.r.t the additive weights d(v, b),

and compute the distance from v to its furthest vertex in every Voronoi cell of the VD.

Running time. The first step takes O(n) time by computing and traversing the BFS tree of
s. The second step takes O(n2/D) time by doing a BFS from each vertex of S in O(n) time.
The most expensive step is 3a. By Theorem 6, all bisectors of a connected component C

can be computed in Õ(|C| · |C ∩ S|2) time. Over all connected components, this sums up to
Õ(n · (n/D)2) (since the C’s are disjoint and sum up to n, and the C ∩ S are disjoint and
sum up to O(n/D)). Finally, in step 3b, for each vertex v, computing v’s VD and furthest
vertex in every cell takes Õ(|C ∩ S|) time by Theorem 6. Over all connected components,
this sums up to Õ(n/D), and thus over all vertices v to Õ(n2/D). The total running time of
the entire procedure is thus Õ(n · (n/D)2), and since we repeat the procedure Õ(n/D) times
we get Õ(n4/D3).

Correctness. It remains to prove that the distance we return is indeed the diameter with
high probability. Let x, y be the two endpoints of the diameter (i.e. D = d(x, y)). Then, the
probability that a random source s satisfies d(s, x) ≤ D′/4 and d(s, y) ≥ 3D′/4 is at least
D′/4n (because this happens if s is one of the first D′/4 nodes on the path from x to y).
Therefore, this happens with high probability for at least one of the sources s that we choose.
For this s, we will have that x ∈ G \ Gi while y ∈ Gi (it is impossible that y ∈ G \ Gi because
then an x-to-y path through s would be shorter than D), and then the largest distance that
we find is guaranteed to be d(x, y).

Derandomization. Observe that to derandomize the algorithm, it suffices to replace the
sampling of sources with a (deterministic) selection of a set of sources S of size O(n/D) such
that a diameter endpoint x is at distance ≤ D′/4 from at least one source s ∈ S.

To construct S, pick an arbitrary source s and compute it’s BFS tree T of depth D′ ≤ D.
Find a level Li that has only O(n/D′) = O(n/D) nodes and 0.4D′ ≤ i ≤ 0.5D′. Similarly,
find a level Lj that has only O(n/D) nodes and 0.8D′ ≤ j ≤ 0.9D′. The set of sources is
then S = {s} ∪ Li ∪ Lj . It is easy to verify that every vertex v in the graph has an ancestor
or a descendant in T that belongs to S and is at distance at most D′/4 ≤ D/4 from v.

A faster algorithm. Next, we improve the running time to n3+o(1)/D2. Again, we will start
with a randomized algorithm and then derandomize. Let Bρ(v) denote the ball with radius
ρ around vertex v. Recall that our goal is to sample w.h.p. a vertex s in BD̃/4(x) (without
knowing x), where x is a diameter endpoint.

Let ρ = D̃/4. In order to sample a vertex s in Bρ(x) w.h.p., it suffices to randomly sample
a set of Õ(n/|Bρ(x)|) vertices (rather than sampling Õ(n/ρ) vertices as in the approach
above). Then, for each sampled vertex s, we can find a level Li in the BFS tree of s with
ρ < i ≤ 2ρ s.t. |Li| < |B2ρ(s)|/ρ (rather than n/ρ as in the approach above). Then, executing
the approach above (i.e., executing steps 2–3 of the Õ(n4/D3) algorithm above) for a specific
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s would take time Õ(n(|B2ρ(s)|/ρ)2) to compute all bisectors, Õ(n|B2ρ(s)|/ρ) to compute
all additive weights, and Õ(|B2ρ(s)|2/ρ) to construct the Voronoi diagrams for all vertices
above level i. We see that if |Bρ(x)| is large then we gain because we have to sample fewer
vertices, and if |B2ρ(s)| is small then we gain because the amount of work for each sampled
vertex decreases.

For this approach to work, we need to (1) estimate |Bρ(x)|, and (2) relate |Bρ(x)| and
|B2ρ(s)|. To address (1), we simply estimate |Bρ(x)| by enumerating all powers of two 2k

for 0 ≤ k ≤ log n. To address (2), note that |Bρ(x)| < |B2ρ(s)| < |B3ρ(x)|, and that there
must exist a j ∈ {1, 2, . . . ,

√
log3 n} s.t. |B3ρ3−j (x)|/|Bρ3−j (x)| < 3

√
log3n = no(1) (if not,

|Bρ(x)| > n, a contradiction).
The algorithm is therefore: For each 1 ≤ j ≤

√
log3n, let ρj = 3−jρ. For each

0 ≤ k < log n we sample (n log n)/2k vertices s (reflecting our assumption that Bρj
(x) ≤ 2k).

