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Abstract
We consider the following problem about dispersing points. Given a set of points in the plane, the
task is to identify whether by moving a small number of points by small distance, we can obtain
an arrangement of points such that no pair of points is “close” to each other. More precisely, for a
family of n points, an integer k, and a real number d > 0, we ask whether at most k points could be
relocated, each point at distance at most d from its original location, such that the distance between
each pair of points is at least a fixed constant, say 1. A number of approximation algorithms for
variants of this problem, under different names like distant representatives, disk dispersing, or point
spreading, are known in the literature. However, to the best of our knowledge, the parameterized
complexity of this problem remains widely unexplored. We make the first step in this direction by
providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with
O(d2k3) points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable
(FPT) algorithm for the problem, parameterized by k and d. Finally, we complement the result
about polynomial kernelization by showing a lower bound that rules out the existence of a kernel
whose size is polynomial in k alone, unless NP ⊆ coNP /poly.
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48:2 Kernelization for Spreading Points

1 Introduction

The problem of dispersing a family of objects is a common theme in many situations in
computational geometry. It appears naturally in the wide range of settings that require
assigning elements to locations. In many scenarios, dispersing has two often contradicting
objectives. On the one hand, it is desirable not to place the objects too close to each other.
This can be due to a variety of reasons, e.g., placing customers in a restaurant in socially
distant manner, to placing wireless sensors far from each other in order to avoid interference.
On the other hand, we may already have an existing placement of the objects, and wish to
optimize the resources spent on moving the objects.

With this motivation, we consider the following mathematical model of the dispersing
problems. In this model, our aim is to modify a given arrangement of points in the plane, by
moving some of the points into new positions within a given distance, such that the Euclidean
distance between each pair of points in the final arrangement is at least a fixed constant,
say 2. Equivalently, the problem can be reformulated in terms of finding a non-overlapping
arrangement of unit disks, formulated below as the problem Disk Dispersal.

Input: A family S of n unit disks, an integer k ≥ 0, and a real d ≥ 0.
Task: Decide whether it is possible to obtain from S a family of non-overlapping

unit disks P by moving at most k disks into new positions in such a way
that each unit disk is moved a distance at most d. 1

Disk Dispersal

Disk Dispersal– and therefore, the problem of spreading points – is closely related to
the problem of finding a system of q-distant representatives. This problem was introduced by
Fiala, Kratochvíl, and Proskurowski [14] as a geometric extension of the classic combinatorial
notion of the “systems of distinct representatives”. For a set of geometric objects in a metric
space and a number q > 0, the task is to choose one representative point from each object
such that the selected points are at a distance at least q from each other. For k = n, an
instance (S, d, k) of Disk Dispersal can be viewed as an instance of the problem of finding
a system of q-distance representatives by setting q = 2 and defining the set of geometric
objects as follows: for each disk D ∈ S, create a disk with the same center but with radius d

(instead of 1). This yields that Disk Dispersal is also NP-hard for d = 2 from the result
of [14].

The problem of computing the distant representatives has applications in map labeling
and data vizualization, where the goal is to place labels as close as possible to the specified
features of the map but avoiding overlapping (thus the centers of labels are the centers of
non-intersecting disks, ensuring that they are sufficiently separated) [9, 20, 21]. The problem
is also related to problems of “imprecise points” [22, 23], the settings where locations of
points are given with some precision. Approximation algorithms for this and related point
spreading problems – where the goal is to place the specified number of points within a
certain region so as to maximize the smallest pairwise distance between the points – were
developed in [3, 4, 6, 10, 11, 12, 13, 19, 2, 18].

1 All (unit) disks considered in the paper are open unless specified otherwise. In particular, two unit disks
touching each other are not considered to be overlapping. Due to this simplifying assumption, we avoid
the discussion about placing disks such that the distance between their boundaries is infinitesimally
small.
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Figure 1 An example of Disk Dispersal with k = 1 and d =
√

3. A non-overlapping arrangement
of disks obtained from a family of three disks by moving the central disk at distance

√
3.

To the best of our knowledge, the parameterized complexity of dispersal problems are
widely unexplored. The notable exception is the work of Demaine, Hajiaghayi, and Marx [7]
on dispersion in graphs. In this problem, we are given an underlying edge-weighted graph,
called the connectivity graph G, and a set of k “agents” or “pebbles”, located at a subset of
vertices G. The task is to move the pebbles to distinct vertices and such that no two pebbles
are adjacent. The movement problem is W[1]-hard parameterized by the number of pebbles,
even in the case when each pebble is allowed to move at most one step.

1.1 Our Results
Our first result concerns kernelization (polynomial compression) of Disk Dispersal. Infor-
mally speaking, in parameterized complexity, the polynomial kernel is a polynomial-time
algorithm that compresses the instance of a parameterized problem to the instance whose
size is bounded by a polynomial of the parameter. Theorem 1 gives an algorithm that runs
in polynomial time, and reduces the number of disks to some polynomial of d and k.

▶ Theorem 1. There is a polynomial-time algorithm that, given an instance (S, k, d) of Disk
Dispersal, outputs an equivalent instance (S ′, k, d) of the same problem, where the number
of unit disks is |S ′| = O((d + 1)2k3), and S ′ ⊆ S.

Strictly speaking, the algorithm in Theorem 1 is not a polynomial kernel according to the
standard definition of this notion – we do not guarantee that the coordinates of disks, and
thus the overall size of the compressed instance, is bounded by a polynomial in k and d. We
call such a compression algorithm a partial kernel. Further, we observe in Theorem 12 that
the partial kernel from Theorem 1 can be modified to be a polynomial kernel if the centers
of input disks are constrained to be rationals and we parameterize the problem by k, d, and
the maximum denominator of coordinates of centers.

