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Abstract
We present efficient algorithms for solving systems of linear equations in 1-Laplacians of well-shaped
simplicial complexes. 1-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to
higher-dimensional simplicial complexes and play a key role in computational topology and topological
data analysis. Previously, nearly-linear time solvers were developed for simplicial complexes with
known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in
R3 (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA’2014], Black, Maxwell, Nayyeri,
and Winkelman [SODA’2022], Black and Nayyeri [ICALP’2022]). Furthermore, Nested Dissection
provides quadratic time solvers for more general systems with nonzero structures representing
well-shaped simplicial complexes embedded in R3.

We generalize the specialized solvers for 1-Laplacians to simplicial complexes with additional
geometric structures but without collapsing sequences and bounded Betti numbers, and we improve
the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1)
each individual simplex has a bounded aspect ratio, and (2) they can be divided into “disjoint”
and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration
from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng,
Schwieterman, and Zhang [STOC’2018]).
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1 Introduction

Combinatorial Laplacians generalize graph Laplacian matrices to higher dimensional simplicial
complexes – a collection of 0-simplexes (vertices), 1-simplexes (edges), 2-simplexes (triangles),
and their higher dimensional counterparts. Simplicial complexes encode higher-order relations
between data points in a metric space. By studying the topological properties of these
complexes using Combinatorial Laplacians, one can capture higher-order features that go
beyond connectivity and clustering.
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41:2 Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes

Given an oriented d-dimensional simplicial complex K, for each 0 ≤ i ≤ d, let Ci be
the vector space generated by the i-simplexes in K with coefficients in R. We can define a
sequence of boundary operators:

Cd
∂d−→ Cd−1

∂d−1−−−→ · · · ∂2−→ C1
∂1−→ C0,

where each ∂i is a linear map that maps every i-simplex to a signed sum of its boundary
(i− 1)-faces. We define the i-Laplacian Li : Ci → Ci to be

Li = ∂i+1∂⊤
i+1 + ∂⊤

i ∂i. (1)

In particular, ∂1 is the vertex-edge incidence matrix, and L0 is the graph Laplacian (following
the convention, we define ∂0 = 0). One can assign weights to each simplex in K and define
weighted Laplacians.

It is well-known that linear equations in graph Laplacians can be approximately solved in
nearly-linear time in the number of nonzeros of the system [50, 30, 31, 29, 36, 46, 16, 34, 32, 27].
These fast Laplacian solvers have led to significant developments in algorithm design for
graph problems such as maximum flow [41, 42, 10], minimum cost flow and lossy flow [37, 18],
and graph sparsification [49], known as “the Laplacian Paradigm” [52].

Inspired by the success of graph Laplacians, Cohen, Fasy, Miller, Nayyeri, Peng, and
Walkington [13] initiated the study of fast solvers for 1-Laplacian linear equations. They
designed a nearly-linear time solver for simplicial complexes with zero Betti numbers1 and
known collapsing sequences. Later, Black, Maxwell, Nayyeri and Winkelman [5], and Black
and Nayyeri [6] generalized this algorithm to subcomplexes of such a complex with bounded
first Betti numbers2. One concrete example studied in these papers is convex simplicial
complexes that piecewise linearly triangulate a convex ball in R3, for which a collapsing
sequence exists and can be computed in linear time [11, 12]. However, deciding whether
a simplicial complex has a collapsing sequence is NP-hard in general [51]; computing the
Betti numbers is as hard as computing the ranks of general {0, 1} matrices [23]. In addition,
1-Laplacian systems for general simplicial complexes embedded in R4 are as hard to solve as
general sparse linear equations [19], for which the best-known algorithms need super-quadratic
time [47, 44]. All the above motivates the following question:

Can we efficiently solve 1-Laplacian systems for other classes of structured simplicial
complexes, e.g., without known collapsing sequences and with arbitrary Betti numbers?

In addition to the specialized solvers for 1-Laplacian systems mentioned above, Nested
Dissection can solve 1-Laplacian systems in quadratic time for simplicial complexes in R3

with additional geometric structures [25, 39, 43] such as bounded aspect ratios3 of individual
tetrahedrons. Furthermore, iterative methods such as Preconditioned Conjugate Gradient
approximately solve 1-Laplacian systems in time Õ(n

√
κ), where n is the number of simplexes

and κ is the condition number of the coefficient matrix.
Inspired by solvers that leverage geometric structures and spectral properties, we develop

efficient 1-Laplacian solvers for well-shaped simplicial complexes embedded in R3 without
known collapsing sequences and with arbitrary Betti numbers. Our solver adapts the Incom-
plete Nested Dissection algorithm, proposed by Kyng, Peng, Schwieterman, and Zhang [33]

1 Informally, the ith Betti number is the number of i-dimensional holes on a topological surface. For
example, the zeroth, first, and second Betti numbers represent the numbers of connected components,
one-dimensional “circular” holes, and two-dimensional “voids” or “cavities,” respectively.

2 The solver has cubic dependence on the first Betti number.
3 The aspect ratio of a geometric shape S is the radius of the smallest ball containing S divided by the

radius of the largest ball contained in S.
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for solving linear equations in well-shaped 3-dimensional truss stiffness matrices. These
matrices represent another generalization of graph Laplacians; however, they differ quite from
the 1-Laplacians studied in this paper. A primary distinction is that the kernel of a truss
stiffness matrix has an explicit and well-understood form, while computing a 1-Laplacian’s
kernel is as hard as that for a general matrix.

1.1 Our Results
We say a simplex is stable if it has O(1) aspect ratio and Θ(1) weight. We focus on a pure
simplicial complex4 K embedded in R3. We require K admits a nice division parameterized
by r ∈ R+, called r-hollowing. We adopt and adapt the concept of r-hollowing introduced
in [33] to suit our 1-Laplacian solvers. Informally, our r-hollowing for a simplicial complex
containing n simplexes divides K into O(n/r) “separated” regions where each region has
O(r) simplexes and O(r2/3) boundary simplexes. Only boundary simplexes can appear
in multiple regions. Additionally, we mandate that each region’s boundary triangulates a
spherical shell in R3, exhibiting a “hop” diameter of O(r1/3) and a “hop” shell width of at
least 5. The formal definition is given in Definition 2.9. The bounded aspect ratio of each
tetrahedron allows us to employ Nested Dissection for the interior simplexes within every
region. The boundary shape requirement facilitates preconditioning the sub-system, derived
from partial Nested Dissection, by the boundaries themselves and solving this sub-system
using Preconditioned Conjugate Gradient.