For each sampled vertex s, if |B2ρj
(s)| > 2k3

√
log3n, then, since |Bρ(x)| < |B2ρ(s)| < |B3ρ(x)|,

it must be that s /∈ Bρj
(x) or |Bρj

(x)| > 2k or |Bρj−1(x)|/|Bρj
(x)| > 3

√
log3n (the disjunction

is not exclusive). Hence, in this case we discard s and move on to the next sampled vertex.
Otherwise, |B2ρj (s)| ≤ 2k3

√
log3n, and we can find a level Li with ρj < i < 2ρj in the BFS

tree rooted at s s.t. |Li| < 2k3
√

log3n/ρj , and continue as in steps 2–3 from the previous
algorithm. The overall running time is

√
log3n∑
j=0

log n∑
k=0

Õ
( n

2k

(
n(2k3

√
log3n/ρj)2 + n2k3

√
log3n/ρj + (2k3

√
log3n)2/ρj

))
= n3+o(1)/D2.

To argue correctness, note that for j such that |Bρj−1(x)|/|Bρj
(x)| ≤ 3

√
log3n and k such

that 2k−1 ≤ |Bρj (x)| ≤ 2k, sampling (n log n)/2k vertices will yield with high probability
a vertex s ∈ Bρj

(x), and this s will not be discarded. This s satisfies d(s, x) ≤ ρj and
d(s, y) ≥ 2ρj , so the largest distance found for this s is guaranteed to be d(x, y) by the same
argument as in the correctness of the slower algorithm.

Derandomization. We use sparse neighborhood covers of Busch, Lafortune and Tirthapura
[20] to derandomize the algorithm. A ρ-neighborhood cover Z of a graph G is a set of
connected subgraphs called clusters, such that the union of all clusters is the vertex set of G

and such that for each node v ∈ G, there is some cluster C ∈ Z that contains Bρ(v). The
radius of a cover Z is the maximum radius of a cluster in Z. The degree of a cover Z is the
maximum number of clusters that a node in G is a part of. Busch et al. gave a deterministic
O(n log n)-time algorithm for computing, for any ρ > 0 and any connected planar graph, a
ρ-neighborhood cover of any connected planar graph with radius 16ρ and degree 18. See
also [60] for an O(n) time algorithm.

To adjust the arguments we redefine ρj = ρ33−j for j = 1, . . . ,
√

log33(n), and use the
fact that for some j, |Bρj−1 |/|Bρj | < 33

√
log33 n. To avoid sampling in our algorithm, for

each choice of j, k, we compute a ρj-neighborhood cover Z. We pick an arbitrary vertex s

from each cluster C of Z such that |C| > 2k. Since the degree of Z is 18, the number vertices
s we choose is at most 18n/2k.

If 2k < |Bρj
(x)| > 2k+1 then the cluster C containing Bρj

(x) will have |C| > 2k vertices,
and we will choose a vertex s ∈ C. Since the radius of Z is 16ρj , d(s, x) ≤ 16ρj . If
|B17ρj

(s)| > 2k+133
√

log33 n, we discard s. Since B17ρj
(s) is contained in B33ρj

(x) = Bρj−1(x),
we are guaranteed that some s will not be discarded. For such s we find a level Li with
16ρj < i < 17ρj in the BFS tree rooted at s s.t. |Li| < 2k+133

√
log33 n/ρj . The level of x in
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the BFS tree is at most 16ρj , and since ρj < ρ < D/4, the vertex y such that d(x, y) = D is
at level greater than i in the BFS tree. Hence, executing lines 2–3 of the procedure for the
algorithm in section 5 will report the distance D. The running time analysis is identical to
that of the randomized version since we made sure that the number of vertices we choose in
the derandomiztion is at most some fixed constant times the number of sampled vertices in
the randomized algorithm.

3.2 An Õ(n · D2) Algorithm
In this subsection we prove Theorem 5, stating that the diameter can be computed in Õ(n·D2)
time on an unweighted planar graph with diameter D. We begin with some preliminaries on
a recursive decomposition using shortest path separators.

Preliminaries. A shortest path separator of a planar graph G is an undirected cycle C(G)
consisting of a shortest s-to-u path, a shortest s-to-v path, and a single edge uv, such that
both the interior and exterior of the cycle consist of at most 2/3 of the total number of
the faces of G. Such a separator can be found in O(n) time [61]. By recursively separating
G with shortest path separators (halting the recursion when we reach subgraphs of size
≤ D), we obtain the decomposition tree T . The root of T corresponds to the entire graph
G. A node corresponding to subgraph P (we interchangeably refer to it as node P ) has two
children, whose subgraphs correspond to the interior and exterior of the separator C(P ).

Observe that for every node P ∈ T the size of the shortest path separator C(P ) is O(D).
This is because C(P ) consists of two shortest paths, each of length at most D. Moreover,
the boundary of P (vertices of P that have incident edges to vertices not in P ) is included
in the union of all C(P ′) where P ′ is an ancestor of P , and is therefore of size O(D log n)
and lies on O(log n) faces of P . We compute the DDGs of every node (subgraph) P ∈ T
(i.e. copmute a data structure that can report in Õ(1) time the distances in the graph P

between and pair of boundary vertices of P ) using O(log n) executions of MSSP on P . This
takes total Õ(n) time over the entire T . Now, given any vertex v in the subgraph P , we
can compute the distances in G from v to all boundary vertices of P in Õ(D) time using
FR-Dijkstra. Namely, we initialize the Õ(D) boundary vertices of P to their distances from
v in the graph P (via MSSP queries), and we run FR-Dijkstra on the union of the DDG of
P and the DDGs of all P ′ where P ′ is a sibling of some ancestor of P .

