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Abstract
We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting
Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and,
furthermore, it encompasses several other of the most well-studied problems in this field, such
as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex
Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property
that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the
kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with O(kd) bits
(O(kd) sets and O(kd−1) elements) and this it tight by the result of Dell and van Melkebeek [STOC
2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer
elements has remained one of the most major open problems in Kernelization.

In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively
better loss than the best possible approximation ratio of polynomial time approximation algorithms,
then one can obtain kernels where the number of elements is linear for every fixed d. Further, based
on this, we present our main result: we show that there exist approximate Turing kernelizations for
d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations – in fact,
we use a constant number of oracle calls, each with “near linear” (O(k1+ϵ)) bit size, that is, almost
the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST
and CVD, we obtain the “best of both worlds” type of results – (1 + ϵ)-approximate kernelizations
with a linear number of vertices. In terms of size, this substantially improves the exact kernels of
Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.
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1 Introduction

In d-Hitting Set, the input consists of a universe U , a family F of sets over U , where
each set in F is of size at most d, and an integer k. The task is to determine whether there
exists a set S ⊆ U , called a hitting set, of size at most k that has a nonempty intersection
with every set of F . The d-Hitting Set problem is a classical optimization problem
whose computational complexity has been studied for decades from the perspectives of
different algorithmic paradigms. Notably, d-Hitting Set is a generic problem, and hence, in
particular, various computational problems can be re-cast in terms of it. Of course, Vertex
Cover, the most well-studied problem in Parameterized Complexity, is the special case
of d-Hitting Set with d = 2. More generally, d-Hitting Set encompasses a variety of
(di)graph modification problems, where the task is to delete at most k vertices (or edges)
from a graph such that the resulting graph does not contain an induced subgraph (or a
subgraph) from a family of forbidden graphs F . Examples of some such well-studied problems
include Cluster Vertex Deletion, d-Path Vertex Cover, d-Component Order
Connectivity, d-Bounded-Degree Vertex Deletion, Split Vertex Deletion and
Feedback Vertex Set in Tournaments.

Kernelization, a subfield of Parameterized Complexity, provides a mathematical framework
to capture the performance of polynomial time preprocessing. It makes it possible to quantify
the degree to which polynomial time algorithms succeed at reducing input instances of
NP-hard problems. More formally, every instance of a parameterized problem Π is associated
with an integer k, which is called the parameter, and Π is said to admit a kernel if there is a
polynomial-time algorithm, called a kernelization algorithm, that reduces the input instance
of Π down to an equivalent instance of Π whose size is bounded by a function f(k) of k.
(Here, two instances are equivalent if both of them are either Yes-instances or No-instances.)
Such an algorithm is called an f(k)-kernel for Π. If f(k) is a polynomial function of k, then
we say that the kernel is a polynomial kernel. Over the last decade, Kernelization has become
a central and active field of study, which stands at the forefront of Parameterized Complexity,
especially with the development of complexity-theoretic lower bound tools for kernelization.
These tools can be used to show that a polynomial kernel [3, 12, 18, 23], or a kernel of a
specific size [9, 10, 21] for concrete problems would imply an unlikely complexity-theoretic
collapse. We refer to the recent book on kernelization [17] for a detailed treatment of the area
of kernelization. In this paper, we provide a number of positive results on the kernelization
complexity of d-Hitting Set, as well as on several special cases of 3-Hitting Set.

The most well-known example of a polynomial kernel, which, to the best of our knowledge,
is taught in the first class/chapter on kernelization of any course/book that considers this
subject, is the classic kernel for Vertex Cover (2-Hitting Set) that is based on Buss
rule. More generally, one of the most well-known examples of a polynomial kernel is a kernel
with O(kd) sets and elements for d-Hitting Set (when d is a fixed constant) using the
Erdös-Rado Sunflower lemma.1 Complementing this positive result, originally in 2010, a
celebrated result by Dell and van Melkebeek [10] showed that unless co-NP ⊆ NP/ poly, for
any d ≥ 2 and any ϵ > 0, d-Hitting Set does not admit a kernel with O(kd−ϵ) sets. Hence,
the kernel with O(kd) sets is essentially tight with respect to size. However, when it comes
to the bound on the number of elements in a kernel, the situation is unclear. Abu-Khzam [1]

1 The origins of this result are unclear. The first kernel with O(kd) sets appeared in 2004 [13], but the
authors do not make use of the Sunflower Lemma. To the best of our knowledge, the first exposition of
the kernel based on the Sunflower Lemma appears in the book of Flum and Grohe [15].
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showed that d-Hitting Set admits a kernel with at most (2d−1)kd−1 +k elements. However,
we do not know whether this bound is tight or even close to that. As it was written in [17,
page 470]:

Could it be that d-Hitting Set admits a kernel with a polynomial in k number of
elements, where the degree of the polynomial does not depend on d? This does not
look like a plausible conjecture, but we do not know how to refute it either.