Below, we present our main results informally. Firstly, we assume that an r-hollowing
of a pure 3-complex is provided, which offers the broadest applicability of our algorithm.
This assumption is justifiable when one can determine the construction of the simplicial
complex; for instance, one can decide how to discretize a continuous topological space or how
to triangulate a space given a set of points. Subsequently, we establish sufficient conditions
for 3-complexes that allow us to compute r-hollowings in linear time.

▶ Theorem 1.1 (Informal statement). Let K be a pure 3-complex embedded in R3 and composed
of n stable simplexes. Given an r-hollowing for K, for any ϵ > 0, we can approximately solve a
system in the 1-Laplacian of K within error ϵ in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.
The runtime is o(n2) if r = o(n) and r = ω(1). In particular, when r = Θ(n3/5), the runtime
is minimized (up to constant) and equals O(n8/5 log(n/ϵ)).

Our runtime in Theorem 1.1 does not depend on the Betti numbers of K and does
not require collapsing sequences. When r = o(n) and r = ω(1), the runtime is o(n2),
asymptotically faster than Nested Dissection [43]. The solver in [6] for a 1-Laplacian system
for the K stated in Theorem 1.1 is Õ(β3m)5, where m is the number of simplexes in X ⊃ K
with a known collapsing sequence and β is the first Betti number of K. In the worst-case
scenario, m can be as large as Ω(n2). But [6] does not require a known r-hollowing.

Without assuming prior knowledge about r-hollowing, the following theorem presents
a solver with the same runtime as Theorem 1.1 when the 3-complex K satisfies additional
geometric restrictions: First, the convex hull of K has O(1) aspect ratio, and each tetrahedron
of K has Θ(1) volume. Second, all but one the boundary components of K, which correspond
to “holes inside” K, satisfy the following conditions: (1) every boundary component of K has

4 A simplicial complex is pure if every maximal simplex (i.e., a simplex that is not a proper subset of any
other simplex in the complex) has the same dimension. For example, a pure 3-complex is a tetrahedron
mesh that consists of tetrahedrons and their sub-simplexes.

5 We use Õ(·) to hide polylog factors on the number of simplexes and the inverse of error parameter.
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41:4 Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes

1-skeleton diameter O(r1/3); (2) the total size of boundary components within any X ⊂ R3 of
volume r is at most O(r2/3), and the total size of boundary components of K is O(nr−1/3);
(3) the triangle distance between any two boundary components of K is greater than 5. These
geometric conditions allow us to find an r-hollowing of K in linear time.

▶ Theorem 1.2 (Informal statement). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes; assume K satisfies the aforementioned additional geometric
structures with parameter r. Then, for any ϵ > 0, we can approximately solve a system in the
1-Laplacian of K within error ϵ in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

. In particular,
when r = Θ(n3/5), the runtime is minimized (up to constant) and equals O(n8/5 log(n/ϵ)).

We then examine unions of pure 3-complexes glued together by identifying certain subsets
of simplexes on the boundary components (called exterior simplexes) of 3-complex chunks.
Moreover, each 3-complex chunk admits a Θ(n3/5

i )-hollowing with ni being the number of
simplexes in this chunk. We remark that such a union of 3-complexes, called U , may not
be embeddable in R3. So, the previously established methods from [13, 5, 6] and Nested
Dissection are unsuitable for this scenario. Building on our algorithm for Theorem 1.1, we
design an efficient algorithm for U whose runtime depends sub-quadratically on the size of U
and polynomially on the number of chunks and the number of simplexes shared by more
than one chunk.

▶ Theorem 1.3 (Informal statement). Let U be a union of h pure 3-complexes that are
glued together by identifying certain subsets of their exterior simplexes. Each 3-complex
chunk is embedded in R3, contains ni stable simplexes, and has a known Θ(n3/5

i )-hollowing.
For any ϵ > 0, we can solve a system in the 1-Laplacian of U within error ϵ in time
Õ(n8/5k + h2k2 + k3) where n is the number of simplexes in U , k is the number of exterior
simplexes shared by more than one complex chunk.

When h = Õ(1) and k = Õ(n1/2), the solver in Theorem 1.3 has the same runtime as
Theorem 1.1. When h = o(n2/5), k = o(n3/5), the runtime is o(n2), asymptotically faster
than Nested Dissection.

1.2 Motivations and Applications
In the past decade, combinatorial Laplacians have played a crucial role in the development of
computational topology and topological data analysis in various domains, such as statistics [28,
45], graphics and imaging [40, 53], brain networks [35], deep learning [8], signal processing [3],
and cryo-electron microscope [54]. We recommend readers consult accessible surveys [26, 9,
22, 38] for more information.

Combinatorial Laplacians have their roots in the study of discrete Hodge decomposi-
tion [21], which states that the kernel of the i-Laplacian Li is isomorphic to the ith homology
group of the simplicial complex. Among the many applications of combinatorial Laplacians,
a central problem is determining the Betti numbers – the ranks of the homology groups
– which are important topological invariants. Additionally, discrete Hodge decomposition
allows for the extraction of meaningful information from data by decomposing them into
three mutually orthogonal components: gradient (in the image of ∂⊤

i ), curl (in the image of
∂i+1), and harmonic (in the kernel of Li) components. For instance, the three components
of edge flows in a graph capture the global trends, local circulations, and “noise”.

The computation of both Betti numbers and discrete Hodge decomposition of higher-order
flows can be achieved by solving systems of linear equations in combinatorial Laplacians [24,
38]. The rank of a matrix Li can be determined by solving a logarithmic number of linear
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equation systems in Li [2]. The discrete Hodge decomposition can be calculated by solving
least square problems involving boundary operators or combinatorial Laplacians, which in
turn reduces to solving linear equations in these matrices.

