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Abstract
A searcher faces a graph with edge lengths and vertex weights, initially having explored only a given
starting vertex. In each step, the searcher adds an edge to the solution that connects an unexplored
vertex to an explored vertex. This requires an amount of time equal to the edge length. The goal is
to minimize the weighted sum of the exploration times over all vertices. We show that this problem
is hard to approximate and provide algorithms with improved approximation guarantees. For the
general case, we give a (2e + ε)-approximation for any ε > 0. For the case that all vertices have
unit weight, we provide a 2e-approximation. Finally, we provide a PTAS for the case of a Euclidean
graph. Previously, for all cases only an 8-approximation was known.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithm, Expanding Search, Search Problem, Graph
Exploration, Traveling Repairperson Problem

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.54

Related Version Full Version: https://arxiv.org/abs/2301.03638 [28]

Funding Svenja M. Griesbach: Supported by Deutsche Forschungsgemeinschaft under Germany’s
Excellence Strategy, Berlin Mathematics Research Center (grant EXC-2046/1, Project 39068689) and
HYPATIA.SCIENCE (Department of Mathematics and Computer Science, University of Cologne).
Max Klimm: Supported by Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy,
Berlin Mathematics Research Center (grant EXC-2046/1, Project 390685689).
Kevin Schewior : Supported in part by the Independent Research Fund Denmark, Natural Sciences
(grant DFF-0135-00018B).

Acknowledgements We thank Spyros Angelopoulos for fruitful discussions and pointers to earlier
literature.

1 Introduction

A vital issue faced by disaster-relief teams sent to regions devastated by natural or man-made
catastrophes is to decide where to search for buried or isolated people. The fundamental
issues behind these decisions are that, in emergency situations, technical means for probing
and for clearing areas are often limited, there is no full knowledge concerning the whereabouts
of potential survivors, and rescue operations are time-critical since the chances of survival
decrease with the time needed for rescue; see also the discussion in Averbakh and Pereira [13].
Mathematically, we model this problem using an undirected graph with edge lengths. The
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54:2 Improved Approximation Algorithms for the Expanding Search Problem

vertices of the graph correspond to different locations in the disaster area, and the edges
between them correspond to possible connections between the locations. The length of an
edge corresponds to the time that is needed to clear the connection. Clearing a connection
may mean to clear a road connection of rubble or explosives, or to dig in snow, dirt, or
debris. There is a single rescue team initially located at a designated root vertex. Based on
experience, the rescue team has knowledge about the number of survivors that is located at
the different locations. The goal is to minimize the average time at which the survivors are
reached.

A solution to the problem is given by a sequence of edges to clear until all vertices
(with non-zero weight) can be reached. Once an edge is cleared, it can be traveled along in
negligible time by the rescue team, so that only the time needed to clear edges is considered.
A search problem of this kind is called expanding search problem (ESP) since the set of
vertices accessible by the rescue team expands in every step. This is in contrast to pathwise
search problems where the actual movement of the searcher is modeled and traversing an
edge always requires time equal to the length of the edge, no matter whether it is the first
traversal or not.

Generally speaking, expanding search problems are a suitable model when the time needed
to traverse an edge for the first time is significantly higher than the time needed to traverse
this edge any time after the first time, and, thus, the time needed for further movements
can be neglected. Further applications of expanding search problems are in mining where
the time needed to dig a new tunnel is much higher than moving via already dug tunnels to
previously explored locations (Alpern and Lidbetter [4]) and when securing an area from
a hidden explosive where the time needed to move within a safe region can be neglected
compared to the time needed to secure a new area (Angelopoulos et al. [6]).

Our contribution. In this work, we provide polynomial-time approximation algorithms with
improved approximation guarantees for ESP. We first give an approximation algorithm for
the general case with arbitrary vertex weights with an approximation guarantee of 2e + ε for
any ε > 0 where 2e ≈ 5.44 (Theorem 1). For the unweighted case where all vertices have the
same weight, we provide an approximation algorithm with an approximation guarantee of 2e
(Theorem 6). The result for the unweighted case is obtained by concatenating k-minimum
spanning trees (k-MSTs) for varying values of k and of exponentially increasing length. Using
the probabilistic method on lengths with random factor finally yields an additional factor of e.
This technique has been used for pathwise search problems [16, 26]; we here adapt it to the
case of expanding search. For the weighted case, instead of k-MSTs, we use the quota version
of the k-MST problem where vertices have non-negative weights and, given q ∈ N, the task is
to find a length-minimal tree with vertex weight at least q. Johnson et al. [31] noted that any
approximation algorithm for k-MST that relies on the Goemans–Williamson algorithm [27]
for the prize-collecting Steiner-tree problem can be turned into an approximation algorithm
for the quota version with the same approximation guarantee. We follow this line of reasoning
and show that also the approximation algorithm of Garg [25] that relies on a modified version
of the Goemans–Williamson algorithm can be turned into a 2-approximation algorithm for
the quota version of the problem. Relying on this result, we solve the quota version for a
polynomial number of quotas (thereby losing the factor of 1 + ε) and use these solutions to
construct a sequence of spanning trees of exponentially increasing length. Concatenating
these solutions yields the claimed factor.