The origins of this question can be traced back to the open problems from WorKer 2010 [4,
page 4]. Moreover, in the list of open problems from WorKer 2013 and FPT School 2014 [7,
page 4], the authors asked whether d-Hitting Set admits a kernel with f(d) · k elements for
some function f of d only. After being explicitly stated at these venues, this question and its
variants have been re-stated in a considerable number of papers (see, e.g., [11, 17, 29, 2]),
and is being repeatedly asked in annual meetings centered around parameterized complexity.
Arguably, this question has become the most major and longstanding open problem in
kernelization for a specific problem. In spite of many attempts, even for d = 3, the question
whether d-Hitting Set admits a kernel with O(k2−ε) elements, for some ϵ > 0, has still
remained open.

From an approximation perspective, the optimization version of d-Hitting Set admits
a trivial d-approximation. Up to the Unique Game Conjecture, this bound is tight – for any
ε > 0, d-Hitting Set does not admit a polynomial time (d − ε)-approximation [22]. So, at
this front, the problem is essentially resolved.

With respect to kernelization, firstly, the barrier in terms of number of sets, and secondly,
the lack of progress in terms of the number of elements, coupled with the likely impossibility
of (d − ε)-approximation of d-Hitting Set, bring lossy kernelization as a natural tool for
further exploring of the complexity of this fundamental problem. We postpone the formal
definition of lossy kernelization to Section 2. Informally, a polynomial size α-approximate
kernel consists of two polynomial-time procedures. The first is a pre-processing algorithm
that takes as input an instance (I, k) to a parameterized problem, and outputs another
instance (I ′, k′) to the same problem, such that |I ′| + k′ ≤ kO(1). The second transforms,
for every c ≥ 1, a c-approximate solution S′ to the pre-processed instance (I ′, k′) into a
(c · α)-approximate solution S to the original instance (I, k). Then, the main question(s) that
we address in this paper is:

Is it possible to obtain a lossy kernel for d-Hitting Set with a qualitatively better
loss than d and with O(kd−1−ε) bit-size, or at least with O(kd−1−ε) elements?

In this paper, we present a surprising answer: not only the number of elements can be
bounded by O(k) (rather than just O(kd−1−ε)), but even the bit-size can “almost” be bounded
by O(k)! From the perspective of the size of the kernel, this is essentially the best that
one could have hoped for. Still, we only slightly (though non-negligibly) improve on the
approximation ratio d. For example, for d = 2 (Vertex Cover), we attain an approximation
ratio of 1.721. So, while we make a critical step that is also the first – in particular, we
show that, conceptually, the combination of kernelization and approximation breaks their
independent barriers – we also open up the door for further research of this kind, on this
problem as well as other problems.

More precisely, we present the following results and concept. We remark that for all of
our results, we use an interesting fact about the natural Linear Programming (LP) relaxation
of d-Hitting Set: the support of any optimal LP solution to the LP-relaxation of d-
Hitting Set is of size at most d · frac where frac is the optimum (minimum value) of the
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LP [20]. Furthermore, to reduce bit-size rather than only element number, we introduce an
“adaptive sampling strategy” that is, to the best of our knowledge, also novel in parameterized
complexity. We believe that these ideas will find further applications in kernelization in the
future. More information on our methods can be found in the next section.

Starting Point: Linear-Element Lossy Kernel for d-Hitting Set. First, we
show that d-Hitting Set admits a (d − d−1

d )-approximate d · opt-element kernel, where
opt ≤ k is the (unknown) optimum (that is, size of smallest solution).2 For example, when
d = 3, the approximation ratio is d − d−1

d = 2 1
3 , which is a notable improvement over 3.

When d = 2, this result encompasses the classic (exact) 2 · opt-vertex kernel for Vertex
Cover [6, 27]. We also remark that our linear-element lossy kernel for d-Hitting Set
is a critical component (used as a black box) in all of our other results.
Conceptual Contribution: Lossy Kernelization Protocols. We extend the notions
of lossy kernelization and kernelization protocols3 to lossy kernelization protocols. Roughly
speaking, an α-approximate kernelization protocol can perform a bounded in k number
of calls (called rounds) to an oracle that solves the problem on instances of size (called
call size) bounded in k, and besides that it runs in polynomial time. Ideally, the number
of calls is bounded by a fixed constant, in which case the protocol is called pure. Then,
if the oracle outputs c-approximate solutions to the instances it is given, the protocol
should output a (c · α)-approximate solution to the input instance. In particular, a lossy
kernel is the special case of a lossy protocol with one oracle call. The volume of a lossy
kernelization protocol is the sum of the sizes of the calls it performs.
Main Contribution: Near-Linear Volume and Pure Lossy Kernelization Pro-
tocol for d-Hitting Set. We remark that the work of Dell and van Melkebeek [10] further
asserts that also the existence of an exact (i.e., 1 approximate in our terms) kernelization
protocol for d-Hitting Set of volume O(kd−ϵ) is impossible unless co-NP ⊆ NP/ poly.
First, we show that Vertex Cover admits a (randomized) 1.721-approximate kerneliza-
tion protocol of 2 rounds and call size O(k1.5). This special case is of major interest in
itself: Vertex Cover is the most well-studied problem in Parameterized Complexity,
and, until now, no result that breaks both bit-size and approximation ratio barriers
simultaneously has been known.
Then, we build upon the ideas exemplified for the case of Vertex Cover to significantly
generalize the result: while Vertex Cover corresponds to d = 2, we are able to capture
all choices of d. Thereby, we prove our main result: for any ϵ > 0, d-Hitting Set admits
a (randomized) pure (d − δ)-approximate kernelization protocol of call size O(k1+ϵ).
Here, the number of rounds and δ are fixed constants that depend only on d and ϵ.
While the improvement over the barrier of d in terms of approximation is minor (though
still notable when d = 2), it is a proof of concept – that is, it asserts that d is not an
impassable barrier.4 Moreover, it does so with almost the best possible (being almost
linear) output size.
Outlook: Relation to Ruzsa-Szemerédi Graphs. Lastly, we present a connection
between the possible existence of a (1 + ϵ)-approximate kernelization protocol for Vertex
Cover of call size O(k1.5) and volume O(k1.5+o(1)) and a known open problem about
Ruzsa-Szemerédi graphs. We discuss this result in more detail in Section 3.