For a parameterized problem, given the existence of a (partial) kernel, it is usually
straightforward to design a fixed-paramter tractable (FPT) algorithm by an exhaustive
enumeration of all candidate solutions. For Disk Dispersal, however, this is not entirely
obvious. After computing an equivalent reduced instance by applying Theorem 1, one can
enumerate all possible subsets of at most k unit disks that are to be moved. Now, for
each such subset, we want to decide whether each unit disk in the subset can be moved
by a distance of at most d that results in a non-overlapping configuration. Since there are
infinitely many possible target locations for each unit disk, this step requires some additional
work. We show that this decision subroutine can be reduced to checking whether a system of
polynomial inequalities has a solution over real numbers, which can then be determined in
FPT time by using classical results from computational real algebra. Thus, we obtain the
following non-trivial corollary.

▶ Corollary 2. Disk Dispersal is FPT when parameterized by d + k. Specifically, it is
solvable in time (dk)O(k) · |I|O(1).

ESA 2023



48:4 Kernelization for Spreading Points

Our next result is a companion lower bound to the partial kernelization of Theorem 1,
which shows that one cannot remove the dependence on d from the kernel size.

▶ Theorem 3. Disk Dispersal parameterized by k does not admit a polynomial kernel
unless coNP ⊆ NP /poly. This result holds even if the distance d is an integer, and the
centers of the given disks have rational coordinates.

As we already mentioned, by the result of Fiala, Kratochvíl, and Proskurowski about
q-distant representatives, Disk Dispersal is NP-hard for d = 2. Thus the problem is in
the class para-NP for parameter d. However, the complexity of parameterization by k is
more interesting, which remains open. However, in the appendix, we show that a rectilinear
version of Disk Dispersal is indeed W[1]-hard parameterized by k.

Organization

In Section 2 we introduce basic notions. In Section 3, we consider kernelization for Disk
Dispersal. Further, we give complexity lower bounds. In Section 4, we show that it is
unlikely that Disk Dispersal admits a polynomial kernel when parameterized by k only.
Finally, in Section 5, we provide some concluding remarks and future directions.

2 Preliminaries

As it is common in computational geometry, we assume the real RAM computational model,
that is, we are working with real numbers and assume that basic operations can be executed
in unit time.

Disks and Segments

For two points A and B in the plane, we use AB to denote the line segment with endpoints
at A and B. The distance between A = (x1, y1) and B = (x2, y2) or the length of AB, is
|AB| = ∥A−B∥2 =

√
(x1 − x2)2 + (y1 − y2)2. The (open unit) disk with a center C = (c1, c2)

in the plane is the set of points (x, y) satisfying the inequality (x − c1)2 + (y − c2)2 < 1.
Whenever we write “disk” we mean an open unit disk, unless radius or closed-ness is specified
explicitly. Clearly, two disks with centers A and B are disjoint if and only if the distance
between A and B is at least two. We say that the disks touch if |AB| = 2. For real numbers
a ≤ b, we use [a, b] = {x ∈ R | a ≤ x ≤ b} to denote a closed interval. For a1 ≤ b1 and
a2 ≤ b2, [a1, b1] × [a2, b2] = {(x, y) ∈ R2 | a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}. A point X is
properly inside of a polygon P if it is inside P but X is not on the boundary; if we say that
X is inside P , we allow it to be on the boundary. A disk is (properly) iniside of a polygon P

if every point of the disk is (properly) inside of P .

Graphs

We use standard graph-theoretic terminology and refer to the textbook of Diestel [8] for
definitions of standard notions. Let S be a set of geometric objects in the plane (i.e., non-
empty subsets of R2). Then, it is possible to define an intersection graph G(S) as follows:
G(S) contains a unique vertex corresponding to every object in S, and there is an edge
between the two vertices iff the corresponding two objects in S have a non-empty intersection.
Unit disk graphs are the intersection graphs of unit disks in the plane. Note that, given a
family S of unit disks, we can construct the corresponding unit disk graph G(S) in quadratic
time.
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Parameterized Complexity

We refer to the standard textbooks ([5, 17]) for introduction to the area and formal definitions.
Here, we only give a brief overview. Let (I, k) be an instance of a decision problem Π, where
k is a non-negative integer. We say that Π is fixed-parameter tractable by k, if there exists
an algorithm that can decide whether I is a yes-instance of Π in time f(k) · |I|O(1) for some
computable function f , where |I| denotes the size of the instance I. A common way to show
that it is unlikely that a parameterized problem is in FPT, one can prove that it is W[1]-hard
by demonstrating a parameterized reduction from a known W[1]-hard problem; we refer to
[5] for the formal definitions of the class W[1] and parameterized reductions.

A kernelization (or kernel) for Π is a polynomial time algorithm that, given an instance
(I, k) of Π, outputs an equivalent instance (I ′, k′) of Π such that |I ′| + k′ ≤ g(k) for a
computable function g. A kernel is polynomial if g is a polynomial. It can be shown
that every decidable FPT problem admits a kernel. However, it is unlikely that all FPT
problems have polynomial kernels. In particular, there is the now standard cross-composition
technique to show that a parameterized problem does not admit a polynomial kernel unless
NP ⊆ coNP /poly.

Systems of Polynomial Inequalities

In our FPT algorithm, we will need to find suitable locations for new disks that need to be
added such that the locations are “compatible” with an existing arrangement of disks. We
will achieve this by solving systems of polynomial inequalities. We use the following result.