Furthermore, an important question in numerical linear algebra concerns whether the
nearly-linear time solvers for graph Laplacian linear equations can be generalized to larger
classes of linear equations. Researchers have achieved success with elliptic finite element
systems [7], Connection Laplacians [32], directed Laplacians [15, 14], well-shaped truss
stiffness matrices [17, 48, 33]. It would be intriguing to determine what structures of linear
equations facilitate faster solvers. Another theoretically compelling reason for developing
efficient solvers for 1-Laplacians stems from the “equivalence” of time complexity between
solving 1-Laplacian systems and general sparse systems of linear equations [19]. If one can
solve all 1-Laplacian systems in time Õ((# of simplexes)c) where c ≥ 1 is a constant, then
one can solve all general systems of linear equations in time Õ((# of nonzero coefficients)c).

2 Preliminaries

2.1 Background of Linear Algebra
Given a vector x ∈ Rn, for 1 ≤ i ≤ n, we let x[i] be the ith entry of x; for 1 ≤ i < j ≤ n,
let x[i : j] be (x[i], x[i + 1], . . . , x[j])⊤. The Euclidean norm of x is ∥x∥2

def=
√∑n

i=1 x[i]2.
Given a matrix A ∈ Rm×n, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we let A[i, j] be the (i, j)th
entry of A; for S1 ⊆ {1, . . . , m}, S2 ⊆ {1, . . . , n}, let A[S1, S2] be the submatrix with row
indices in S1 and column indices in S2. Furthermore, we let A[S1, :] = A[S1, {1, . . . , n}] and
A[:, S2] = A[{1, . . . , m}, S2]. The operator norm of A (induced by the Euclidean norm) is
∥A∥2

def= maxv∈Rn
∥Ax∥2
∥x∥2

. The image of A is the linear span of the columns of A, denoted by
Im(A), and the kernel of A to be {x ∈ Rn : Ax = 0}, denoted by Ker(A). A fundamental
theorem of Linear Algebra states Rm = Im(A)⊕Ker(A⊤).

▶ Fact 2.1. 6 For any matrix A ∈ Rm×n, Im(A) = Im(AA⊤).

Pseudo-inverse and Projection Matrix

The pseudo-inverse of A is defined to be a matrix A† that satisfies all the following four
criteria: (1) AA†A = A, (2) A†AA† = A†, (3) (AA†)⊤ = AA†, (4) (A†A)⊤ = A†A. The
orthogonal projection matrix onto Im(A) is ΠIm(A) = A(A⊤A)†A⊤.

Eigenvalues and Condition Numbers

Given a square matrix A ∈ Rn×n, let λmax(A) be the maximum eigenvalue of A and λmin(A)
the minimum nonzero eigenvalue of A. The condition number of A, denoted by κ(A), is the
ratio between λmax(A) and λmin(A). A symmetric matrix A is positive semi-definite (PSD)
if all eigenvalues of A are non-negative. Let B ∈ Rn×n be another square matrix. We say
A ≽ B if A−B is PSD. The condition number of A relative to B is

κ(A, B) def= min
{

α

β
: βΠIm(A)BΠIm(A) ≼ A ≼ αB

}
.

6 All the facts in this section are well-known. For completeness, we include their proofs in the Appendix
of the full paper [20].

ESA 2023



41:6 Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes

▶ Fact 2.2. Let A, B ∈ Rn×n be symmetric matrices such that A ≼ B. Then, for any
V ∈ Rm×n, V AV ⊤ ≼ V BV ⊤.

Schur Complement

Let A ∈ Rn×n, and let F ∪ C be a partition of {1, . . . , n}. We write A as a block matrix:

A =
(

A[F, F ] A[F, C]
A[C, F ] A[C, C]

)
. (2)

We define the (generalized) Schur complement of A onto C to be

Sc[A]C = A[C, C]−A[C, F ]A[F, F ]†A[F, C].

The Schur complement appears in performing a block Gaussian elimination on matrix A to
eliminate the indices in F .

▶ Fact 2.3. Let A be a PSD matrix defined in Equation (2). Then,

A =
(

I
A[C, F ]A[F, F ]† I

) (
A[F, F ]

Sc[A]C

) (
I A[F, F ]†A[F, C]

I

)
.

▶ Fact 2.4. Let A be a PSD matrix defined in Equation (2). Let A = BB⊤, and we

decompose B =
(

BF

BC

)
accordingly. Then, Sc[A]C = BCΠKer(BF )B⊤

C , where ΠKer(BF ) is

the projection onto the kernel of BF .

Solving Linear Equations

We will need Fact 2.5 for relations between different error notations for linear equations and
Theorem 2.6 for Preconditioned Conjugate Gradient.

▶ Fact 2.5. Let A, Z ∈ Rn×n be two symmetric PSD matrices, and let Π be the orthogonal
projection onto Im(A).
1. If (1− ϵ)A† ≼ Z ≼ (1 + ϵ)A†, then ∥AZb − b∥2 ≤ ϵ

√
κ(A) ∥b∥2 for any b ∈ Im(A).

2. If ∥AZb − b∥2 ≤ ϵ ∥b∥2 for any b ∈ Im(A), then (1− ϵ)A† ≼ ΠZΠ ≼ (1 + ϵ)A†.

▶ Theorem 2.6 (Preconditioned Conjugate Gradient [1]). Let A, B ∈ Rn×n be two symmetric
PSD matrices, and let b ∈ Rn. Each iteration of Preconditioned Conjugate Gradient
multiplies one vector with A, solves one system of linear equations in B, and performs a
constant number of vector operations. For any ϵ > 0, the algorithm outputs an x satisfying
∥Ax −ΠAb∥2 ≤ ϵ ∥ΠAb∥2 in O(

√
κ log(κ/ϵ)) such iterations, where ΠA is the orthogonal

projection matrix onto the image of A and κ = κ(A, B).

2.2 Background of Topology
Simplex and Simplicial Complexes

We consider a d-simplex (or d-dimensional simplex) σ as an ordered set of d + 1 vertices,
denoted by σ = [v0, . . . , vd]. A face of σ is a simplex obtained by removing a subset of
vertices from σ. A simplicial complex K is a finite collection of simplexes such that (1) for
every σ ∈ K if τ ⊂ σ then τ ∈ K, and (2) for every σ1, σ2 ∈ K, σ1 ∩ σ2 is either empty or
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a face of both σ1, σ2. The dimension of K is the maximum dimension of any simplex in
K. A d-complex is a d-dimensional simplicial complex. For 1 ≤ i ≤ d, the i-skeleton of a
d-complex K is the subcomplex consisting of all the simplexes of K of dimensions at most i.
In particular, the 1-skeleton of K is a graph.