The algorithm. For every non-leaf node P ∈ T , we compute the furthest pair of vertices
u, v ∈ P where u is internal to C(P ) and v is external to C(P ). Observe that distances must
be taken in the entire graph G since the shortest u-to-v path may venture out of P . To
this end, we precompute all bisectors of every graph P ∈ T , with the sites being the Õ(D)
boundary vertices of P . Using Theorem 6, this takes Õ(|P | · D2) time (where |P | denotes
the size of the subgraph P ), so over all T this takes Õ(n · D2) time. (Observe that here we
have used Theorem 6 with the sites lying on O(log n) faces. As far as we know, in all prior
uses of Theorem 6 the sites lie on O(1) faces). Then, for every vertex v ∈ P , we compute
the distances in G from v to all boundary vertices of P using FR-Dijkstra in Õ(D) time as
explained above. We then use these distances as additive weights and apply Theorem 6 to
find the furthest vertex from v in P . This also takes Õ(D) time, so overall Õ(n · D).

We handle the leaf nodes P ∈ T explicitly (recall that |P | ≤ D). For each leaf node P we
compute the all-pairs shortest-paths (APSP) in G between any two vertices u, v ∈ P . This is
done by running Dijkstra’s standard algorithm from every v ∈ P on the graph P where the
boundary vertices of P are initialized to their distances from v in G (that we have already
computed as v’s additive weights). This takes Õ(D) time per v, so Õ(D2) time per P , and
Õ(D2 · n/D) = Õ(nD) over all leaves P .
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4 A Lower Bound on Dynamic Diameter

In this section we prove Theorem 1. Namely, we give a conditional lower bound ruling out
an amortized O(n1−ε) update time for maintaining the diameter of weighted planar graphs
that undergo a sequence of edge-weight updates.

The proof is inspired by [3], however, there are quite a few changes since the reduction
in [3] is from APSP (not SETH), to dynamic distance oracles (not dynamic diameter), and
rules out O(n0.5−ε) update time (not O(n1−ε)). Our reduction is from the following problem,
which is simply a recasting of the Orthogonal Vectors problem in the language of graphs.

▶ Definition 9 (Graph OV). Given an undirected tripartite graph G with parts A, C, B where
|A| = |B| = n and the middle level has size |C| = O(log n), where all edges are in A × C and
C × B decide if there exists a pair ai ∈ A, bj ∈ B such that dG(ai, bj) > 2.

It is known that solving this Graph OV problem in O(n2−ε) time refutes SETH [67,71].
Moreover, in the unbalanced version where |A| = nα and |B| = nβ for arbitrary constants
α, β > 0 we know that an O(nα+β−ε) time algorithm refutes SETH.

The structure of the reduction. Given an instance G of the Graph OV problem, we
construct a dynamic planar graph H. The graph H is composed of two grids, a left grid and
a right grid, each of dimension |C| = O(log n) by |A| = n. The columns of both grids are
indexed by the nodes of A, such that the top node of the ith column in the left (resp. right)
grid is called ai (resp. a′

i). The rows of the grids correspond to the nodes in C such that the
rightmost (resp. leftmost) node in the kth row of the left (resp. right) grid is called ck (resp.
c′

k). In both grids, all horizontal edges have weight 2|C|. In the left grid, the vertical edges
in column i have weight 2i and in the right grid the vertical edges of column i have weight
2(n − i). In the left grid, for every i and k, if the edge (ai, ck) exists in G, then we add a
diagonal edge ek from vertex (k − 1, i) to vertex (k, i + 1) whose weight is 2i + 2|C| − 1. We
call such ek a shortcut edge (as it is shorter by 1 compared to the alternative path composed
of a vertical edge followed by a horizontal edge). The two grids are connected by |C| edges:
for each k we have an edge from ck to c′

k of weight 2n|C| − 2nk. These |C| edges are the
only edges in H whose weights will change throughout the reduction - all others will remain
fixed. We add a single node x that is connected to all nodes in the top row of the left grid
and all nodes of the top row in the right grid. We set the weight of every edge (ai, x) to be
i · 4|C| and the weight of every edge (x, a′

j) to be (n − j) · 4|C|.