▶ Proposition 4 (Theorem 13.13 in [1]). Let R be a real closed field, and let P ⊆ R[X1, . . . , Xk]
be a finite set of s polynomials, each of degree at most c, and let

(∃X1)(∃X2) . . . (∃Xk)F (X1, X2, . . . , Xk)

be a sentence, where F (X1, . . . , Xk) is a quantifier-free boolean formula involving P-atoms
of type P ⊙ 0, where ⊙ ∈ {=, ̸=, >, <}, and P is a polynomial in P. Then, there exists an
algorithm to decide the truth of the sentence with complexity sk+1cO(k) in D,2 where D is
the ring generated by the coefficients of the polynomials in P.

Furthermore, a point (X∗
1 , . . . , X∗

k) satisfying F (X1, . . . , Xk) can be computed in the
same time by Algorithm 13.2 (sampling algorithm) of [1] (see Theorem 13.11 of [1]).

3 Kernelization and FPT Algorithms for Disk Dispersal

In this section, we first prove Theorem 1 on partial kernel for Disk Dispersal parameterized
by k +d. Specifically, the output instance of the partial kernel is guaranteed to consist of only
O(d2k3) unit disks. In case the coordinates of the disks in the input instance are rationals of
the form a + b

c where b, c are bounded by a fixed constant (or a polynomial in k + d), our
partial kernel in fact yields a (normal) kernel. Finally, using our partial kernel, we prove in
Corollary 2 that Disk Dispersal is FPT parameterized by k + d.

The proofs of our partial kernels begin with the simple observation that if we are given a
yes-instance, then the unit disk graph corresponding to the input set of unit disks admits a
vertex cover of size at most k. So, in polynomial time we obtain a vertex cover U of size at

2 That is, the algorithm performs sk+1cO(k) operations in D.

ESA 2023
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k = 4

Figure 2 Example of the propagation effect. The dotted objects correspond to a solution where
an object of a certain color is replaced by the dashed object of the same color.

most 2k. At first glance, one may think to remove all input unit disks that do not intersect
any unit disk in U . However, we might be forced to perform movement operations that make
some neighborhood sets larger (e.g., see Figure 2), which, in turn, can have a propagating
effect that forces us to move unit disks that are “quite far” from all unit disks in U . Still, we
can prove by induction on k that if the input instance is a yes-instance, then it admits a
solution where all the unit disks that are moved are at distance at most O(d2k2) from at
least one unit disk in U . This gives rise to a reduction rule where we only keep the unit disks
within this distance from at least one unit disk in U as well as additional unit disks at some
(almost negligible) distance from them.

After having reduced the number of unit disks, we can shift the unit disks that we keep so
that the coordinates of their centers will be polynomial in k + d, under the assumption that
the coordinates of the unit disks in the input instance are rationals of the form a + b

c where
b, c are bounded by a fixed constant (or a polynomial in k + d). To obtain FPT algorithms,
we first apply our partial kernels. Afterwards, we guess which disks to move. Then, we
determine how to move them by solving a corresponding system of polynomial inequalities.

For the sake of formality, we will use the notion of a solution in this section as follows.

▶ Definition 5. Let (S, k, d) be an instance of Disk Dispersal. A solution is a bijective
function move : S → P such that:
1. P is a packing, i.e., a non-overlapping set of unit disks.
2. |{D ∈ S : move(D) ̸= D}| ≤ k.
3. For every D ∈ S: The distance between the centers of D and move(D) is at most d.

We define the set of unit disks moved by move as {D ∈ S : move(D) ̸= D}, and the size of
move as the size of this set.

Notice that any set of unit disks that is moved by a solution to Disk Dispersal is in
particular a vertex cover (though not necessarily a minimal one) for the intersection graph
of the input set of unit disks. As previously discussed, since the Vertex Cover problem
admits a 2-approximation algorithm in polynomial time, this yields the following observation.

▶ Observation 6. There exists a polynomial-time algorithm that, given an instance (S, k, d)
of Disk Dispersal, either correctly concludes that (S, k, d) is a no-instance, or outputs a
vertex cover of size at most 2k for the unit disk graph corresponding to S.



F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 48:7

We will also need the following observation, which is directly implied by the fact that the
area of a disk of radius r is πr2, while the area of a unit disk (whose radius is 1) is π.

▶ Observation 7. The number of pairwise non-intersecting unit disks in a disk of radius r is
at most r2.

Towards the presentation of our partial kernel, we need to prove one lemma. Informally
speaking, this lemma shows that the set of disks that may be potentially moved in a yes-
instance is contained in a bounded area around a small number of disks, in particular the
disks that form a vertex cover in the intersection graph. Furthermore, since all such disks,
except that forming the vertex cover, are non-intersecting, this lemma eventually helps us
bound the number of such disks by a polynomial in k and d.

▶ Lemma 8. Let (S, d, k) be a yes-instance of Disk Dispersal. Let U be a vertex cover for
the intersection graph of S. Then, any minimum-sized solution to (S, k, d) only moves unit
disks whose center is at distance at most (d + 2) · k from the center of at least one unit disk
in U .

Proof. We prove the lemma by induction on k. When k = 0, the only minimum-sized
solution to (S, k, d) is the one that moves no unit disk, and hence the claim trivially follows.
Now, suppose that the claim holds for k − 1 ≥ 0, and let us prove it for k. If the intersection
graph of S is edgeless, then the only minimum-sized solution to (S, k, d) is the one that
moves no unit disk, and hence the claim trivially follows as in the base case. So, we can next
suppose that there exist two different unit disks D, D′ ∈ S that intersect each other. See
Figure 3 for an illustration.