A piecewise linear embedding of a 3-complex in R3 maps a 0-simplex to a point, a 1-simplex
to a line segment, a 2-simplex to a triangle, and a 3-simplex to a tetrahedron. In addition,
the interior of the images of simplices are disjoint and the boundary of each simplex is
mapped to the appropriate simplices. Such an embedding of a simplicial complex K defines
an underlying topological space K – the union of the images of all the simplexes of K. We say
K is convex if K is convex. We say K triangulates a topological space X if K is homeomorphic
to X. A simplex σ of K is a exterior simplex if σ is contained in the boundary of K, and σ

is an interior simplex otherwise. A connected component of exterior simplexes is called a
boundary component of K.

The aspect ratio of a set S ⊂ R3 is the radius of the smallest ball containing S divided
by the radius of the largest ball contained in S. The aspect ratio of S is always greater
than or equal to 1. We say a simplex σ is stable if it has O(1) aspect ratio and Θ(1) weight.
Miller and Thurston proved the following lemma. As a corollary, the numbers of the vertices,
the edges, the triangles, and the tetrahedrons of a 3-complex K that is composed of stable
tetrahedrons are all equal up to a constant factor.

▶ Lemma 2.7 (Lemma 4.1 of [43]). Let K be a 3-complex in R3 in which each tetrahedron
has O(1) aspect ratio. Then, each vertex of K is contained in at most O(1) tetrahedrons.

Boundary Operators

An i-chain is a weighted sum of the oriented i-simplexes in K with the coefficients in R. Let
Ci denote the ith chain space. The boundary operator is a linear map ∂i : Ci → Ci−1 such
that for an oriented i-simplex σ = [v0, v1, . . . , vi],

∂i(σ) =
i∑

j=0
(−1)j [v0, . . . , v̂j , . . . , vi],

where [v0, . . . , v̂j , . . . , vi] is the oriented (i− 1)-simplex obtained by removing vj from σ.
The operator ∂i can be written as a matrix in |Ci−1| × |Ci| dimensions, where the (r, l)th

entry of ∂i is ±1 if the rth (i− 1)-simplex is a face of the lth i-simplex and 0 otherwise. See
Figure 1 for an example.

v1

v2

v3

v4 [v1, v4, v2] [v2, v4, v3] [v1, v3, v4] [v1, v2, v3]
[v1, v2] -1 0 0 1
[v1, v3] 0 0 1 -1
[v1, v4] 1 0 -1 0
[v2, v3] 0 -1 0 1
[v2, v4] -1 1 0 0
[v3, v4] 0 -1 1 0

∂2 =

Figure 1 An example of boundary operator. The left side is a 3-simplex (a tetrahedron) with
vertices v1, v2, v3, v4. The right side is the corresponding second boundary operator ∂2, where each
column corresponds to an oriented 2-simplex (a triangle) and each row corresponds to an oriented
1-simplex (an edge).

ESA 2023
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An important property of boundary operators is ∂i∂i+1 = 0, which implies Im(∂i+1) ⊆
Ker(∂i). So, we can define the quotient space Hi = Ker(∂i)\Im(∂i+1), called the ith homology
space of K. The rank of Hi is called the ith Betti number of K. If the ith Betti number of K
is 0, then Im(∂⊤

i )⊕ Im(∂i+1) = R|Ci|. The first and second Betti numbers of a triangulation
of a three-ball are both 0.

Hodge Decomposition and Combinatorial Laplacians

Combinatorial Laplacians arise from the discrete Hodge decomposition.

▶ Theorem 2.8 (Hodge decomposition [38]). Let A ∈ Rm×n and B ∈ Rn×p be matrices
satisfying AB = 0. Then, there is an orthogonal direct sum decomposition

Rn = Im(A⊤)⊕Ker(A⊤A + BB⊤)⊕ Im(B).

Since ∂i∂i+1 = 0, it is valid to set A = ∂i and B = ∂i+1. The matrix we get in the middle
term is the combinatorial Laplacian: Li

def= ∂⊤
i ∂i + ∂i+1∂⊤

i+1.
The weighted combinatorial Laplacian generalizes combinatorial Laplacian. For each

1 ≤ i ≤ d, we assign each i-simplex of K with a positive weight, and let W i : Ci → Ci be
a diagonal matrix where W i[σ, σ] is the weighted of the i-simplex σ. Then the weighted
i-Laplacian of K is a linear operator Li : Ci → Ci defined as

Li
def= ∂⊤

i W i−1∂i + ∂i+1W i+1∂⊤
i+1.

Note that Hodge decomposition also applies to weighted combinatorial Laplacian (by setting
A = W 1/2

i−1∂i and B = ∂i+1W 1/2
i+1, we have AB = 0). We call Ldown

i
def= ∂⊤

i W i−1∂i the
ith down-Laplacian operator and Lup

i
def= ∂i+1W i+1∂⊤

i+1 the ith up-Laplacian operator.
Sometimes, we use subscripts to specify the complex on which these operators are defined:
∂i,K, W i,K, Ldown

i,K , Lup
i,K.

r-Hollowings

Let K be a pure 3-complex with n simplexes. A set of triangles △̂1, . . . , △̂k form a triangle
path of length k−1 if for any 1 ≤ i ≤ k−1, △̂i and △̂i+1 share an edge. The triangle distance
between two triangles △1 and △2 is the shortest triangle path length between △1 and △2.
The triangle diameter of K is the longest triangle distance between any two triangles. A
spherical shell is {x ∈ R3 : R1 ≤ ∥x∥2 ≤ R2} where R1 < R2. If K triangulates a spherical
shell, we define the shell width to be the shortest triangle distance between any two triangles
where one is on the outer sphere and one is on the inner sphere.

▶ Definition 2.9 (r-hollowing). Let K be a 3-complex with n simplexes, and let r = o(n) be
a positive number. We divide K into O(n/r) regions each of O(r) simplexes and O(r2/3)
boundary simplexes. Only boundary simplexes can appear in more than one region. The
boundary of each region triangulates a spherical shell in R3 and has triangle diameter O(r1/3)
and shell width at least 5. The union of all boundary simplexes of each region is referred to
as an r-hollowing of K.