2 In fact, when the parameter is k, we show that the bound is better.
3 We remark that kernelization protocols are a highly restricted special case of Turing kernels, that yet

generalizes kernels.
4 Possibly, building upon our work, further improvements on the approximation factor (though perhaps

at the cost of an increase in the output size) may follow.
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Kernels for Implicit 3-Hitting Set Problems. Lastly, we provide better lossy kernels for
two well-studied graph problems, namely, Cluster Vertex Deletion and Feedback
Vertex Set in Tournaments, which are known to be implicit 3-Hitting Set problems [8].
Notably, both our algorithms are based on some of the ideas and concepts that are part of
our previous results, and, furthermore, we believe that the approach underlying the parts
common to both these algorithms may be useful when dealing also with other hitting and
packing problems of constant-sized objects. In the Cluster Vertex Deletion problem,
we are given a graph G and an integer k. The task is to decide whether there exists a set
S of at most k vertices of G such that G − S is a cluster graph. Here, a cluster graph is
a graph where every connected component is a clique. It is known that this problem can
be formulated as a 3-Hitting Set problem where the family F contains the vertex sets of
all induced P3’s of G. (An induced P3 is a path on three vertices where the first and last
vertices are non-adjacent in G.) In the Feedback Vertex Set in Tournaments problem,
we are given a tournament G and an integer k. The task is to decide whether there is a set
S of k vertices such that each directed cycle of G contains a member of S (i.e., G − S is
acyclic). It is known that Feedback Vertex Set in Tournaments can be formulated as
a 3-Hitting Set problem as well, where the family F contains the vertex sets of all directed
cycles on three vertices (triangles) of G.

In [16], it was shown that Feedback Vertex Set in Tournaments and Cluster
Vertex Deletion admit kernels with O(k 3

2 ) vertices and O(k 5
3 ) vertices, respectively. This

answered an open question from WorKer 2010 [4, page 4], regarding the existence of kernels
with O(k2−ϵ) vertices for these problems. The question of the existence of linear-vertex kernels
for these problems is open. In the realm of approximation algorithms, for Feedback Vertex
Set in Tournaments, Cai , Deng and Zang [5] gave a factor 2.5 approximation algorithm,
which was later improved to 7/3 by Mnich, Williams and Végh [26]. Recently, Lokshtanov,
Misra, Mukherjee, Panolan, Philip and Saurabh [24] gave a 2-approximation algorithm for
Feedback Vertex Set in Tournaments. For Cluster Vertex Deletion, You, Wang
and Cao [29] gave a factor 2.5 approximation algorithm, which later was improved to 7/3 by
Fiorini, Joret and Schaudt [14]. It is open whether Cluster Vertex Deletion admits a
2-approximation algorithm. We remark that both problems admit approximation-preserving
reductions from Vertex Cover, and hence they too do not admit (2 − ϵ)-approximation
algorithms up to the Unique Games Conjecture.

We provide the following results for Feedback Vertex Set in Tournaments and
Cluster Vertex Deletion.

Cluster Vertex Deletion. For any 0 < ϵ < 1, the Cluster Vertex Deletion
problem admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.
Feedback Vertex Set in Tournaments. For any 0 < ϵ < 1, the Feedback Vertex
Set in Tournaments problem admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.

Reading Guide. First, in Section 2, we present basic terminology regarding lossy kernel-
ization. Due to lack of space, we omit the formal proofs and technical details. Instead, in
Section 3, we present an overview of our proofs Afterwards, in Section 4, we conclude the
extended abstract with some open problems.

2 Lossy Kernelization: Algorithms and Protocols

Lossy Kernelization Algorithms. We follow the framework of lossy kernelization presented
in [25]. Here, we deal only with minimization problems where the value of a solution is its
size, and where the computation of an arbitrary solution (where no optimization is enforced)

ESA 2023
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is trivial. Thus, for the sake of clarity of presentation, we only formulate the definitions for
this context, and remark that the definitions can be extended to the more general setting
in the straightforward way (for more information, see [25]). To present the definitions,
consider a parameterized problem Π. Given an instance I of Π with parameter k = κ(I),
denote: if k is a structural parameter, then πI(opt) = opt, and otherwise (if k is a bound
on the solution size given as part of the input) πI(opt) = min{opt, k + 1}. Moreover, for
any solution S to I, denote: if k is a structural parameter, then πI(S) = |S|, and otherwise
πI(S) = min{|S|, k + 1}. We remark that when π is irrelevant (e.g., when the parameter is
structural), we will drop it. A discussion of the motivation behind this definition of πI can
be found in [25]; here, we only briefly note that it signifies that we “care” only for solutions
of size at most k – all other solutions are considered equally bad, treated as having size k + 1.