Since U is a vertex cover, it must contain at least one unit disk among D and D′, denoted
by X. Moreover, any solution to (S, k, d) must move at least one unit disk among D and
D′. Let move : S → P be an arbitrary minimum-sized solution to I = (S, k, d), and let Y

be a unit disk among D and D′ that move moves to attain P. Let Y ′ = move(Y ), and let
S ′ = (S \{Y })∪{Y ′}. We attain solution move′ : S ′ → P ′ to a new instance I ′ = (S ′, k−1, d)
as follows: for every D̃ ∈ S \ {Y }, move′(D̃) = move(D̃); move′(Y ′) = Y ′. Note that move′

must be a minimum-sized solution to (S ′, k − 1, d), otherwise we can obtain a solution for the
original instance (S, k, d) that is smaller than move, contradicting its optimality. Further,
note that (U \ {Y }) ∪ {Y ′} is a (not necessarily minimal) vertex cover for the intersection
graph of S ′. By the inductive hypothesis, this means that move′ only moves unit disks whose
center is at distance at most (d + 2) · (k − 1) from the center of at least one unit disk in
(U \ {Y }) ∪ {Y ′}. Moreover, the distance between the centers of Y and X is at most 2 (since
they intersect) and the distance between the centers of Y ′ and Y is at most d, so the distance
between the centers Y ′ and X is at most d + 2. In turn, this means that move only moves
unit disks at distance at most (d + 2) · k from at least one unit disk in U , which concludes
the proof. ◀

We are now ready to present the partial kernel for Disk Dispersal. For the reader’s
convenience, we restate Theorem 1 here.

▶ Theorem 1. There is a polynomial-time algorithm that, given an instance (S, k, d) of Disk
Dispersal, outputs an equivalent instance (S ′, k, d) of the same problem, where the number
of unit disks is |S ′| = O((d + 1)2k3), and S ′ ⊆ S.

Proof. Given an instance (S, k, d) of Disk Dispersal, the (partial kernel) kernelization
algorithm works as follows. Based on Observation 6, it computes a vertex cover U of size at
most 2k for the intersection graph of S. Then, it obtains S ′ from S by removing from S all

ESA 2023
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Y

move(Y ) = Y ′

X

Figure 3 Illustration for Proof of Lemma 8. A vertex cover U contains disk X and a solution S
moves a disk Y to its new location, Y ′ = move(Y ), denoted in dash-dotted disk in red color. A new
instance I′ is obtained by replacing Y with Y ′ and reducing the budget by 1, and U ′ = X ∪ Y ′ is
a vertex cover for the resulting intersection graph. A solution to I′ moves the solid blue, purple,
and orange disks to their new locations, shown in dashed disks of corresponding color. By inductive
hypothesis, the new locations are at distance at most (d + 2) · (k − 1) from U ′, and the distance
between X and Y ′ is at most d + 2.

the unit disks at distance more than (d + 2) · (k + 1) from all unit disks in U . The output
instance is (S ′, k, d). Clearly, the kernelization algorithm works in polynomial time. So, it
suffices to prove that (S, k, d) and (S ′, k, d) are equivalent and that |S ′| = O(d2k3).

We first prove the equivalence. In one direction, suppose that (S, k, d) is a yes-instance,
and let move : S → P be a solution to it. In particular, the restriction of move to S ′ clearly
yields a packing (being a subset of P) and moves at most as many disks as move does. So,
the restriction of move to S ′ is a solution to (S ′, k, d).

In the other direction, suppose that (S ′, k, d) is a yes-instance. By Lemma 8, (S ′, k, d)
admits a solution move′ : S ′ → P ′ that only moves unit disks whose centers are at distance
at most (d + 2) · k from the center of at least one unit disk in U .3 Define move : S → P
for P = P ′ ∪ (S \ S ′) as follows: for every D ∈ S ′, move(D) = move′(D), and for every
D ∈ S \ S ′, move(D) = D. We claim that move is a solution to (S, k, d). To this end, first
note that none of the unit disks in P ′ intersect each other (since move′ is a solution to
(S ′, k, d)). In particular, the unit disks in {D ∈ U : move(D) = D} do not intersect any other
unit disk in P ′. However, all unit disks in S that do not belong to U do not intersect each
other (since U is a vertex cover for the intersection graph of S). So, in P, the only pairs of
unit disks that can potentially intersect each other are pairs where one is a unit disk that
was moved by move and the other belongs to S \ S ′. However, the center of any unit disk
D that is moved by move is at distance at most (d + 2) · k from the center of at least one
unit disk D′ in U , and hence the center of move(D) is at distance at most d + (d + 2) · k

from the center of D′, while the center of any unit disk in S \ S ′ is at distance more than

3 Note that S′ may contains unit disks whose centers are at distance larger than (d + 2) · k (but at most
(d + 2) · (k + 1)) from the centers of all unit disks in U .
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(d + 2) · (k + 1) from the centers of all unit disks in U . Thus, P cannot have a pair of unit
disks that intersect each other, such that one is a unit disk that was moved by move and the
other belongs to S \ S ′. So, move is indeed a solution to (S, k, d).

Now, note that for every D ∈ U , the unit disks whose center is at distance at most
(d+2) ·(k +1) from D are contained in a disk D′ of radius (d+2) ·(k +1)+1 and whose center
is the same as the center of D. So, by Observation 7 and since U is a vertex cover for the
intersection graph of S, this means that there exist at most ((d + 2) · (k + 1) + 2)2 = O(d2k2)
unit disks in S \ U that intersect D′. As |U | ≤ 2k, we conclude that |S ′| ≤ |U | + |U | · ((d +
2) · (k + 1) + 2)2 = O(d2k3). ◀

To reduce the bitsize of encoding the coordinates of the unit disks in the output instance,
we make use of the following lemma.