In addition, this paper also examines sufficient conditions for 3-complexes that enable
us to compute an r-hollowing in linear time (Algorithm 2 and refer to Figure 2 for an
illustration). Specifically, we consider a pure 3-complex K embedded in R3 with n stable
simplexes possessing the following additional geometric structures:
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1. The aspect ratio of the convex hull of K is O(1), and the volume of each tetrahedron in
K is Θ(1).

2. All but one boundary component has 1-skeleton diameter O(r1/3).
3. The total number of exterior simplexes of K within any X ⊂ R3 of volume r is O(r2/3);

the total number of exterior simplexes of K is O(nr−1/3).
4. The triangle distance between any two boundary components of K is greater than 5.

It is worth noting that fulfilling the aforementioned assumptions is not excessively
challenging. On one end of the spectrum, there are scenarios where K contains at most
O(n/r) 2-dimensional holes, each with an interior volume of O(r). On the other end, there
are instances where K encompasses O(nr−1/3) uniformly distributed small holes, each with
a constant interior volume. Moreover, it is likely that all scenarios lying between these
extremes would also meet these assumptions.

3 Main Theorems

We formally state our main results as follows.

▶ Theorem 3.1. Let K be a pure 3-complex embedded in R3 consisting of n stable sim-
plexes and with a known r-hollowing. Let L1 be the 1-Laplacian operator of K, and
let Π1 be the orthogonal projection matrix onto the image of L1. For any vector b
and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in time
O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

We will overview our algorithm for Theorem 3.1 in Section 4 and prove in Section 5.

▶ Theorem 3.2. Let K be a pure 3-complex embedded in R3 consisting of n stable simplexes.
Suppose K satisfies the additional geometric structures 1-4 with parameter r = o(n). Let L1 be
the 1-Laplacian operator of K, and let Π1 be the orthogonal projection matrix onto the image of
L1. For any vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2
in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

The known r-hollowing assumption is replaced with geometric structures in Theorem 3.2,
and a linear time algorithm for finding r-hollowing is presented in Section 6. It is worth
mentioning that the additional geometric structures are introduced to ensure the feasibility
of finding an r-hollowing in linear time. However, the algorithm for solving the system of
linear equations remains the same.

▶ Theorem 3.3. Let U be a union of h pure 3-complexes glued together by identifying
certain subsets of their exterior simplexes. Each 3-complex chunk is embedded in R3 and
comprises ni stable simplexes, and has a known Θ(n3/5

i )-hollowing. Let L1 be the 1-Laplacian
operator of U , and let Π1 be the orthogonal projection matrix onto the image of L1. For any
vector b and ϵ > 0, we can find a solution x̃ such that ∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 in time
Õ(n8/5k + h2k2 + k3), where n is the number of simplexes in U , k is the number of exterior
simplexes shared by more than one chunk.

Due to space constraints, the proof of Theorem 3.3 can be found in the full version of the
paper [20].
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4 Algorithm Overview

Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [13] observed that

L†
1 =

(
Ldown

1

)†
+ (Lup

1 )†
,

where Ldown
1 = ∂⊤

1 W 0∂1 is the down-Laplacian and Lup
1 = ∂2W 2∂⊤

2 is the up-Laplacian.
The orthogonal projection matrices onto Im(∂⊤

1 ) and Im(∂2) are:

Πdown
1

def= ∂⊤
1 (∂1∂⊤

1 )†∂1, Πup
1

def= ∂2(∂⊤
2 ∂2)†∂⊤

2 .

▶ Lemma 4.1 (Lemma 4.1 of [13]). Let b be a vector. Consider the systems of linear equations:
L1x = Π1b, Lup

1 xup = Πup
1 b, Ldown

1 xdown = Πdown
1 b. Then, x = Πup

1 xup + Πdown
1 xdown.

Lemma 4.1 implies that four operators are needed to approximate L†
1: (1) an approximate

projection operator Π̃down
1 ≈ Πdown

1 , (2) an approximate projection operator Π̃up
1 ≈ Πup

1 ,
(3) a down-Laplacian solver Zdown

1 such that Ldown
1 Zdown

1 b ≈ b for any b ∈ Im(Lup
1 ), and (4)

an up-Laplacian solver Zup
1 such that Lup

1 Zup
1 b ≈ b for any b ∈ Im(Lup

1 ).
We will apply the same approximate orthogonal projection Π̃down

1 given in [13], which does
not depend on Betti numbers. Our solver for the down 1-Laplacian is a slight modification
of the one in [13] to incorporate the simplex weights. We state the two lemmas below.

▶ Lemma 4.2 (Down-projection operator, Lemma 3.2 of [13]). Let K be a 3-complex with n

simplexes. For any ϵ > 0, there exists a linear operator Π̃down
1 such that

(1− ϵ)Πdown
1 ≼ Π̃down

1 (ϵ) ≼ Πdown
1 .

▶ Lemma 4.3 (Down-Laplacian solver). Let K be a weighted simplicial complex, and let
b ∈ Im(Ldown

1 ). There exists an operator Zdown
1 such that Ldown

1 Zdown
1 b = b. In addition,

we can compute Zdown
1 b in linear time.

4.1 Solver for Up-Laplacian
One of our primary technical contributions is the development of an efficient solver for the
up-Laplacian system, stated in Lemma 4.4. We will describe the key idea behind our solver
in this section.

▶ Lemma 4.4 (Up-Laplacian solver). Let K be a pure 3-complex embedded in R3 and composed
of n stable simplexes. Suppose we are given an r-hollowing for K. Then for any ϵ > 0, there
exists an operator Zup

1 such that

∀b ∈ Im(Lup
1 ), ∥Lup

1 Zup
1 b − b∥2 ≤ ϵ ∥b∥2 .

In addition, Zup
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

We remark that Lemma 4.4 can be improved to Õ(n3/2) by using a slightly different
r-hollowing (proved in the full version [20]), which might be of independent interest. Since
the bottleneck of our solver for 1-Laplacians is from the projection for up 1-Laplaicans, we
use the same r-hollowing here.