The dynamic updates. After constructing the initial graph H as above, for every j =
1, . . . , n we obtain a graph Hj by applying the following updates to H: for every k = 1, . . . , |C|
if the edge (ck, bj) exists in G then decrease by 1 the weight of the edge (ck, c′

k) in H (we refer
to such edge (ck, c′

k) as a decreased edge). The following main lemma shows that the diameter
of Hj reveals whether or not there exists an ai ∈ A such that dG(ai, bj) > 2. Note, crucially,
that we can generate all graphs H1, . . . , Hn in sequence using only O(n log n) updates since
Hi differ from Hi−1 by only O(log n) edge weights. Under SETH, we cannot maintain the
diameter throughout this sequence in O(n2−ε) time. Therefore, each update cannot be done
in O(n1−ε) amortized time, thus proving Theorem 1 for the fully-dynamic case. To get a
proof for the incremental case where edge weights only decrease we can do the following (the
decremental case is symmetric). Redefine the weight of the O(log n) edges so that they only
decrease during the sequence: add 2(n − i) to their weight in Hi so that their weight is the
largest in H1 and smallest in Hn. Then, the sequence of graphs can be generated by only
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O(n log n) decrease-weight updates. The diameter of Hi increases by exactly 2(n − i) so the
same analysis goes through. For simplicity, we continue the proof in this section with the
construction in the fully-dynamic case.

▶ Lemma 10. For any j, the diameter of Hj is larger than 4n|C| − 2 iff there exists ai ∈ A

such that dG(ai, bj) > 2.

In the remainder of this section we prove the above lemma. First observe that by our choice
of edge-weights the diameter of Hj correspond to some shortest ai-to-a′

ℓ path. The following
claim shows that in fact it is an ai-to-a′

i path.

▷ Claim 11. For all i ̸= ℓ, dHj (ai, a′
ℓ) < 4n|C| − 2.

Proof. If ℓ > i, then the path ai − x − a′
ℓ consisting of two edges costs (n − (ℓ − i)) · 4|C| <

4n|C| − 2. Otherwise ℓ < i, then the ai-to-a′
ℓ path that only uses horizontal edges costs

2|C|(n − i + ℓ) + 2|C| = 2n < 4n|C| − 2. ◁

The following claim concludes the proof.

▷ Claim 12. For any i, dHj
(ai, a′

i) > 4n|C| − 2 iff dG(ai, bj) > 2.

Proof. Observe that the path ai − x − a′
i consisting of two edges costs 4n|C|. There may

however be a shorter ai-to-a′
i path that passes through the grids. By our choice of edge

weights (similarly to [3]) such shortest path must start with an ai-to-ck prefix (for some
k ≤ |C|) in the left grid, then use the (ck, c′

k) edge, then in the right grid do i horizontal
steps followed by k vertical steps. Moreover, the ai-to-ck prefix starts with k − 1 vertical
steps, then uses a shortcut edge ek if it exists (otherwise it does a horizontal step followed
by a vertical step), and then it does n − i − 1 horizontal steps until reaching ck.

Suppose first that there were no shortcut edges and no decreased edges at all. The length
of such ai-to-a′

i path would then be

dH(ai, a′
i) = k · 2i + (n − i) · 2|C| + (2n|C| − 2nk) + i · 2|C| + k · 2(n − i) = 4n|C|.

Note that this length (4n|C|) is the same independent of k and of i. Hence, the only way
an ai-to-a′

i path can be shorter than 4n|C| is by using shortcut edges and decreased edges.
However, it can use at most one shortcut edge ek and one decreased edge (ck, c′

k). So its
length is 4n|C| − 2 iff there exists a k such that the shortcut ek exists (i.e., (ai, ck) ∈ E(G))
and the edge (ck, c′

k) is decreased (i.e., (ck, bj) ∈ E(G)), and this is iff dG(ai, bj) ≤ 2. ◁

▶ Remark 13. By subdividing all edges, the above reduction implies that O(n1/2−ε) update
time is impossible for maintaining the diameter of unweighted planar graphs.

5 Decremental Voronoi diagrams and Replacement Diameter

Overview: A Step Toward Dynamic Voronoi Diagrams. The usefulness of Voronoi diagrams
for diameter and distance reporting in static planar graphs make it natural to ask whether
one can efficiently maintain some useful representation of Voronoi diagrams in the dynamic
setting. This seems challenging because a change in a single edge or in a single additive
weight can cause the entire Voronoi diagram to completely change. For example, decreasing
the weight of a single edge in the Voronoi cell Vor(b) of some site b may cause an expansion of
Vor(b) on the expense of every other Voronoi cell, even cells that were not neighbors of Vor(b)
before the change. The same is true for decreasing the additive weight of b. Indeed, the few
attempts to use Voronoi diagrams in dynamic planar graphs that we are aware of [27,28], all
recompute the Voronoi diagrams from scratch upon every update.
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We make a small step towards dynamic Voronoi diagrams by developing a mechanism for
updating Voronoi diagrams in the decremental setting. In our opinion, this is the most novel
technical contribution of our work. The deletion of an edge in some part of the graph only
causes an increase in the additive weights of certain sites. When the additive weight of site
b increases, its Voronoi cell shrinks. Namely, some vertices that were in Vor(b) before the
increase will belong to Voronoi cells of other sites after the increase. The crucial observation
is that the only relevant sites in this process are b and the sites of the neighboring cells
to Vor(b) in the original Voronoi diagram. The time for the resulting update procedure is
therefore proportional to the cell-degree of b, rather than to the total number of sites in
the Voronoi diagram. Unfortunately, the cell-degree of b may, in general, be as large as
the number of sites. Nonetheless, this procedure turns out to be useful for the replacement
diameter problem, where we can bound the number of times each site is affected by some
edge deletion.