▶ Lemma 9. There exists a polynomial-time algorithm that, given a set D of unit disks whose
centers have rational coordinates, a partition (D1, D2, . . . , Dℓ) of D, and r ∈ N, outputs a set
D′ of unit disks whose centers have rational coordinates and a bijective function f : D → D′

with the following properties.
For all i ∈ {1, 2, . . . , ℓ}, Di and {f(D) : D ∈ Di} are isometric, that is, for all D, D′ ∈ Di,
we have distance(D, D′) = distance(f(D), f(D′)).
For all distinct i, j ∈ {1, 2, . . . , ℓ}, D ∈ Di and D′ ∈ Dj, we have distance(D, D′) > r.
Encoding the coordinates (in unary) of all the unit disks in {f(D) : D ∈ Di} requires
space polynomial in r, |D|, m = ℓmax

i=1
max

D,D′∈Di

distance(D, D′) and N = maxb,c(b + c) over

every b, c ∈ N, b < c, and b, c are coprime, such that a + b
c is a coordinate of a center of a

unit disk in D.

Proof. For every i ∈ {1, 2, . . . , ℓ}, let Li be a leftmost unit disk in Di (i.e., with a smallest
x-coordinate of its center), and let Di be a bottommost unit disk in Di (i.e., with a smallest
y-coordinate of its center), and denote their centers by (xleft

i , yleft
i ) and (xbottom

i , ybottom
i ),

respectively. Now, for every i ∈ {1, 2, . . . , ℓ} and every D ∈ Di with center (x, y), define f(D)
as the unit disk whose center is (x − xleft

i + (i − 1) · (m + r), y − ybottom
i + (i − 1) · (m + r)).

We define D′ as the set of unit disks assigned by f . Clearly, f : D → D′ is bijective and the
third property in the lemma holds.

For the first property, consider two unit disks D, D′ ∈ Di for some i ∈ {1, 2, . . . , ℓ} with
centers (x, y) and (x′, y′), respectively. Then, distance(f(D), f(D′)) is equal to the square root
of ((x−xleft

i +(i−1) ·(m+r))−(x′ −xleft
i +(i−1) ·(m+r)))2 +((y−ybottom

i +(i−1) ·(m+r))−
(y′ − ybottom

i + (i − 1) · (m + r)))2, which is precisely
√

(x − x′)2 + (y − y′)2 = distance(D, D′).
So, the first property in the lemma holds.

For the second property, consider two unit disks D ∈ Di, D′ ∈ Dj for some i, j ∈
{1, 2, . . . , ℓ}, i < j, with centers (x, y) and (x′, y′), respectively. Then, distance(f(D), f(D′))
is equal to the square root of ((x′ − xleft

j + (j − 1) · (m + r)) − (x − xleft
i + (i − 1) · (m +

r)))2 + ((y′ − ybottom
j + (j − 1) · (m + r)) − (y − ybottom

i + (i − 1) · (m + r)))2. Observe that
x′ ≥ xleft

j , y′ ≥ ybottom
j , x ≤ xleft

i + m, y ≤ ybottom
i + m. So, the above expression is lower

bounded by√
2 ((j − 1) · (m + r) − (m + (i − 1) · (m + r)))2 =

√
2 · ((j − i)(m + r) − m) ≥

√
2r.

In particular, distance(f(D), f(D′)) > r. So, the second property in the lemma holds. ◀

We will also need the following simple observation.
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48:10 Kernelization for Spreading Points

▶ Observation 10. Let S be a set of unit disks in the Euclidean plane. Let D ∈ S. Then, by
moving D by a distance of at most some d ∈ N, D cannot intersect unit disks whose centers
are at distance at least d + 2 from the original position of the center of D.

Based on Lemma 9 and Observation 10, we prove the following.

▶ Lemma 11. There exists a polynomial-time algorithm that, given an instance (S, k, d) of
Disk Dispersal where the centers of all disks have rational coordinates, and a partition
(S1, S2, . . . , Sℓ) of S such that for all i, j ∈ {1, 2, . . . , ℓ}, D ∈ Si and D′ ∈ Sj, we have
distance(D, D′) ≥ 2d + 2, outputs an equivalent instance of Disk Dispersal, respectively,
with the same parameters k, d and number of unit disks, where encoding the coordinates of all
the unit disks (in unary) requires space polynomial in d, |S|, m = ℓmax

i=1
max

D,D′∈Si

distance(D, D′)

and N = maxb,c(b + c) over every b, c ∈ N, b < c, such that a + b
c is a coordinate of a center

of a unit disk in D.

Proof. The algorithm simply applies the algorithm in Lemma 9 with r = 2d + 2, and obtains
f : S → S ′. Then, it returns D′. From Lemma 9, it directly follows that encoding the
coordinates of all the unit disks requires space polynomial in d, |D|, m and N . Recall that
for all i, j ∈ {1, 2, . . . , ℓ}, D ∈ Si and D′ ∈ Sj , we have distance(D, D′) ≥ 2d + 2, and this
property is preserved under the mapping f (by our choice of r). So, Observation 10 implies
that the sub-instances induced by the different sets Si are “independent” from each other:
we cannot move unit disks in one set Si so that they intersect unit disks in another set Sj .
Also, the same holds for the sub-instances they are mapped to by f . As every sub-instance
induced by some set Si is equivalent to the sub-instance it is mapped to by f since Si and
{f(D) : D ∈ Si} are isometric, we conclude that (S, k, d) and (S ′, k, d) are equivalent. ◀

We our now ready to present our (non-partial) kernel for Disk Dispersal. In particular,
if N is a constant (or polynomial in k + d), the parameterization can be assumed to be only
by k + d.