The given O(n3/5)-hollowing suggests a partition of the edges in K into F ∪ C. We will
explain the concrete partition shortly. We have the following matrix identity:

Lup
1 =

(
I

Lup
1 [C, F ]Lup

1 [F, F ]† I

) (
Lup

1 [F, F ]
Sc[Lup

1 ]C

) (
I Lup

1 [F, F ]†Lup
1 [F, C]

I

)
,
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where

Sc[Lup
1 ]C = Lup

1 [C, C]− Lup
1 [C, F ]Lup

1 [F, F ]†Lup
1 [F, C].

The following Lemma 4.5 reduces (approximately) solving a system in Lup
1 to (approximately)

solving two systems in Lup
1 [F, F ] and one system in Sc[Lup

1 ]C , whose proof can be found in
the Appendix of the full version [20]. It is worth noting that Lemma 4.5 holds if we replace
Lup

1 with an arbitrary symmetric PSD matrix, and we will apply it or its variants for different
PSD matrices in our solvers. To avoid introducing additional notations, we state the lemma
below in terms of Lup

1 .

▶ Lemma 4.5. Suppose we have two operators (1) UpLapFSolver(·) such that given any
b ∈ Im(Lup

1 [F, F ]), UpLapFSolver(b) returns a vector x satisfying Lup
1 [F, F ]x = b, and

(2) SchurSolver(·, ·) such that for any h ∈ Im(Sc[Lup
1 ]C) and δ > 0, SchurSolver(h, δ)

returns x̃ satisfying ∥Sc[Lup
1 ]C x̃ − h∥2 ≤ δ ∥h∥2 . Given any b =

(
bF

bC

)
∈ Im(Lup

1 ) and any

ϵ > 0, let

h = bC − Lup
1 [C, F ] ·UpLapFSolver(bF ),

x̃C = SchurSolver(h, δ),
x̃F = UpLapFSolver (bF − Lup

1 [F, C]x̃C) , (3)

where δ ≤ ϵ

1+∥Lup
1 [C,F ]Lup

1 [F,F ]†∥2
. Then,

∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2 ,

where x̃ =
(

x̃F

x̃C

)
. Let mF = |F | and mC = |C|, and let UpLapFSolver have runtime

t1(mF ) and SchurSolver have runtime t2(mC). Then, we can compute x̃ in time
O(t1(mF ) + t2(mC) + mF + mC).

4.1.1 Partitioning the Edges
As suggested by Lemma 4.5, we want to partition the edges of K into F ∪ C so that both
systems in Lup

1 [F, F ] and the Schur complement Sc[Lup
1 ]C can be efficiently solved. The given

O(n3/5)-hollowing divides K into “disjoint” and balanced regions with small boundary. Let
F be the set of the “interior” edges of the regions and C be the set of the “boundary” edges.

We first show the interiors of different regions are “disjoint” in the sense that Lup
1 [F, F ]

is a block diagonal matrix where each diagonal block corresponds to the interior of a region.
We can write Lup

1 as the sum of rank-1 matrices that each corresponds to a triangle in K:

Lup
1 = ∂2W 2∂⊤

2 =
∑

σ:triangle in K

W 2[σ, σ] · ∂2[:, σ]∂2[:, σ]⊤. (4)

For any two edges e1, e2, Lup
1 [e1, e2] = 0 if and only if no triangle in K contains both e1, e2.

By our definition of r-hollowing in Definition 2.9, for different regions R1, R2 of K w.r.t. an
r-hollowing, no triangle contains both an edge from R1 and an edge from R2.

In addition, the following lemma shows that the boundaries of the regions well approximate
the Schur complement onto the boundaries. We give a formal proof of Lemma 4.6 in the full
version [20].

▶ Lemma 4.6 (Spectral bounds for r-hollowing). Let K be a pure 3-complex embedded in R3

composed of stable simplexes. Let T be an r-hollowing of K, and let C be the edges of T .
Then, Lup

1,T ≼ Sc[Lup
1 ]C ≼ O(r)Lup

1,T .
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4.1.2 Proof of Lemma 4.4 for Up-Laplacian Solver
Algorithm 1 sketches a pseudo-code for our up-Laplacian solver.

Algorithm 1 UpLapSolver(K, T , b, ϵ).

Input: A pure 3-complex K of n stable simplexes with up-Laplacian Lup
1 , an

O(n3/5)-hollowing T , a vector b ∈ Im(Lup
1 ), an error parameter ϵ > 0

Output: An approximate solution x̃ such that ∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2

1 F ← the interior edges of regions of K w.r.t. T , C ← the boundary edges of regions.
2 UpLapFSolver(·)← a solver by Nested Dissection that satisfies the requirement in

Lemma 4.5.
3 SchurSolver(·, ·)← a solver by Preconditioned Conjugate Gradient with the

preconditioner being the up-Laplacian of T that satisfies the requirement in Lemma
4.5.

4 x̃ ← computed by Equation (3)
5 return solution x̃

By Lemma 4.5, the x̃ returned by Algorithm 1 satisfies ∥Lup
1 x̃ − b∥2 ≤ ϵ ∥b∥2. To bound

the runtime of Algorithm 1, we need the following lemmas for lines 2 and 3.

▶ Lemma 4.7 (Solver for the “F” part). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. Let T be an r-hollowing of K, and let F be the set of interior
edges in each region of K w.r.t. T . Then, with a pre-processing time O(nr), there exists
a solver UpLapFSolver(·) such that given any bF ∈ im(Lup

1 [F, F ]), UpLapFSolver(bF )
returns an xF such that Lup

1 [F, F ]xF = bF in time O(nr1/3).

By our choice of F , the matrix Lup
1 [F, F ] can be written as a block diagonal matrix where

each block corresponds to a region of K w.r.t. the r-hollowing T . Since each region is a
3-complex in which every tetrahedron has an aspect ratio O(1), we can construct the solver
UpLapFSolver by Nested Dissection [43]. However, since each row or column of Lup

1 [F, F ]
corresponds to an edge, we need to turn the good vertex separators in [43] into good edge
separators for regions of K. The proof of Lemma 4.7 can be found in the full version [20].

▶ Lemma 4.8 (Solver for the Schur complement). Let K be a pure 3-complex embedded
in R3 and composed of n stable simplexes. Let T be an r-hollowing of K, and let C be
the set of boundary edges of each region of K w.r.t. T . Then, with a pre-processing time
O(nr + n2r−2/3) there exists a solver SchurSolver(·, ·) such that for any h ∈ Im(Sc[Lup

1 ]C)
and δ > 0, SchurSolver(h, δ) returns an x̃C such that ∥Sc[Lup

1 ]C x̃C − h∥2 ≤ δ ∥h∥2 in
time Õ

(
nr5/6 + n4/3r5/18)

.