▶ Definition 1. Let Π be a parameterized minimization problem. Let α ≥ 1. An α-
approximate kernelization algorithm for Π consists of two polynomial-time procedures: reduce
and lift. Given an instance I of Π with parameter k = κ(I), reduce outputs another instance
I ′ of Π with parameter k′ = κ(I ′) such that |I ′| ≤ f(k, α) and k′ ≤ k. Given I, I ′ and a

solution S′ to I ′, lift outputs a solution S to I such that πI(S)
πI(opt(I)) ≤ α

πI′(S′)
πI′(opt(I ′)) . If

πI(S)
πI(opt(I)) ≤ max{α,

πI′(S′)
πI′(opt(I ′))} holds, then the algorithm is termed strict.

In case Π admits an α-approximate kernelization algorithm where the output has size f(k, α),
or where the output has g(k, α) “elements” (e.g., vertices), we say that Π admits an α-
approximate kernel of size f(k, α), or an α-approximate g(k, α)-element kernel, respectively.
When it is clear from context, we simply write f(k) and g(k). When it is guaranteed
that |I ′| ≤ f(k′, α) rather than only |I ′| ≤ f(k, α), then we say that the lossy kernel is
output-parameter sensitive.

We only deal with problems that have constant-factor polynomial-time approximation
algorithms, and where we may directly work with (the unknown) opt as the parameter (then,
π can be dropped). However, working with k (and hence π) has the effect of artificially altering
kernel sizes, but not so if one remembers that k and opt are different parameterizations. The
following lemma clarifies a relation between these two parameterizations.

▶ Lemma 2. Let Π be a minimization problem that, when parameterized by the optimum,
admits an α-approximate kernelization algorithm A of size f(opt) (resp., an α-approximate
g(opt)-element kernel). Then, when parameterized by k, a bound on the solution size that
is part of the input, it admits an α-approximate kernelization algorithm B of size f(k+1

α )
(resp., an α-approximate g( k+1

α )-element kernel).

Proof. We design B as follows. Given an instance (I, k) of Π, reduce of B calls reduce of
A on I. If the output instance size is at most f( k+1

α ) (resp., the output has at most g( k+1
α )

elements), then it outputs this instance with parameter k′ = k. Otherwise, it outputs a
trivial constant-sized instance. Given (I, k), (I ′, k′) and a solution S′ to (I ′, k′), if I ′ is the
output of the reduce procedure of A on I, then lift of B calls lift of A on I, I ′, S′ and
outputs the result. Otherwise, it outputs a trivial solution to I.

The reduce and lift procedures of B clearly have polynomial time complexities, and
the definition of B implies the required size (or element) bound on the output of reduce.
It remains to prove that the approximation ratio is α. To this end, consider an input
(I, k), (I ′, k′), S′ to lift of B. Let S be its output. We differentiate between two cases.

First, suppose that opt(I) ≥ k+1
α . Then, πI(S)

πI(opt(I)) ≤ k + 1
k+1

α

= α ≤ α
πI′(S′)

πI′(opt(I ′)) (where

the last inequality follows because |S′| ≥ opt(I ′) and hence πI′(S′) ≥ πI′(opt(I ′))).
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Second, suppose that opt(I) < k+1
α . Then, it necessarily holds that I ′ is the output of

the reduce procedure of A on I. Moreover, note that opt(I ′) ≤ opt(I) and k′ = k. So,

if |S′| ≥ k′ + 2, then πI(S)
πI(opt(I)) ≤ k + 1

πI(opt(I)) = k′ + 1
opt(I) ≤ k′ + 1

opt(I ′) = πI′(S′)
πI′(opt(I ′)) . Else,

we suppose that |S′| ≤ k′ + 1 and hence πI′(S′) = |S′|. Then,

πI(S)
πI(opt(I)) ≤ |S|

πI(opt(I)) = |S|
opt(I) ≤ α

|S′|
opt(I ′) = α

πI′(S′)
πI′(opt(I ′)) .

Here, the second inequality follows because the approximation ratio of A is α.
This completes the proof. ◀

Approximate kernelization algorithm often use strict reduction rules, defined as follows.

▶ Definition 3. Let Π be a parameterized minimization problem. Let α ≥ 1. An α-strict
reduction rule for Π consists of two polynomial-time procedures: reduce and lift. Given
an instance I of Π with parameter k = κ(I), reduce outputs another instance I ′ of Π with
parameter k′ = κ(I ′) ≤ k. Given I, I ′ and a solution S′ to I ′, lift outputs a solution S to I

such that πI(S)
πI(opt(I)) ≤ max{α,

πI′(S′)
πI′(opt(I ′))}.