Representing Voronoi diagrams. Let P be a planar graph with real edge-lengths. Let S be
the set of vertices (sites) that lie on Õ(1) faces, called holes. Recall that every site s ∈ S has
an associated additive weight d(s).

Consider the Voronoi diagram of P with sites S and additive weights d(s). Let P ∗ be the
planar dual of P . Let VD0 be the subgraph of P ∗ consisting of the duals of edges (u, v) of P

such that u and v are in different Voronoi cells. Let VD be the graph obtained from VD0
after eliminating all degree-2 vertices by repeatedly contracting any one of their incident
edges. The vertices of VD are called Voronoi vertices and the edges of VD are called Voronoi
edges. Observe that every Voronoi edge corresponds to a consecutive segment of some bisector
between two sites. Note that VD may be disconnected, i.e., a planar map, and that the
boundaries of faces of this planar map may be disconnected. Each face of VD corresponds to
a cell Vor(s) of some site s ∈ S. Hence there are at most |S| faces in VD. It is shown in [45]
that the total number of edges, vertices, and faces of VD is O(|S|). In what follows, when
we say we compute a Voronoi diagram VD, we mean we use the algorithm in Theorem 6,
which computes a representation of the planar map VD defined above. Each Voronoi edge of
VD corresponds to a segment of a bisector.

5.1 Maintaining Voronoi diagrams while additive weights increase
Consider an increase in the additive weight of a set B ⊆ S of sites. Such an increase can only
change the shortest path (w.r.t. additive weights) of vertices v in the Voronoi cells of sites in
B. Either the shortest path to such v remains the same but its length increases by the change
in the additive weight of the site, or v becomes part of a Voronoi cell of a different site. In the
latter case, since each shortest path is entirely contained in a single Voronoi cell, planarity
dictates that the new site must be a neighbor of a site in B. We define the set N(B) of
neighbors of the sites in B as the set of sites that are either in B or sites whose Voronoi cells
are adjacent to the Voronoi cells of sites in B. Note that |N(B)| = O(

∑
b∈B cell-degree(b)).

It follows from the discussion above that the only sites whose Voronoi cells might change as
a result of such an increase are those in N(B).

To compute the new Voronoi diagram we first compute the Voronoi diagram of P with
just the sites N(B). By Theorem 6, this takes O(

∑
b∈B cell-degree(b)) time. Let VD′ denote

this Voronoi diagram, and let VD denote the Voronoi diagram of P before the change. We
stress that the additive weights of VD′ are the ones after the increase, and the additive
weights of VD are the ones before the increase. To obtain the Voronoi diagram of P after the
change, we “glue” together parts of VD′ and VD as follows. See Figure 1 for an illustration.
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Figure 1 An illustration of the process of computing the Voronoi diagram of a piece with 6 sites
when the additive weight of site 1 is increased. (a) VD, the Voronoi diagram of all 6 sites before
the weight increase. (b) VD′, the Voronoi diagram of just the increased site (1) and its neighbors
(2, 4, 6), after the increase. (c) VD and VD′ superimposed, with the edges deleted from VD, and
from VD′ in grey. Observe that all segments of bisectors between cells of the neighbors (2,4,6) that
appear in VD also appear in VD′. (d) The glued Voronoi diagram.

Recall that VD is a (possibly disconnected) planar map whose edges correspond to
segments of bisectors of pairs of sites of VD. The endpoints of these segments are Voronoi
vertices of VD. We start by deleting from VD all the Voronoi edges corresponding to bisectors
involving at least one site of B. For every Voronoi vertex v incident to a Voronoi cell of a
site in B, if all the Voronoi edges incident to v were deleted, then we delete v as well. Let
E denote the set of Voronoi edges e of VD such that e is incident to some Voronoi vertex
v, e was not deleted, but the preceding or following Voronoi edge of e in the cyclic order
of edges around v was deleted. Every Voronoi edge e ∈ E corresponds to a segment β of a
bisector between two sites s1, s2 ∈ N(B) \ B. Since the additive weights of these sites are
unchanged, the segment β must be represented by a Voronoi edge e′ of VD′. Note that β

may be a sub-segment of the bisector segment β′ corresponding to e′. Also note that it is
easy to identify e′ with e during the computation of VD′ with no asymptotic time overhead.3
For each Voronoi edge e ∈ E (of VD), we split its corresponding Voronoi edge e′ (of VD′)
into two edges e′

1, e′
2 by breaking β′ into two sub-segments at v. Suppose e′

2 is the one whose
corresponding bisector segment contains β. Note that if v is an endpoint of e′ (i.e., if v is
a Voronoi vertex of VD′ as well), then e′

1 is a trivial empty segment of the s1-s2 bisector.
We delete e′

2 from VD′, and merge the Voronoi edges e of VD and e′
1 of VD′ into a single

Voronoi edge whose corresponding segment is the concatenation of the segment β of e and
the segment of e′

1.