We then give a polynomial-time approximation scheme (PTAS) for the case of a Euclidean
graph (Theorem 7). For this result, we use a decomposition approach by Sitters [40] for
the pathwise search problem that relies on partitioning an instance into subinstances. A
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central challenge when adapting this approach to the expanding search setting is that, unlike
pathwise search, expanding search is not memoryless as points contained in one subinstance
may be used as Steiner points in another subinstance. We address this difficulty by keeping
such points in the subinstance with zero weight so that the partitions become overlapping.
To obtain a PTAS for the subproblem, we adapt techniques developed by Arora [9] for
Euclidean TSP. As a byproduct, we obtain a (1 + ε)-approximate reduction from general
ESP to unweighted ESP, implying an alternative (2e + ε)-aproximation which may be of
independent interest.

For all variants considered in this paper, i.e., the unweighted case, the weighted case,
and the Euclidean case, the best approximation algorithm was an 8-approximation due to
Hermans et al. [29].

Finally, we show that there is no PTAS for ESP unless P = NP (Theorem 14). The proof
follows a similar idea as the hardness proof for the traveling repairperson problem suggested
in [15]. However, in comparison to the pathwise search, in our setting the solution needs to
be structured. Showing this property turns out to be rather elaborate. Previously, it was
only known that the expanding search problem is NP-hard [13]. Due to space constraints,
we defer some proofs and more detailed descriptions to the full version of this paper [28].

Further related work. The unweighted pathwise search problem where all vertices have
unit weight is also known as the traveling repairperson problem. Sahni and Gonzales [38]
showed that the problem cannot be efficiently approximated within a constant factor unless
P = NP on complete non-metric graphs when the searcher is required to take a Hamiltonian
tour. Afrati et al. [1] considered the problem in metric spaces and gave an exact algorithm
with quadratic runtime when the metric is induced by a path. This can be improved to
linear runtime as shown by García et al. [24]. Minieka [36] proposed an exact polynomial
algorithm for the case that the metric is induced by an unweighted tree. Sitters [39] showed
that the problem is NP-hard when the metric is induced by a tree with edge lengths 0 and 1.

The first approximation algorithm of the metric traveling repairperson problem is due to
Blum et al. [15] who gave a 144-approximation. After a series of improvements [7, 8, 10, 26, 33],
the best factor so far is a 3.59-approximation for general metrics [16], and a polynomial-time
approximation scheme for trees [40] and on the Euclidean plane [40]. Further variants of
the problem have been studied both in terms of exact solution methods and in terms of
competitive algorithms, among other settings with directed edges [20, 21, 37], with processing
times and time windows [43], with profits at vertices [18], with multiple searchers [17, 19, 35],
and online variants [34]. The vertex-weighted version of the problem is often referred to as
the pathwise search problem. It has been shown to be NP-hard in metric graphs by Trummel
and Weisinger [42] and was further studied in [33]. The approximation schemes in [40] apply
to the weighted case as well.

The expanding search problem has received considerably less attention in the literature
than the pathwise problem. It has been shown to be NP-hard by Averbakh and Pereira [13].
Alpern and Lidbetter [4] introduced a polynomial-time algorithm for the case when the
graph is a tree and gave heuristics for general graphs. Averbakh et al. [12] considered a
generalization of the problem with multiple searchers when the underlying graph is a path;
Tan et al. [41] considered multiple searchers in a tree network. The first constant-factor
approximation for general metrics is the 8-approximation due to Hermans et al. [29], based
on an exact algorithm on trees [4]. Angelopoulos et al. [6] studied the expanding search
ratio of a graph. This value is defined as the minimum over all expanding searches of the
maximum ratio of the time to reach a vertex by the search algorithm and the time to reach
the same vertex by a shortest path. Angelopoulos et al. showed that this ratio is NP-hard to
compute and gave a search strategy that achieves a (4 ln 4)-approximation of the optimum.