▶ Proposition 4 ([25]). Let Π be a parameterized problem. For any α ≥ 1, an approximate
kernelization algorithm for Π that consists only of α-strict reduction rules has approximation
ratio α. Furthermore, it is strict.

Lossy Kernelization Protocols. We extend the notion of lossy kernelization algorithms to
lossy kernelization protocols as follows.

▶ Definition 5 (Lossy Kernelization Protocol). Let Π be a parameterized minimization problem
with parameter k. Let α ≥ 1. An α-approximate kernelization protocol of call size f(k, α)
and g(k, α) rounds for Π is defined as follows. First, the protocol assumes to have access
to an oracle O that, given an instance I ′ of Π of size at most f(k, α), returns a solution
S′ to I ′ such that πI′(S′) ≤ βπI′(opt(I ′)) for minimization and πI′(S′) ≥ 1

β
πI′(opt(I ′)) for

maximization, for some fixed β > 0. Second, for the same fixed β > 0, given an instance I

of Π, the protocol may perform g(k, α) calls to O and other operations in polynomial time,

and then output a solution S to I such that πI(S)
πI(opt(I)) ≤ αβ.

The volume (or size) of the protocol is f(k, α)g(k, α). In case g(k, α) = g(α) (i.e., g

depends only on α), the protocol is called pure.

Notice that an α-approximate kernelization algorithm is the special case of an α-approximate
kernelization protocol when the number of rounds is 1.

Practically, we think that (lossy) kernelization protocols can often be as useful as standard
(lossy) kernels, and, in some cases, more useful. Like standard (lossy) kernels, they reduce
the total size of what we need to solve, only that now what we need to solve is split into
several instances, to be solved one after another. On the one hand, this relaxation seems to,
in most cases, not be restrictive (as what we really care about is the total size of what we
need to solve). On the other hand, it might be helpful if by using this relaxation one can
achieve better bounds than what is known (or, even, what is possible) on the sizes of the
reduced instances, or to simplify the algorithm. For example, for the case of d-Hitting Set,
we do not know how to beat O(kd) using a lossy kernel rather than a protocol.
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S2 S2 
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Figure 1 The three cases encountered by our 2-call lossy kernelization protocol for Vertex
Cover: (I) |S1| is large, and we return V (G); (II) |S1| is small and |S2| is small, and we return
S1 ∪ S2; (III) |S1| is small and |S2| is large, and we return (V (G) \ S1) ∪ A.

3 Overview of Our Proof Ideas

In this section, we present a high-level overview of our proof ideas.

3.1 Linear-Element Lossy Kernel for d-HITTING SET

We make use of a known result about the natural LP relaxation of d-Hitting Set: the
support of any optimal LP solution to the LP-relaxation of d-Hitting Set is of size at
most d · frac where frac is the optimum (minimum value) of the LP [20]. For the sake of
completeness, we provide a proof. We then provide a lossy reduction rule that computes an
optimal LP solution, and deletes all vertices assigned values at least 1

d−1 . Having applied this
rule exhaustively, we arrive at an instance having an optimal LP solution that assigns only
values strictly smaller than 1

d−1 . Then, it can be shown that all hitting sets are contained
within the support of this LP solution. In turn, in light of the aforementioned known result,
this yields an approximate d · frac-element and (dfrac)d-set kernel that is output-parameter
sensitive.

The analysis that the approximation factor is d − d−1
d is slightly more involved, and is

based on case distinction. In case the number of vertices deleted is “small enough”, the cost
of adding them is “small enough” as well. In the more difficult case where the number of
vertices deleted is “large”, by making use of the already established bound on the output
size as well as the drop in the fractional optimum, we are able to show that, in fact, we
return a solution of approximation factor d − d−1

d irrespective of the approximation ratio
of the solution we are given. More generally, the definition of “small enough” and “large”
gives rise to a trade-off that is critical for our kernelization protocol for d-Hitting Set,
which in particular yields that we can either obtain a negligible additive error or directly a
solution of the desired (which is some fixed constant better than d but worse than d − d−1

d )
approximation ratio. Specifically, this means that it is “safe” to compose our element kernel
as part of other kernelization algorithms or protocols.

3.2 2-Round O(frac1.5)-Call Size Lossy Kernelization Protocol for
VERTEX COVER

Towards the presentation of our near-linear call size lossy kernelization protocol for d-
Hitting Set, we abstract some of the ideas using a simpler 2-round O(frac1.5)-call size
1.721-approximate kernelization protocol for Vertex Cover (where frac ≤ opt ≤ k is the
optimum of the natural LP relaxation of Vertex Cover). First, we apply an (exact)
kernelization algorithm to have a graph G on at most 2frac vertices. The purpose of having
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only 2frac vertices is twofold. First, it means that to obtain a “good enough” approximate
solution, it suffices that we do not pick a “large enough” (linear fraction) of vertices of G

to our solution. Second, it is required for a probability bound derived using union bound
over vertex subsets to hold. Then, roughly speaking, the utility of the first oracle call is
mainly, indirectly, to uncover a “large” (linear in n = |V (G)|) induced subgraph of G that is
“sparse”, and hence can be sent to the second oracle call to be solved optimally.