Doing so for the edges e ∈ E effectively “glues” the relevant portion of VD′ into VD,
replacing the portion of VD that we had deleted. The algorithm of [45] for constructing
Voronoi diagrams from precomputed bisectors performs similar stitching and glueing oper-
ations, and the data structures used to represent Voronoi diagrams and bisectors support
all the necessary operations in Õ(1) time per operation. Hence, the time complexity of this
entire procedure is proportional (up to logarithmic factors) to the number of Voronoi vertices
of the Voronoi cells of the sites in B, which is O(

∑
b∈B cell-degree(b)).

3 This can be done, for example, by augmenting the binary search tree representation of segments of
bisectors used in the construction algorithm (cf. [45]) with a boolean flag marking edges in E . Then we
can go over all Voronoi edges of VD′ and list for each one the corresponding marked edge e ∈ E , if such
an edge exists in the segment of the bisector corresponding to that Voronoi edge.
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5.2 Replacement Diameter

We now describe how to use the new algorithm for maintaining Voronoi diagrams under
additive weight decreases to get a faster algorithm for replacement diameter. The algorithm
starts by computing a complete recursive decomposition tree T of the graph G. For every
node (piece) in T (corresponding to a subgraph of G) we compute all its bisectors. This
takes Õ(n2) time over all T using Theorem 6. Then, for every vertex s ∈ V we compute
the BFS tree Ts of s in G and compute the fault-tolerant single source distance oracle of
Baswana et. al. [12] for s in G. This oracle is constructed in Õ(n) time from G, and can
report in Õ(1) time the s-to-t distance in the graph Ge = (V, E \ {e}) for any s, t ∈ V and
any e ∈ E. Overall, this also takes Õ(n2) time. For each piece P ∈ T , for each boundary
vertex b ∈ ∂P we create the induced tree T P

b from Tb by marking all vertices of P and all
their lowest common ancestors, and contracting any edge whose endpoints are not marked.
The resulting T P

b has size O(|P |). For each edge e of G that was contracted in the process we
store the edge of T P

b into which e was contracted. Since the total number of boundary nodes
and piece sizes over all pieces of T is Õ(n), the total time to construct all these induced
trees is Õ(n2). For each piece P ∈ T , let P ′ be the sibling of P in T . Let b1, b2, . . . be the
vertices of ∂P ′ in some arbitrary order. For each vertex s ∈ P we compute the additivley
weighted Voronoi diagram of s w.r.t P ′ with sites {bi} and additive weights d(s, bi). We also
store for s a binary search tree (BST) over b1, b2, . . . , where the node i in the tree stores
the distance from s to the furthest vertex in Vor(bi). This takes total Õ(n

√
n) time over all

P ∈ T and all s ∈ P . For each piece P with vertices v1, v2, . . . in arbitrary order, we store a
BST over {vi}, where node i stores the furthest vertex from vi in P ′. This vertex can be
found in Õ(1) time for each vi by querying the maximum distance stored in the BST of vi.

For every edge e ∈ E, we need to compute the furthest pair of vertices in the graph
Ge = (V, E \ {e}). For an edge e ∈ E and two vertices u, v ∈ G, we say that the pair u, v

is affected in Ge if e lies on the root-to-v path in Tu. The main idea is to use the fact that
a specific pair u, v is affected in at most D (rather than n) graphs Ge (since the shortest
u-to-v path in G has at most D edges).

For every affected pair (u, v) there is some pair of sibling pieces (P, P ′) s.t. u ∈ P and
v ∈ P ′. Our strategy is to go over pairs of sibling pieces (P, P ′) in T , and handle all affected
pairs for each (P, P ′) together as follows. Assume w.l.o.g. that e /∈ P ′. For each b ∈ ∂P ′, we
enumerate in T P

b all the decendant vertices of the edge of T P
b into which e was contracted

(this may be an empty set if e /∈ Tb). This way we identify all the affected pairs of the form
(u, b), where u ∈ P and b ∈ ∂P ′. We query the Baswana et al. oracle for the u-to-b distance
in Ge for each such affected pair. For each u ∈ P , let B be the set of boundary vertices
b such that (u, b) is an affected pair. For each vertex u ∈ P with |B| ≥ 1, we update the
Voronoi diagram of u w.r.t. P ′ using the procedure Decremental-VD, which is described
in subsection 5.1. This procedure updates the VD (and the furthest vertex from each site)
w.r.t the new additive weights in time

∑
b∈B cell-degree(b) where cell-degree is the number of

Voronoi cells that are adjacent4 to the cell Vor(b) in the original VD (i.e. before the deletion
of e). Using the updated VD, we update the node corresponding to every b ∈ B in the BST
of u with the new furthest vertex in Vor(b). Let d be the maximum distance stored in the
entire BST of u. We update the node corresponding to u in the BST of P with the value d.
After handling all u ∈ P with |B| ≥ 1 in this way, the maximum value stored in the entire
BST of P is the maximum distance in Ge between any pair of vertices (u, v) with u ∈ P and
v ∈ P ′. Taking the maximum over all pairs of siblings (P, P ′) ∈ T gives the diameter of Ge.