ESA 2023
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The pathwise and expanding search problems appear naturally as strategies of the seeker
in a two-player zero sum game between hider and seeker where the hider chooses a vertex
that maximizes the expected search time whereas the seeker aims to minimize the search
time. Gal [22] computed the value (i.e., the unique search time in an equilibrium of the game)
of the pathwise search game on a tree; Alpern and Lidbetter [4] computed this value for the
expanding search game; see also [5] for approximations of this value for general graphs. For
more details on search games, we refer to [2, 3, 23, 30, 32].

2 Preliminaries

We consider a connected undirected graph G = (V, E) with |V | = n and a designated root
vertex r ∈ V . Every vertex v ∈ V has a weight wv ∈ N = {0, 1, 2, . . . }, and we denote by
V ∗ ⊆ V the set of vertices with wv > 0. Every edge e ∈ E has a length ℓe ∈ N. We use
N>0 when we refer to N \ {0}. We consider an agent that is initially located at the root and
performs an expanding search pattern σ. Such a pattern is given by a sequence of distinct edges
σ = (e1, . . . , em) for some m ≤ n − 1 such that r ∈ e1 and the set {e1, . . . , ei} forms a tree in
G for all i ∈ {1, . . . , m}. For a vertex v ∈ V ∗ \{r}, let kv(σ) = inf

{
i ∈ {1, . . . , m} : v ∈ ei

}
be

the index of the first edge that contains v and set kr(σ) = 0. We then call Lv(σ) =
∑kv(σ)

i=1 ℓei

the latency of the vertex v ∈ V ∗ under expanding search pattern σ. Our goal is to find an
expanding search pattern σ that minimizes the total latency L(σ) =

∑
v∈V ∗ wvLv(σ). Note

that vertices v with wv = 0 do not appear in the objective function, and, hence, do not need
to be visited. They may, however, be used as Steiner vertices in the constructed search trees
and, hence, cannot be contracted as in the pathwise search problem. When the pattern σ is
clear from context, we drop the dependency on σ and simply write L, Lv, and kv. The length
ℓ(σ) of a search pattern σ is given by the sum of edge costs, i.e., ℓ(σ) =

∑
e∈σ ℓe. Finally, for

two expanding search patterns σ = (e1, . . . , em), σ′ = (e′
1, . . . , e′

m′), we denote by σ + σ′ their
concatenation, i.e., the subsequence of (e1, . . . , em, e′

1, . . . , e′
m′) in which any edge closing a

cycle is skipped.

3 The weighted case

In this section, we consider the general case of the expanding search problem where the
weights wv ∈ N are arbitrary for all v ∈ V \{r}, and wr = 0. We prove the following theorem.

▶ Theorem 1. For every ε > 0, there is a polynomial-time (2e + ε)-approximation algorithm
for the expanding search problem.

The approximation algorithm that we devise in this section is based on the approximate
solution of several quota versions of the prize-collecting Steiner tree problem. In this problem,
we are given a connected undirected graph G = (V, E) with designated root vertex r ∈ V ,
non-negative edge lengths ℓe ∈ R≥0, e ∈ E, vertex weights wv ∈ N, v ∈ V \ {r}, and a quota
q ∈ [0, W ], where W :=

∑
v∈V wv. The task is to find a subgraph that is a tree T = (VT , ET )

such that r ∈ VT and
∑

v∈VT
wv ≥ q minimizing ℓ(T ) :=

∑
e∈ET

ℓe. We argue that this
problem admits a 2-approximation. The proof can be found in the full version [28].

▶ Lemma 2. For the quota version of the prize-collecting Steiner tree problem, a 2-
approximation can be computed in polynomial time.