More precisely, after applying the initial kernelization, we begin by sampling roughly
frac1.5 edges from G. Then, we call the oracle on the sampled graph to obtain a solution S1
to it (but not to G). In case that solution S1 is “large” compared to the size of the vertex
set of G (that is, sufficiently larger than n/2 ≤ frac), we can just return the entire vertex set
of G (see Fig. 1). Else, we know that the subgraph of the sampled graph that is induced
by V (G) \ S1 is edgeless. In addition, we can show (due to the initial kernelization) that
with high probability, every set of edges of size (roughly) at least frac1.5 that is the edge
set of some induced subgraph of G has been hit by our edge sample. Together, this implies
that the subgraph of G induced by V (G) \ S1 has at most frac1.5 edges, and hence can be
solved optimally by a second oracle call. Then, because we know that this subgraph is large
compared to G (else S1 is large), if the oracle returned a “small” solution S2 to it, we may
just take this solution together with S1 (which will form a vertex cover), and yet not choose
sufficiently many vertices so that this will be good enough in terms of the approximation
ratio achieved. Else, also because we know that this subgraph is large compared to G, if the
second oracle returned a “large” solution S2, then we know that every optimal solution must
take many vertices from this subgraph, and hence, to compensate for this, the optimum of
G[S1] must be “very small”. So, we compute a 2-approximate solution A to G[S1], which we
know should not be “too large”, and output the union of A and V (G) \ S1 (which yields a
vertex cover).

3.3 Near-Linear Volume and Pure Lossy Kernelization Protocol for
d-HITTING SET

For any fixed ϵ > 0, we present a pure d(1 − h(d, ϵ))-approximate (randomized) kernelization
protocol for d-Hitting Set with call size O((frac)1+ϵ) where h(d, ϵ) is a fixed positive
constant that depends only on d, ϵ. On a high-level, the idea of our more general lossy
kernelization protocol is to compute a nested family of solutions based on the approach
described above for Vertex Cover (see Fig. 2). Intuitively, as we now can sample only
few sets (that is, frac1+ϵ), when we compute a solution that hits them using an oracle call,
the number of sets it misses can still be huge, and hence we will need to iteratively use the
oracle (a constant number of times) until we reach a subuniverse such that we can optimally
solve the subinstance induced by it by a single oracle call. Below, we give a more elaborate
overview.

First, we apply our linear-element lossy kernel to have an instance I0 = (U0, T0) where
the universe U0 consists of at most dfrac elements. Here, the error of this application is not
multiplied by the error attained next, but will only yield (as mentioned earlier) a negligible
additive error (or directly a solution of the desired approximation ratio). The purpose of
having only dfrac elements is twofold, similarly as it is in the protocol described earlier for
Vertex Cover. Afterwards, we begin by sampling a family F1 of roughly frac1+ϵ sets from
T0. Then, we call the oracle on the sampled family F1 to obtain a solution S1 to it. In
case that solution S1 is “large” (sufficiently larger than |U0|/d ≤ frac), we can just return
U0. Else, we know that the family of sets corresponding to the subinstance I1 induced by
U1 = U0 \ S1 – that is, the family of all sets in T0 contained in U1, which we denote by T1 –
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Figure 2 The nested solutions computed by oracle calls in our lossy kernelization protocol for
d-Hitting Set. Each Si is a solution to a subinstance (Ui−1, Fi−1) sampled from (Ui−1, Ti−1).

was missed by our set sample. In addition, we can show (due to the initial kernelization) that
with high probability, every family of sets of size (roughly) at least fracd−ϵ that corresponds
to a subinstance induced by a subset of U0 has been hit by our set sample. Together, this
implies that T1 has at most fracd−ϵ (rather than fracd) sets. Hence, in some sense, we have
made progress towards the discovery of a sparse subinstance that we can optimally solve.

Due to important differences, let us describe also the second iteration – among at most
1
ϵ (d − 1) iterations performed in total – before skipping to the (last) one where we have a
subinstance that we can optimally solve by an oracle call. The last iteration may not even
be reached, if we find a “good enough” solution earlier. We remark that it is critical to stop
and return a solution as soon as we find a “large enough” one by an oracle call5 as for our
arguments to work, we need to always deal with subinstances whose universe is large (a
linear fraction of |U0|), and these are attained by removing oracle solutions we got along the
way. We begin the second iteration by sampling a family F2 of roughly frac1+ϵ sets from
T1. Then, we call the oracle on the sampled family F2 to obtain a solution S2 to it. On the
one hand, in case that solution S2 is “large” (sufficiently larger than |U1|/d), we cannot just
return U0 as in the first iteration, as now it may not be true that the optimum of I0 is large
compared to |U0|. Still, it is true that the optimum of I1 is large compared to |U1|. So, every
optimal solution (to I0) must take many elements from U1 \ S2, and hence, to compensate for
this, the optimum of the subinstance induced by S1 must be “very small”. So, we compute a
d-approximate solution to this subinstance, which we know should not be “too large” , and
output the union of it and U1 (which yields a hitting set). On the other hand, in case S2
is “small”, we proceed as follows. We observe that the family of sets corresponding to the
subinstance I2 induced by U2 = U1 \ S2, whose family of sets we denote by T2, was missed
by our set sample. In addition, we can show (due to the initial kernelization) that with
high probability, every family of sets of size (roughly) at least fracd−2ϵ that corresponds to a
subinstance induced by a subset of U1 has been hit by our set sample. Together, this implies
that T2 has at most fracd−2ϵ (rather than just fracd−ϵ as in the first iteration) sets. Hence,
in some sense, we have made further progress towards the discovery of a sparse subinstnace
that we can optimally solve.