4 Two cells are adjacent if there exists an edge e of G with one endpoint in each cell.
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The total running time for computing the furthest pair for the siblings (P, P ′) is analyzed
as follows. The bottleneck is the time to update the VDs. Every time a pair u, b (where
u ∈ P and b ∈ ∂P ′) is affected we spend Õ(cell-degree(b)) time updating the VD of u. Since
each pair is affected by the deletion of at most D edges, the total time invested in updating
VDs for (P, P ′) is bounded by

∑
u∈P,b∈∂P ′ D · cell-degree(b) = |P |D

∑
b cell-degree(b), which

is Õ(|P |D · |∂P ′|), since the sum of cell-degrees of the cells in a VD is order of the number
of sites of the VD. Summing over all pairs of sibling pieces we get that the total time is∑

(P,P ′)∈T Õ(|P |D · |∂P ′|) = Õ(n1.5D). Hence, including the preprocessing, the total time
for the entire replacement diameter algorithm is Õ(n2 + n1.5D).

We note that when D ≥ n5/6, it is better to naively use the static n3+o(1)/D2-time
algorithm from section 3.1 for each edge failure. Hence, replacement diameter can be solved
in min(n3+o(1)/D2, Õ(n2 + n1.5D)) = n7/3+o(1) time.

6 Incremental Diameter

In this section we prove Theorem 3. Namely, we present a general reduction showing how to
solve the diameter problem efficiently in incremental graphs given two components: (1) a
distance oracle for incremental graphs, and (2) a diameter algorithm for static graphs that
is relatively fast when the diameter is large. Plugging in the incremental distance oracle of
Das et al. [37] and the static algorithm of Section 3.1 we obtain an algorithm with total
time n7/3+o(1) which improves over the naive bound of Õ(n8/3). The new algorithm of this
section comes closer to the n2−o(1) lower bound of Section 4 for weighted graphs (the best
lower bound for unweighted graphs is n1.5−o(1)).

The rest of this section is dedicated to proving this theorem. We begin by presenting the
general reduction (that does not assume planarity nor unweighted edges) and then explain
how it can be combined with existing algorithms for planar graphs to obtain the theorem.

A reduction from diameter to s, t-shortest path. In an incremental graph, the diameter
decreases with time, starting from some D ≤ n (otherwise the graph is not connected and
it is easy to check this efficiently) and ending at some D ≥ 1. The idea for the reduction
is simple: we would like to recompute the diameter only when it decreases, and not after
each of the n updates. While it is true that the diameter could decrease Ω(n) times, from
n to 1, the point is that re-computation is efficient when the diameter is large (due to the
n3+o(1)/D2 algorithm of Section 3.1) and then only O(D) of the re-computations will happen
when the diameter is smaller than D.

Our incremental algorithm works as follows:
Step 1 - sample a new diameter pair: Let P = {(s, t) | d(s, t) = ∆(G)} be the set of
pairs that realize the current diameter ∆(G). Sample a pair (s′, t′) from P uniformly at
random (or from some distribution in which every pair is sampled with probability at
most O(1/|P |)).
Step 2 - monitor the distance of the sampled pair: Using an incremental distance
oracle, monitor the distance between s′ and t′ throughout the sequence of edge insertions.
Do nothing (except querying the oracle) as long as d(s′, t′) does not decrease; in which
case it is still the correct diameter of the graph and can be output whenever there is a
query. If a new edge causes d(s′, t′) to decrease, go back to Step 1.

Each of the two steps involves one of the two ingredients in our reduction. Step 2 utilizes
an incremental distance oracle, while Step 1 uses a static diameter algorithm that can also
sample a diameter pair. At the end of this section we give a general reduction from the
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latter approximate sampling problem to the problem of finding the largest distance from
each node in the graph (i.e. computing all eccentricities). Alternatively, one could notice
that the diameter algorithms we will employ in Step 1 (and many other natural diameter
algorithms) can be modified to also sample a diameter pair uniformly at random.

Running time. Let us first bound the number of times we go to Step 1, which is the most
costly step since it involves a static diameter computation. Step 2 is actually very cheap
since we only perform one update and one query to an incremental distance oracle.

▷ Claim 14. For any (non adaptive) sequence of edge insertions that does not decrease the
diameter of the graph, the expected number of times our algorithm samples a diameter pair
(i.e. goes to Step 1) is O(log n).

Proof. Let us first analyze the idealistic case in which we manage to sample truly uniformly
in Step 1, and then point out that the same analysis essentially goes through when we sample
almost uniformly.

Each new edge e decreases the distance for a subset of pairs Xe ⊆ P . Since the special pair
(s′, t′) is completely unknown to the adversary who is choosing the sequence of edge insertions,
the probability that e causes the algorithm to go to Step 1 is exactly |Xe|/|P | and in that case
the new set of “diameter pairs” becomes P \ Xe. Therefore, the expected number of times
we sample can be upper bounded by: f(|P |) ≤ max0≤x≤|P | x/|P | + f(|P | − x) = O(log |P |).