▶ Theorem 12. Disk Dispersal, restricted to instances where the centers of all disks
have rational coordinates, admits a polynomial kernel with respect to k + d + N , where
N = maxb,c(b + c) over every b, c ∈ N, b < c, such that a + b

c is a coordinate of a center of a
unit disk in S.

Proof. Given an instance (S, k, d) of Disk Dispersal, restricted to instances where the
centers of all disks have rational coordinates, the kernelization algorithm works as follows.
First, we call the algorithm in Theorem 1 to obtain an equivalent instance (S ′, k, d) of Disk
Dispersal. Here, k, d remain unchanged, and S ′ is a subset of S. Let W = {WD : D ∈ S ′}
where WD is a disk whose center is the same as the center of D and whose radius is d + 1.
Let C be the set of connected components of the intersection graph of W. Let P be the
partition of S ′ such that two unit disks in S ′ belong to the same part if and only if there
exists a connected component in C such that both are intersected by (possibly different) disks
that belong to that component. It should be clear, from the definitions of S ′ and W, that
this is indeed a partition, and that if two unit disks in S ′ belong to different parts in this
partition, then the distance between their centers is larger than 2d + 2. So, the kernelization
algorithm then calls the algorithm in Lemma 11 on (S ′, k, d) and P as the partition of D′,
and returns its output. ◀

Lastly, based on Theorem 1 and Proposition 4, we prove Corollary 2 stating that Disk
Dispersal is FPT when parameterized by d + k. We restate the theorem here.
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▶ Corollary 2. Disk Dispersal is FPT when parameterized by d + k. Specifically, it is
solvable in time (dk)O(k) · |I|O(1).

Proof. Given an instance (S, k, d) of Disk Dispersal, the algorithm first calls the algorithm
in Theorem 1 to obtain (in polynomial time) an equivalent instance (S ′, k, d) of Disk
Dispersal, where S ′ ⊆ S is of size O(d2k3). Then, for every A ⊆ S ′ of size at most k such
that S ′ \ A is a packing, the algorithm tests whether it is possible to move each unit disk in
A by a distance of at most d so that, afterwards, S ′ becomes a packing. This can be done by
using the algorithm in Proposition 4 to solve the following system of polynomial inequalities,
which has variables xA, yA for every A ∈ A:

For every S ∈ S ′ \ A and A ∈ A: (xA − a)2 + (yA − b)2 ≥ 4, where (a, b) denotes the
center of S.
For every distinct A1, A2 ∈ A: (xA1 − xA2)2 + (yA1 − yA2)2 ≥ 4.
For every A ∈ A, where (a, b) denotes the center of A in S ′: (xA − a)2 + (yA − b)2 ≤ d2.

The correctness of the algorithm is immediate. For its running time analysis, notice that there
are only

∑k
i=0

(|S′|
i

)
≤ (dk)O(k) choices for A. Further, each of the systems of polynomial

equations that are solved has at most 2k variables, degree 2, and O(|A| · |S ′|) ≤ (dk)O(1)

equations. So, by Proposition 4, it is solvable in time (dk)O(k) · |I|O(1). In turn, we conclude
that the algorithm runs in time (dk)O(k) · |I|O(1). ◀

4 Kernelization lower bound for Disk Dispersal

In this section, we prove Theorem 3. To this end, we show that from several instances of
Disk Appending (defined below), we can construct a single instance I ′ of Disk Dispersal
such that there is a solution to I ′ if and only if there is a solution to at least one of the
instances of Disk Appending. The result then follows from the cross-composition technique
(see [17], Chapter 17 for more details). Disk Appending is defined as follows.

Input: A packing P of n unit disks inside a rectangle R and an integer κ ≥ 0.
Task: Decide whether there is a packing P∗ of n + κ unit disks inside R obtained

from P by adding κ new disks.

Disk Appending

A recent result of Fomin et al. [15, 16] shows that the problem is NP-hard. In particular,
they show the following result.

▶ Proposition 13 (Corollary 2 in [15]). Disk Appending is NP-hard. Furthermore, it
remains NP-hard, even when restricted to instances (R, P, κ) of the following form.

Rectangle R is [0, 2a] × [0, 2b] for integers a, b > 0. It can also be assumed that a = b.
A packing P of disks with their centers inside R such that (i) for every i ∈ {0, . . . , a},
the disks with centers (2i, 0) and (2i, 2b) are in P and (ii) for every j ∈ {0, . . . , b}, the
disks with centers (0, 2j) and (2a, 2j) are in P.

Proof of Theorem 3. The reader may wish to refer to Figure 4, which explains the schematics
of the reduction. We consider instances (R, P, n, κ) of Disk Appending, where R is an
[0, a] × [0, a] square, where a is an even positive integer, P is a packing of n disks with their
centers inside R, such that the centers of the disks are rational, and κ is the number of
disks that need to be added inside R, which is compatible with P, to obtain a packing of
n + k disks. We also assume that for every i ∈ {1, . . . , a/2}, the disks with centers (2i − 1, 1),
(2i − 1, a − 1), (1, 2i − 1) and (a − 1, 2i − 1) are in P.
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48:12 Kernelization for Spreading Points

For the cross-composition, we first show the polynomial equivalence relation R, over in-
stances (Ri, Pi, ni, κi) of Disk Appending. The instances (Ri, Pi, ni, κi) and (Rj , Pj , nj , κj)
go to the same equivalence classes if (1) the squares Ri and Rj have the same dimension, (2)
Pi and Pj is a packing of ni = nj disks inside Ri and Rj respectively with centers having
rational coordinates, and (3) κi = κj . All the other malformed instances go into another
equivalence class (see [17] for the formal requirements of the equivalence relation). Note
that R satisfies the properties of polynomial equivalence relation, since the equivalence
can be checked in polynomial time, and (2) R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes in a well-formed instance, since κi ≤ ni (this can be assumed w.l.o.g.
by padding the instance as required, as per Proposition 13).