To approximate ESP, fix ε > 0. For notational convenience, we show an approximation
algorithm with guarantee 2(1 + ε)e. We solve the quota problem for quotas W − W (1 + ε)−i

for all i ∈ {0, . . . , ω}, where we let ω :=
⌈ log W

log(1+ε)
⌉
. Note that, for fixed ε, the number
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ω is polynomial in the encoding length of the input. In this way, we obtain ω + 1 trees
T0, T1, . . . , Tω. By construction, tree T0 has to collect a total weight of 0, so T0 is the tree
T0 = ({r}, ∅) consisting only of the root vertex. By the choice of ω, the tree Tω has to collect
a total weight of W − W (1 + ε)−ω > W − 1. This implies that the tree Tω collects all weight
since the weights are integers. We then construct a directed auxiliary graph H = (VH , AH)
with vertex set VH = {0, . . . , ω} and arc set AH = {(i, j) : i < j}. We set the cost of arc (i, j)
equal to ci,j = W (1 + ε)−iℓ(Tj). Next, we compute a shortest (0, ω)-path P = (n0, . . . , nl)
with n0 = 0 and nl = ω for some l ∈ N. We construct from this path an expanding search
pattern with l phases. In phase j ∈ {1, . . . , l}, we explore all edges in e ∈ E[Tnj

] with
|e ∩ (

⋃j−1
i=0 V [Tni

])| < 2 in an order such that the subgraph of explored vertices is connected
at all times. In that fashion, when phase j is finished, all vertices in V [Tnj ] have been
explored. Since nl = ω and Tω collects the total weight W , all vertices v with wv > 0 have
been explored when the algorithm terminates. Formally, the algorithm is given as follows:
1) For all i ∈ {0, 1, . . . , ω} solve the quota version of the prize-collecting Steiner tree problem

with quota q = W − W (1 + ε)−i with the 2-approximation algorithm of Lemma 2 and
obtain ω + 1 trees T0, T1, . . . , Tω.

2) Construct an auxiliary weighted directed graph H = (VH , AH) with VH = {0, 1, . . . , ω},
AH = {(i, j) ∈ V 2

H : i < j}, and ci,j := W (1 + ε)−iℓ(Tj).
3) Compute a shortest (0, ω)-path P = (n0, n1, . . . , nl) with n0 = 0 and nl = ω in H.
4) For each phase j ∈ {1, . . . , l} explore all unexplored vertices of V [Tnj ] in any feasible

order using the edge set of E[Tnj
].

Let σAlg be the expanding search pattern given by this algorithm. Let q ∈ [0, W ] be arbitrary
and let j(q) ∈ {1, . . . , l} be such that W − W (1 + ε)−nj(q)−1 ≤ q < W − W (1 + ε)−nj(q) .

Then we define π(q) :=
∑j(q)

i=0 ℓ(Tni
). By Lq(σAlg) we denote the latency of quota q in

σAlg = (e1, ..., em), i.e., the sum of the edge cost of the shortest subsequence (e1, ..., ek) of
σAlg, such that the tree spanned by (e1, ..., ek) has weight at least q. The following lemma
gives an upper bound on the latency for each quota. Its proof uses the intuitive argument
that the worst case for the latency is obtained when all trees are nested and exploration takes
place only at the end of each tree. The formal proof can be found in the full version [28].

▶ Lemma 3. The latency of quota q ∈ [0, W ] in σAlg can be bounded by Lq(σAlg) ≤ π(q).

We can now give an upper bound on L(σAlg). The proof relies on the specific way how
the length of the arcs in H are defined. Its proof can be found in the full version [28].

▶ Lemma 4. For the total latency of the algorithm, we have L(σAlg) ≤ z where z is the cost
of a shortest (0, ω)-path in H.

The technically most challenging part of the analysis of the algorithm is to bound the cost
of a shortest path in relation to the total latency of the optimal expanding search pattern. To
this end, we use a probabilistic argument where a distribution over paths in H corresponding
to the exploration of trees with exponentially increasing weight is considered.

▶ Lemma 5. Let σ∗ be an optimal expanding search pattern with total latency L∗ := L(σ∗).
Then, a shortest (0, ω)-path in H has cost at most 2(1 + ε)eL∗.

Proof. First, we give a lower bound on L∗. For this purpose, let q ∈ [0, W ] be arbitrary,
and let λ∗(q) denote the length of the optimal solution to the instance of the quota version
of the rooted prize-collecting Steiner tree problem with quota q. Note that there are only
finitely many trees T that are subgraphs of G and contain r, so λ∗ is a piece-wise constant
function. The optimal expanding search pattern cannot achieve a total weight of q with a
latency smaller than λ∗(q). Therefore, L∗ ≥

∫W

0 λ∗(q) dq.