Our solver SchurSolver is based on the Preconditioned Conjugate Gradient (PCG)
with the preconditioner Lup

1,T , the up-Laplacian operator of T . By Theorem 2.6 and Lemma
4.6, the number of PCG iterations is Õ(

√
r). In each PCG iteration, we solve the system in

Lup
1,T via Nested Dissection. Again, the proof of Lemma 4.8 can be found in the full version

of the paper [20].
Given the above lemmas, we prove Lemma 4.4.

Proof of Lemma 4.4. The correctness of Algorithm 1 is by Lemma 4.5. By Lemma 4.7 and
4.8, the total runtime of the algorithm is

Õ
(

nr5/6 + n4/3r5/18 + nr + n2r−2/3
)

. ◀
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4.2 Projection for Up 1-Laplacian
As the first Betti number of K can be arbitrary, the approximate projection operators for the
up 1-Laplacian provided in [13, 5, 6] are not applicable here. Our approximate projection
operator follows a similar approach to our up 1-Laplacian solver, which is based on an
incomplete Nested Dissection for triangles, instead of edges.

▶ Lemma 4.9 (Up-projection operator). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. Suppose we are given an r-hollowing for K. Then, for any
ϵ > 0, there exists an operator Π̃up

1 such that

∀b,
∥∥∥Π̃up

1 b −Πup
1 b

∥∥∥
2
≤ ϵ ∥Πup

1 b∥2 .

In addition, Π̃up
1 b can be computed in time O

(
nr + n4/3r5/18 log(n/ϵ) + n2r−2/3)

.

The proof of Lemma 4.9 can be found in the full paper [20]. The subsequent Lemma
offers a helpful formula for Πup

1 , the orthogonal projection matrix onto the image of Lup
1 .

▶ Lemma 4.10. Let K be a simplicial complex with boundary operator ∂2. For any partition
F ∪ C of the 2-simplexes of K, the orthogonal projection Πup

1 for K can be decomposed as

Πup
1 = ΠIm(∂2[:,F ]) + ΠKer(∂⊤

2 [F,:])∂2[:, C](Sc[Ldown
2 ]C)†∂⊤

2 [C, :]ΠKer(∂⊤
2 [F,:]),

where Ldown
2 is the down 2-Laplacian.

Once more, an r-hollowing offers a natural partition of the triangles within K. We assign
all the “interior” triangles to F and all the “boundary” triangles to C. As such, Nested
Dissection can be utilized to compute ΠIm(∂2[:,F ]) and ΠKer(∂⊤

2 [F,:]). The primary technical
challenge arises when solving a system in the Schur complement Sc[Ldown

2 ]C . We precondition
it using the boundary ∂⊤

2 [C, :]∂2[:, C] and apply Preconditioned Conjugate Gradient, which
requires a distinct approach to bound the relative condition numbers.

5 Proof of Main Theorem 3.1

Given all the four operators in Lemma 4.2, 4.3, 4.4, and 4.9, we prove Theorem 3.1.

Proof of Theorem 3.1. Let κ be the maximum of κ(Ldown
1 ) and κ(Lup

1 ). Let δ > 0 be a
parameter to be determined later. Let Π̃down

1 = Π̃down
1 (δ), Π̃up

1 = Π̃up
1 (δ) be defined in

Lemma 4.2 and 4.9, and let Zdown
1 be the operator in Lemma 4.3 with no error and Zup

1 in
Lemma 4.4 with error δ. Let

b̃up def= Π̃up
1 b, b̃down def= Π̃down

1 b,

x̃up def= Zup
1 b̃up

, x̃down def= Zdown
1 b̃down

,

x̃ def= Π̃up
1 x̃up + Π̃down

1 x̃down.

Then,

∥L1x̃ −Π1b∥2

≤
∥∥∥Lup

1 Π̃up
1 x̃up − b̃up

∥∥∥
2

+
∥∥∥Ldown

1 Π̃down
1 x̃down − b̃down

∥∥∥
2

+
∥∥∥b̃up + b̃down −Π1b

∥∥∥
2

.
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For the first term,∥∥∥Lup
1 Π̃up

1 x̃up − b̃up
∥∥∥

2
≤

∥∥∥Lup
1 Π̃up

1 x̃up − Lup
1 Πup

1 x̃up
∥∥∥

2
+

∥∥∥Lup
1 x̃up − b̃up

∥∥∥
2

.

By Lemma 4.9,∥∥∥Lup
1 Π̃up

1 x̃up − Lup
1 Πup

1 x̃up
∥∥∥

2
≤ ∥Lup

1 ∥2

∥∥∥(Π̃up
1 −Πup

1 )Πup
1 x̃up

∥∥∥
2

≤ δ ∥Lup
1 ∥2 ∥Π

up
1 x̃up∥2 .

Let y def= (Lup
1 )†b̃up. By Lemma 4.4,

∥Πup
1 x̃up − y∥2 ≤

∥∥(Lup
1 )†∥∥

2

∥∥∥Lup
1 Πup

1 x̃up − b̃up
∥∥∥

2
≤ δ

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
.

By the triangle inequality,

∥Πup
1 x̃up∥2 ≤ ∥y∥2 + δ

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
≤ (1 + δ)

∥∥(Lup
1 )†∥∥

2

∥∥∥b̃up
∥∥∥

2
.

So,
∥∥∥Lup

1 Π̃up
1 x̃up − Lup

1 Πup
1 x̃up

∥∥∥
2
≤ δ(1 + δ)κ

∥∥∥b̃up
∥∥∥

2
.

By Lemma 4.4,
∥∥∥Lup

1 x̃up − b̃up
∥∥∥

2
≤ δ

∥∥∥b̃up
∥∥∥

2
.

So,
∥∥∥Lup

1 Π̃up
1 x̃up − b̃up

∥∥∥
2
≤ 3δκ

∥∥∥b̃up
∥∥∥

2
.