Now we give a cross-composition algorithm for instances belonging to the same equivalence
class. For the last equivalence class of malformed instances, we output a trivial no-instance.
Thus, from now on, we focus on an equivalence class (R1, P1, n, κ), . . . , (Rt, Pt, n, κ), such
that a is the sidelength of every square R1, . . . , Rt. We assume w.l.o.g. that t is odd, and a

is an even integer that is at least 10κ.
For every 1 ≤ i ≤ t, we construct a gadget Gi as follows; see Figure 4. Let R be a

rectangle of height 6 and width 2κ + 6. Suppose the cartesian coordinates of the bottom-left
corner of Gi are (0, 0) (note that this coordinate system is defined only for explaining
the gadget structure, and should not be confused with the coordinate system in the next
paragraph). Then, we place 2(k + 3) disks centered at points (1, 1), (3, 1), . . . , (2k + 5, 1), as
well as (1, 5), (3, 5), . . . , (2κ + 5, 5), and 2 additional disks centered at (1, 3), and (2κ + 5, 3).
These disks lie along the perimeter of the rectangle, with centers at distance 1 from the
perimeter. We call these disks surrounding disks (shown in green). Additionally, we place κ

disks with centers at (4, 3), (6, 3), . . . , (2κ+2, 3), which are termed as interesting disks (shown
in blue). Note that this leaves a horizontal gap of 1 between the leftmost (resp. rightmost)
interesting disk and the surrounding disks with center (1, 3) (resp. (2κ + 5, 3)). Now, we pad
the gadget horizontally by adding columns of 3 disks on both sides of the surrounding disks
in a symmetric manner, such that the width of the gadget becomes exactly a.

Now we describe the construction of the instance of Disk Dispersal. It might be useful
to refer to a schematic description shown in Figure 4. Let d, the distance by which a disk can
be moved, be equal to 9

4 t2a2. We place the first square R1 and the corresponding packing of
disks P1 from the first instance by placing the bottom-left of R1 corner at the origin (0, 0).
Next, we place the instances (R2, P2), (R3, P3), . . . , (Rt, Pt) by aligning their bottom edge
along the x-axis, and leaving a horizontal gap of s :=

√
2ad between the adjacent squares.

Then, we place the gadgets Gi directly above the rectangle Ri such that the vertical distance
between the top edge of Ri and the top edge of Gi is equal to h :=

√
d2 − a2. Since the

width of every gadget Gi is equal to a after padding, the vertical boundaries of Ri and the
corresponding Gi are aligned. Next, we place a set C of κ + 2 co-located disks such that (1)
the vertical distance between the bottom edge of G(t+1)/2 and the centers of disks in C is
equal to d/2, and (2) the centers of the disks in C are aligned with the horizontal center of
the gadget Gi. We place a rectangle tightly enclosing the instance constructed thus far, and
pack all the empty spaces outside the gadgets using disks with integral coordinates on the
centers (not shown in the figure). Finally, we set the budget k, the number of disks that can
be moved, to be (κ + 1) + κ = 2κ + 1. This finishes the construction of the instance of Disk
Dispersal.

The proof of the following claim follows from the careful choice of d, h and s in terms of
a and t.
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d
2

. . .. . .

. . . . . .

t instances of Disk Appending

Gi Gi+1

h =
√
d2 − a2

s =
√
2ad

. . .

Ri Ri+1R1 R(t+1)/2 Rt

G1 G(t+1)/2 Gt

a

a

ℓ3 ℓ4

κ interesting disks (in blue)

1 1

Gadget Gi for 1 ≤ i ≤ t

κ+ 2
co-located

disks

ℓ1

ℓ2

Figure 4 Schematic depiction of an instance of Disk Dispersal obtained by OR-composition of
instances (Ri, Pi, n, κ) of Disk Appending. Each instance (Ri, Pi, n, κ) is shown in a blue square
of sidelength a. Red rectangles are gadgets Gi, and an example gadget is shown below. Lengths
ℓ1, ℓ2, ℓ3, ℓ4 are defined in Claim 14, and the values of s, h, and d are carefully chosen functions of
t and a, in order to ensure that ℓ1, ℓ3 ≤ d < ℓ2, ℓ4 (note that the figure is not to scale). All the
empty spaces are filled with padding disks with integral coordinates of centers. This ensures that
an interesting disk from Gi cannot be moved into an adjacent Ri±1, and thus different instances
remain “isolated”. In the gadget Gi, the surrounding disks are shown in green and interesting disks
are shown in blue. Finally, purple disks are added on either side of the gadget in order to make the
total width of the gadget exactly a. Then, the gadget Gi and the corresponding square Ri can be
horizontally aligned as shown in the figure.