Finally, we arrive at a subinstance I ′ induced by a subuniverse U ′ ⊆ U0 that is of size
linear in U0 (else we should have returned a solution earlier) and where the family of sets,
F ′, is of size at most frac1+ϵ. Then, we call the oracle on I ′ to obtain a solution S′ to it. On

5 The solution we return is not the one given by the oracle call, but its union with another solution, as
will be clarified immediately, or just U0 in case of the first iteration describe above.
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the one hand, in case that solution S′ is “large” (sufficiently larger than |U ′|/d), we compute
a d-approximate solution to the subinstance induced by U0 \ U ′ (which is the union of all
solutions returned by oracle calls except the last one), and output the union of it and U ′.
Otherwise, we output (U0 \ U ′) ∪ S′, which is “good enough” because U ′ is sufficiently large
while S′ is sufficiently small compared to it, it does not contain a “large enough” number of
elements from U0.

3.4 Outlook: Relation to Ruzsa-Szemerédi Graphs
A graph G is an (r, t)-Ruzsa-Szemerédi graph if its edge set can be partitioned into t edge-
disjoint induced matchings, each of size r. These graphs were introduced in 1978 [28],
and have been extensively studied since then. When r is a function of n, let γ(r) denote
the maximum t (which is a function of n) such that there exists an (r, t)-Ruzsa-Szemerédi
graph. In [19], the authors considered the case where r = cn. They showed that when
c = 1

4 , γ(r) ∈ Θ(log n), and when 1
5 ≤ c ≤ 1

4 , t ∈ O( n
log n ). It is an open problem whether

whenever c is a fixed constant, t ∈ O(n1−ϵ). For any fixed constant 0 < c < 1
4 , we present

a (1 + 4c)-approximate (randomized) kernelization protocol for Vertex Cover with t + 1
rounds and call size O(t(frac)1.5). Clearly, this result makes sense only when t ∈ o(

√
n),

preferably t ∈ O(n 1
2 −λ) for λ as close to 1/2 as possible, because the volume is O(opt2−λ).

If t is “sufficiently small” (depending on the desired number of rounds) whenever c is a
fixed constant (specifically, substitute c = ϵ

4 ), this yields a (1 + ϵ)-approximate kernelization
protocol.

We observe that, for a graph G, r = r(n), t = t(n) ∈ N and U1, U2, . . . , Ut ⊆ V (G)
such that for all i ∈ {1, 2, . . . , t}, G[Ui] has a matching Mi of size at least r, and for all
distinct i, j ∈ {1, 2, . . . , t}, E(G[Ui]) ∩ E(G[Uj ]) = ∅, we have that G is a supergraph of an
(r, t)-Ruzsa-Szemerédi graph. Having this observation in mind, we devise our protocol as
follows. After applying an exact 2frac-vertex kernel, we initialize E′ = ∅, and we perform
t + 1 iterations of the following procedure. We sample a set of roughly frac1.5 edges from G,
and call the oracle on the subgraph of G whose edge set is the set of samples edges union E′

to obtain a solution S to it (but not to G), and compute a maximal matching M in G − S.
If |M | is smaller than cn ≤ 2cfrac, then we return the union of the set of vertices incident
to edges in M (which is a solution to G − S) and S. Else, similarly to the first protocol we
described for Vertex Cover, we can show that with high probability, G − S has (roughly)
at most k1.5 edges, and we add this set of edges to E′. The crux of the proof is in the
argument that, at the latest, at the (t + 1)-st iteration the computed matching will be of size
smaller than cn ≤ 2cfrac, as otherwise we can use the matchings we found, together with the
vertex sets (of the form G − S) we found them in, to construct an (r, t + 1)-Ruzsa-Szemerédi
graph based on the aforementioned observation, which contradicts the choice of t.

3.5 (1 + ϵ)-Approximate O(1
ϵ

· opt)-Vertex Kernel for Implicit
3-HITTING SET Problems

Both of our lossy kernels share a common scheme, which might be useful to derive (1 + ϵ)-
approximate linear-vertex kernels for other implicit hitting and packing problems as well.
Essentially, they both consist of two rules (although in the presentation, they are merged
for simplicity). To present them, we remind that a module (in a graph) is a set of vertices
having the same neighborhood relations with all vertices outside the set. Now, our first rule
reveals some modules in the graph, and our second rule shrinks their size. The first rule in
both of our lossy kernels is essentially the same.
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Now, we elaborate on the first rule. We start by computing an optimal solution α to the
LP-relaxation of the corresponding 3-Hitting Set problem. Notice that support(α) is a
solution, and its size is at most 3frac (in fact, we show that it is at most 3frac − 2|α−1(1)|).
Then, the first rule is as follows. At the beginning, no vertex is marked. Afterwards, one-by-
one, for each vertex v assigned 1 by α (i.e., which belongs to α−1(1)), we construct a graph
whose vertex set is the set of yet unmarked vertices in V (G) \ support(α) and where there is
an edge between every two vertices that create an obstruction together with v (that is, an
induced P3 in Cluster Vertex Deletion and a triangle in Feedback Vertex Set in
Tournaments). We compute a maximal matching in this graph, and decrease its size to 1