For the second term, the operator Zdown
1 has no error, which means Ldown

1 x̃down = b̃down.
Then,∥∥∥Ldown

1 Π̃down
1 x̃down − b̃down

∥∥∥
2

=
∥∥∥Ldown

1 Π̃down
1 x̃down − Ldown

1 x̃down
∥∥∥

2

≤ δ(1 + δ)κ
∥∥∥b̃down

∥∥∥
2

.

For the third term,∥∥∥b̃up + b̃down −Π1b
∥∥∥2

2
=

∥∥∥(Π̃up −Πup)b
∥∥∥2

2
+

∥∥∥(Π̃down −Πdown)b
∥∥∥2

2

≤ δ2
(
∥Πupb∥2

2 +
∥∥Πdownb

∥∥2
2

)
(by Lemma 4.2, 4.9, Fact 2.5)

= δ2 ∥Π1b∥2
2 .

Combining all the above inequalities,

∥L1x̃ −Π1b∥2 ≤ 3δκ
∥∥∥b̃up

∥∥∥
2

+ 2δκ
∥∥∥b̃down

∥∥∥
2

+ δ ∥Π1b∥2

≤ 3δκ(1 + δ) ∥Πup
1 b∥2 + 2δκ(1 + δ)

∥∥Πdown
1 b

∥∥
2 + δ ∥Π1b∥2

≤ 11δκ ∥Π1b∥2 .

Choosing δ ≤ ϵ
11κ , we have

∥L1x̃ −Π1b∥2 ≤ ϵ ∥Π1b∥2 . ◀

6 Computing an r-Hollowing

In this section, we describe a linear time algorithm (Algorithm 2) that finds an r-hollowing
of a pure 3-complex K embedded in R3 with n stable simplexes that satisfies the additional
geometric structures stated at the end of Section 2. We restate them below:
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1. The aspect ratio of the convex hull of K is O(1), and the volume of each tetrahedron in
K is Θ(1).

2. All but one boundary component has 1-skeleton diameter O(r1/3).
3. The total number of exterior simplexes of K within any X ⊂ R3 of volume r is O(r2/3);

the total number of exterior simplexes of K is O(nr−1/3).
4. The triangle distance between any two boundary components of K is greater than 5.

▶ Lemma 6.1 (Finding an r-hollowing). Let K be a pure 3-complex embedded in R3 and
composed of n stable simplexes. If K possesses additional geometric structures 1-4 with
parameter r = o(n), then we can find an r-hollowing of K in linear time.

In the rest of the section, we will show Algorithm 2 satisfies Lemma 6.1. Let K be the
convex hull of the underlying topological space of K. Algorithm 2 first finds a nice bounding
box – a box encompasses K and its volume and aspect ratio are within constant factors of
those of K. Lemma 6.3 provides a linear time algorithm for finding a nice bounding box
for K when the aspect ratio of K is O(1). Then, Algorithm 2 “cuts” the bounding box into
O(n/r) smaller boxes of equal volume using 2-dimensional planes and turns these cutting
planes into an r-hollowing. Figure 2 illustrates the process of finding an r-hollowing.

We need the following lemma from [4] to construct a nice bounding box.

▶ Lemma 6.2 (Lemma 3.4 of [4]). Given a set X of points in R3, we can compute in linear
time a bounding box B with vol(B) ≤ 6

√
6vol(B∗), where vol(·) is the volume and B∗ is a

bounding box of X with the minimum volume.

▶ Corollary 6.3 (Nice bounding box). Let K be a 3-complex embedded in R3 whose underlying
topological space has aspect ratio O(1). We can compute a nice bounding box of the convex
hull of K in linear time.

The proof of Corollary 6.3 can be found in the full version [20].

(a) (b) (c)

Figure 2 (a) An 2-dimensional illustration of a 3-complex K with several holes inside; (b) A
nice bounding box of K with ⌊n1/3r−1/3⌋ evenly-spaced 2-dimensional planes; (c) An r-hollowing T
generated by Algorithm 2 consisting of simplexes that are “close” to the two-dimensional planes and
parts of the boundaries of the intersecting holes inside with the planes.

Proof of Lemma 6.1. We can check that Algorithm 2 has linear runtime. In the rest of the
proof, we will show T returned by Algorithm 2 is an r-hollowing of K.

By Assumption 1, 2 and 3, the volume of the convex hull of K, denoted by CH(K), is
Θ(n); the maximum volume is attained when K has Θ(n/r) boundary components and each
corresponds to a “hole” of volume Θ(r). By Lemma 6.3, we have vol(B) = Θ(vol(CH(K))) =
Θ(n). In Algorithm 2, the 2-dimensional planes divide the box B into O(n/r) smaller boxes
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Algorithm 2 Hollowing(K, r).

Input: A pure 3-complex K embedded in R3 with n stable simplexes satisfying
assumption 1-4 with a known parameter r = o(n)

Output: An r-hollowing T
1 Find a nice bounding box B for K by Corollary 6.3.
2 For each pair of parallel faces of B, find ⌊n1/3r−1/3⌋ evenly-spaced 2-dimensional

planes parallel to the face which divide B into equal-volume pieces. We can slightly
perturb the planes so that no plane intersects with any vertex of K (see Figure 2(b)).

3 T ← all the tetrahedrons on the boundary of K that form a spherical shell.
4 for each 2-dimensional plane P do
5 Q ← all the tetrahedrons of K that intersect P .
6 if Q is not connected (i.e., P intersects some holes inside) then
7 Q ← Q ∪

⋃
H∈intersected holes inside all the tetrahedrons on the boundary of H,

which are on one side of P and form half of a spherical shell (see Figure 2(c)).
8 end
9 T ← T ∪ Q.

10 end
11 Expand T such that its width reaches 5.
12 return T

each of volume O(r) and surface area O(r2/3). By our construction of T , each smaller box
corresponds to a region; thus, there are O(n/r) regions. By Assumption 3, each region of
T has O(r) simplexes and O(r2/3) boundary simplexes. Moreover, the boundary of each
region triangulates a spherical shell in R3 by construction. Additionally, the diameter of the
underlying topological space of each region is upper bounded by the triangle diameter of the
small box plus Θ(1) times the 1-skeleton diameter of boundary components. By Assumption
2, each region has diameter O(r1/3).

To conclude, T satisfies all the conditions in Definition 2.9 and is an r-hollowing of K. ◀
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