▷ Claim 14.
1. The maximum distance between the centers of disks in C and any point in any Gi is at

most d (shown as ℓ1 in Figure 4).
2. The minimum distance between the centers of disks in C and any point in any Ri is more

than d (ℓ2).
3. The maximum distance between a point in Gi and a point in the corresponding Ri is at

most d (ℓ3).
4. The minimum distance between a point in Gi and a point in another Rj is more than d

(ℓ4).
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Proof. The values of d, h, and s are chosen carefully in terms of a and t in order to ensure
these properties. First we observe that s =

√
2ad ≥ a, since d = 9

4 t2a2.
1. Note that the horizontal distance between the midpoint of G(t+1)/2 and the leftmost point

in G1 can be upper bounded by (t/2)(a+s) ≤ (t/2) ·(2s) = t ·
√

2ad. The vertical distance
between the bottom edge of G(t+1)/2 and the centers of disks in C is d/2. Therefore, it

suffices to show that
(

d
2
)2 +

(
t
√

2ad
)2

≤ d2, i.e., t2 · 2ad ≤ 3d2

4 , i.e., 2at2 ≤ 3
4 · 9

4 · t2a2.
This holds assuming a ≥ 216.

2. It suffices to consider the vertical distance between the centers of C and the top edge
of R(t+1)/2. This vertical distance is d

2 + h − a, which we want to show is greater than
d. Note that it suffices to show that h =

√
d2 − a2 > d

2 , i.e., a2 < 3d2

4 , i.e., 243
64 t4a2 > 1.

However, since t, a ≥ 1, this is true.
3. ℓ2

3 = h2 + a2 = d2 − a2 + a2 = d2, since h =
√

d2 − a2.
4. It suffices to consider adjacent Gi, Ri+1 pairs (argument for Ri−1 is identical). Then,

ℓ2
4 = (h − a)2 + s2 = (

√
d2 − a2 − a)2 + 2ad = d2 − 2a

√
d2 − a2 + 2ad, which we want to

show is at least d2. This holds since d >
√

d2 − a2. ◁

Now we explain the implications of Claim 14. In any yes-instance, at least κ + 1 disks
from C must be moved by a distance at most d. Let C ′ be this set of disks from the set of
κ + 2 co-located disks, that are moved. Note that in any gadget Gi, if all the κ interesting
disks are moved, then this creates an available space for placing κ + 1 disks of C ′. On the
other hand, if any set of fewer than κ disks inducing a connected component in the contact
graph (i.e., a special kind of intersection graph wherein there is an edge between the vertices
corresponding to two disks iff their boundaries touch each other) of the disks is moved, then
this creates space for at most κ disks from C ′ (note that the distance between C ′ and an
Ri is more than d by item 2 of Claim 14). However, since the budget is 2κ + 1, this cannot
correspond to a feasible solution. Thus, in a solution to a yes-instance, C ′ can only be moved
in the place of κ interesting disks corresponding to a gadget Gi. Next, an interesting disk
can be moved anywhere in the corresponding square Ri (item 3), but cannot be moved to a
different square Rj (item 4). Then, using an argument used for the disks in C ′, we conclude
that the k interesting disks can only be moved in the empty spaces in the corresponding
Ri. Thus, the created instance of Disk Dispersal is a yes-instance iff there exists some
yes-instance (Ri, Pi, n, κ) of Disk Appending. Finally, we note that Proposition 13 implies
that the coordinates of the centers of the disks in each instance of Disk Dispersal can be
assumed to be rational. Furthermore, by letting s ≈

√
2ad, and h ≈

√
d2 − a2 as rational

approximations of their original values with small enough error, we can ensure that the
coordinates of all the centers of the disks in the constructed instance become rational, and
furthermore, the inequalities from Claim 14 continue to hold. This concludes the proof of
Theorem 3. ◀

5 Conclusion and Open Problem

In this paper, we initiate the study of the problem of spreading points from the perspective of
parameterized complexity and kernelization. We reformulate the problem in terms of moving
at most k unit disks by a distance of at most d, which we call Disk Dispersal. We design a
(partial) polynomial kernel for Disk Dispersal parameterized by k and d. Furthermore, we
show that this can be transformed into a (true) kernel, assuming the coordinates of the centers
of the unit disks are rational numbers with bounded denominators. We complement this
result by showing that Disk Dispersal does not admit a polynomial kernel parameterized
by k alone, assuming coNP ⊆ NP /poly. These results provide a complete picture of the
kernelization complexity of Disk Dispersal.
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We show that Disk Dispersal is FPT parameterized by k +d, by combining the (partial)
kernel with a non-trivial subroutine that involves solving a system of polynomial inequalities.
It is natural to ask whether the problem is fixed-parameter tractable by the individual
parameters d and k. Fiala et al. [14] have shown that Disk Dispersal is NP-hard even
when d = 2. However, the parameterized complexity of Disk Dispersal parameterized by k

alone remains open. We make some preliminary progress in this direction. In the full version
of the paper, we prove that the rectilinear version of Disk Dispersal is W[1]-hard when
parameterized by k. This is a constrained version of Disk Dispersal, called Rectilinear
Disk Dispersal, which is defined as follows.

Input: A family S of n unit disks, an integer k ≥ 0, and a real d ≥ 0.
Task: Decide whether it is possible to obtain from S a family of non-overlapping

disks P by moving at most k disks into new positions parallel to the axes
in such a way that each disk is moved at distance at most d.

Rectilinear Disk Dispersal

By examining our algorithmic results, namely, the (partial) kernels and the FPT algorithm
parameterized by k + d also hold for Rectilinear Disk Dispersal. Thus we have a
complete picture of the complexity of Rectilinear Disk Dispersal, with parameters k

and d. Given this state of affairs, we conjecture that Disk Dispersal is also W[1]-hard
when parameterized by k.
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