If the sampling in Step 1 is only approximately uniform, but still satisfies that a pair is
chosen with probability at most O(1/|P |) then the same analysis above goes through, up to
an additional O(1) factor. ◁

Let T Diam(n, D) denote the running time of a static diameter algorithm that samples
a diameter pair as in Step 1, when the diameter of the graph is D. Over all the O(n)
edge insertions, the total expected running time of Step 1 is therefore at most

∑n
D=1 log n ·

T Diam(n, D).
To obtain our claimed upper bound of n7/3+o(1) we will use two diameter algorithms

inside this reduction: the T Diam(n, D) = n3+o(1)/D2 algorithm from Section 3.1 (for large
D) and the T Diam(n, D) = Õ(n5/3) algorithm [45] (for small D). (By the reduction in
Section 6.1, these algorithms can also sample an approximately uniform pair as required by
Step 1). The total expected time becomes:

n∑
D=1

log n · T Diam(n, D) = Õ

n2/3∑
D=1

n5/3 +
n∑

D=n2/3

n3+o(1)/D2

 = n7/3+o(1),

because
∑n

D=n2/3 n3+o(1)/D2 ≤
∑log2 n

i=log2 n2/3 2i+1 · n3+o(1)/(2i)2 ≤ n3+o(1)

n2/3 · 2 log n. The
additional time of Step 2 is at most n ·

√
n using the incremental distance oracle of Das et

al. [37] that has O(
√

n) time per update and query.

6.1 Sampling a Diameter Pair
In this section we show the final piece of the incremental diameter algorithm. Namely, a way
to adapt the aforementioned static diameter algorithms so that they sample a diameter pair
approximately uniformly.

A first attempt, that does not quite work, is to add a random “perturbation” pe ∈ (0, ε)
to the weight of each edge e, where ε < 1/D, and then argue that the (probably unique) pair
realizing the diameter in the new graph is a uniformly random pair in P = {(s, t) | d(s, t) =
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∆(G)}. Note that the perturbations increase the distance between all pairs by < 1 and
therefore non-diameter-pairs cannot become diameter pairs. One issue, however, is that pairs
with many paths of length ∆(G) between them are more likely to be chosen than pairs with
few such paths. A second attempt that resolves this issue is to add a perturbation to the
nodes (e.g. by appending a private leaf to each node with a random weight on the new edge).
This idea is closer to the actual solution but it still has an issue of correlations: a node that
participates in many pairs might be sampled less frequently than a node that participates in
few pairs. Therefore, we must take this difference into account when assigning the weights.

Making these ideas go through is a bit complicated. Fortunately, there is an elegant
reduction from our setting to the bipartite independet set query model introduced by Beame
et al. [13] and then use existing results on this model [7, 16,38] in a black-box way.

▶ Theorem 15. There is an algorithm that samples a pair in P = {(s, t) | d(s, t) =
∆(G)} where each pair is sampled with probability at most O(1/|P |) and runs in time
(min(Õ(n5/3), n3+o(1)/D2)) on unweighted planar graphs of diameter D.

The main lemma towards proving the theorem is the following.

▶ Lemma 16. By making logO(1) n calls to an algorithm that returns all eccentricities we
can sample a pair in P = {(s, t) | d(s, t) = ∆(G)} where each pair is sampled with probability
at most O(1/|P |)

Proof. Consider an implicit graph H in which there is an edge between two nodes s, t iff they
are a diameter pair in G (i.e., (s, t) ∈ P ). Our goal is to sample an edge from H approximately
uniformly. This can be achieved [7,16,38] by making a polylogarithmic number of queries
to an oracle that, given two subsets L, R ⊆ V (H), decides whether there is any edge in
L × R ∩ E(H). This is called a bipartite independent set oracle in the literature, following
Beame et al. [13]. Thus, all we have to do is show that such a query can be supported in the
time of a call to an algorithm that computes all eccentricities in the graph.

First, we precompute the diameter ∆(G) of G. Then, given a query L, R ⊆ V we construct
a graph G′ from G as follows. For each node v ∈ R we add a new “leaf” node lv and connect
it with an edge (of weight 1) to v. Next, we compute the eccentricity of all nodes in G′.
Finally, the answer to the query is yes if and only if there is a u ∈ L such that the eccentricity
of u in G′ is ∆(G) + 1; this can be checked in O(n) time.

The correctness of the answer follows from the observation that the eccentricity of any
node u in G′ is ∆(G) + 1 if and only if there is a node v in G such that (1) dG(u, v) = ∆(G)
and (2) a new leaf node lv was appended to v. This implies that (1) (u, v) ∈ P is a diameter
pair in G, meaning that (u, v) ∈ E(H), and that (2) v ∈ L. Since we only check for u ∈ R

our answer that L × R ∩ E(H) is non-empty is correct. ◀

To conclude the proof of Theorem 15 we simply point out that both of the relevant
diameter algorithms already compute the eccentricity of all nodes.
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