ϵ if
it is larger (in which case, it is no longer maximal). The vertices incident to the edges in the
matching are then considered marked. We prove that among the vertices in α−1(1) whose
matching size was decreased, whose set is denoted by D, any solution can only exclude an ϵ

fraction of its size among the vertices in D, and hence it is “safe” (in a lossy sense) to delete
D. Let M be the set of all marked vertices. Then, we show that (support(α) ∪ M) \ {v}, for
any v ∈ support(α) (including those not in α−1(1)), is also a solution.

For Cluster Vertex Deletion, we prove that the outcome of the first rule means
that the vertex set of every clique in G − (support(α) ∪ M) is a module in G − D, and that
for every vertex in support(α), the set of its neighbors in V (G − (support(α) ∪ M)) is the
vertex set of exactly one of these cliques. So, for Cluster Vertex Deletion, this gives
rise to the following second reduction rule (which is, in fact, exact) to decrease the size
of module. For every clique among the aforementioned cliques whose size is larger than
that of its neighborhood, we arbitrarily remove some of its vertices so that its size will be
equal to the size of its neighborhood. This rule is safe since if at least one of the vertices in
such a clique is deleted by a solution, then because it is a module, either that deletion is
irrelevant or the entire clique is deleted, and in the second case we might just as well delete
its neighborhood instead. Because the neighborhoods of the cliques are pairwise-disjoint
(since for every vertex in support(α), the set of its neighbors in V (G − (support(α) ∪ M)) is
the vertex set of exactly one of the cliques), this means that now their total size is at most
(support(α) \ D) ∪ M , and hence we arrive at the desired kernel.

For Feedback Vertex Set in Tournaments, we consider the unique (because G is a
tournament) topological ordering of the vertices in G−support(α), so that all arcs are “forward”
arcs. We prove that the outcome of the first rule means that each vertex v ∈ support(α) has
a unique position within this ordering when restricted to G − (support(α) ∪ M), so that still
all arcs (that is, including those incident to v) are forward arcs in G − (support(α) ∪ M) ∪ {v}.
(Further, the vertex set of each subtournament induced by the vertices “between” any two
marked vertices in G − support(α) is a module in G − D.) We are thus able to characterize all
triangles in G − D as follows: each either consists of three vertices in (support(α) \ D) ∪ M ,
or it consists of a vertex v ∈ support(α) \ D, a vertex u ∈ (support(α) \ D) ∪ M and a
vertex w ∈ V (G) \ (support(α) ∪ M) with a backward arc between v and u and where w

is “in-between” the positions of v and u. This gives rise to a reduction rule for module
shrinkage whose presentation and analysis are more technical than that of Cluster Vertex
Deletion (in particular, unlike the second rule of Cluster Vertex Deletion, the second
rule of Feedback Vertex Set in Tournaments is lossy) and of the first rule; hence, due
to lack of space, we omit them.

4 Conclusion

In this paper, we presented positive results on the kernelization complexity of d-Hitting
Set, as well as for its special cases Cluster Vertex Deletion and Feedback Vertex
Set in Tournaments. First, we proved that if we allow the kernelization to be lossy with
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a qualitatively better loss than the best possible approximation ratio of polynomial time
approximation algorithms, then one can obtain kernels where the number of elements is linear
for every fixed d. Further, we extended the notion of lossy kernelization algorithms to lossy
kernelization protocols and, then, presented our main result: For any ϵ > 0, d-Hitting Set
admits a (randomized) pure (d − δ)-approximate kernelization protocol of call size O(k1+ϵ).
Here, the number of rounds and δ are fixed constants (that depend only on d and ϵ). Finally,
we complemented the aforementioned results as follows: for the special cases of 3-Hitting
Set, namely, Cluster Vertex Deletion and Feedback Vertex Set in Tournaments,
we showed that for any 0 < ϵ < 1, they admits a (1 + ϵ)-approximate O( 1

ϵ · opt)-vertex kernel.
We conclude the paper with a few interesting open problems.

1. Does d-Hitting Set admit a kernel with f(d) · kd−1−ϵ elements for some fixed ϵ > 0, or,
even, with just f(d) · k elements?

2. Does d-Hitting Set admit a (1+ϵ)-approximate O(f(ϵ)·k)-element kernel (or protocol)?
3. Does d-Hitting Set admit a (1 + ϵ)-approximate O(f(ϵ) · k)-bits kernel (or protocol)?
4. Do Feedback Vertex Set in Tournaments and Cluster Vertex Deletion admit

linear vertex kernels?
5. Are lossy kernelization protocols “more powerful” than lossy kernelization algorithms?
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