ESA 2023
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To show that the cost of the shortest (0, ω)-path in H is bounded from above by
2(1 + ε)eL∗, we construct a random path and compute its expected cost. Let γ > 1 be
a parameter whose value will be determined later, and let b = γU where U is a random
variable uniformly drawn from [0, 1). We set m̃ ∈ N to be the smallest number such that
λ∗(W ) ≤ bγm̃. For j ∈ {0, . . . , m̃}, let ñj := max

{
k ∈ {0, . . . , ω} : ℓ(Tk) ≤ 2bγj

}
. These

values are well-defined as ℓ(T0) = 0. Note that the sequence ñ0, ñ1, . . . , ñm̃ is non-decreasing.
We denote by n0, n1, . . . , nm the longest increasing subsequence of ñ0, ñ1, . . . , ñm̃. In the
following, we compute the cost of the path P = (n0, n1, . . . , nm). Let i ∈ {0, . . . , m} be
such that W − W (1 + ε)−i ≤ q < W − W (1 + ε)−(i+1). Recall that π(q) =

∑i+1
j=0 ℓ(Tnj

) is
an upper bound on the latency of quota q, i.e., the sum of the lengths of all trees that lie on
path P up to the first tree that collects a quota of size q all by itself.

For a quota q ∈ [0, W ] we find it convenient to denote by q̄ := W − q the quota left aside.
Let q̄ ∈ [W (1 + ε)−ω, W ] be arbitrary, and let j ∈ {0, . . . , m} and d ∈ [1, γ) be such that
λ∗(W − q̄) = dγj . We distinguish two cases regarding the relation between b and d.

First case: d ≤ b. Since λ∗(q) = λ∗(W − q̄) = dγj , there is a tree of cost dγj that contains
the root and explores a total weight of at least W − q̄. When computing the 2-approximation
for the quota version of the prize-collecting Steiner tree problem with quota W − W (1 + ε)−i,
we obtain a tree Ti with length ℓ(Ti) ≤ 2λ∗(W − W (1 + ε)−i

)
≤ 2λ∗(W − q̄) = 2dγj . The

first inequality is obtained by using the 2-approximation and the second inequality from λ∗

being non-decreasing. Since ℓ(Ti) ≤ 2dγj ≤ 2bγj , we have that nj ≥ i. Using that π(q) is
non-decreasing, that W − W (1 + ε)−i ≥ W − (1 + ε)q̄, and that γ > 1, we obtain

π
(
W − (1 + ε)q̄

)
≤

j∑
k=0

ℓ(Tnk
) ≤

j∑
k=0

2bγk = 2b
γj+1 − 1

γ − 1 ≤ 2bγj γ

γ − 1 .

Second case: d > b. Analogously to the first case we obtain ℓ(Ti) ≤ 2dγj . However, with
1 ≤ b and d < γ we have d < bγ which yields ℓ(Ti) ≤ 2dγj < 2bγj+1. Hence, we have that
nj+1 ≥ i. Again, using that π(q) is non-decreasing, that W − W (1 + ε)−i ≥ W − (1 + ε)q̄,
and that γ > 1, we obtain

π
(
W − (1 + ε)q̄

)
≤

j+1∑
k=0

ℓ(Tnk
) ≤

j+1∑
k=0

2bγk = 2b
γj+2 − 1

γ − 1 ≤ 2bγj+1 γ

γ − 1 .

Note that we are in the first case when U ∈ [logγ d, 1] and in the second case when
U ∈ [0, logγ d). Taking the expectation over U , we obtain

EU

[
π
(
W − (1 + ε)q̄

)]
≤
∫ 1

logγ d

2bγj γ

γ − 1 dU +
∫ logγ d

0
2bγj+1 γ

γ − 1 dU

= 2γj γ

γ − 1

[∫ 1

logγ d

γU dU + γ

∫ logγ d

0
γU dU

]
= 2γj γ

γ − 1

[
γ − d

ln γ
+ γ

d − 1
ln γ

]
= 2γjd

γ

ln γ
= 2 γ

ln γ
λ∗(W − q̄).

Next, consider the case that q̄ < W (1+ε)−ω is arbitrary. Let j ∈ {0, . . . , m} and d ∈ [1, γ)
be such that λ∗(W − q̄) = dγj . By the choice of ω, we have W − q̄ > W −W (1+ϵ)−ω > W −1,
and, hence, λ∗(W ) = λ∗(W − q̄). We distinguish two cases regarding the relation of b and d.
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First case: d ≤ b. Since λ∗(W ) = dγj , there is a tree of cost dγj containing the root that
explores a total weight of at least W − q̄. When computing the 2-approximation for the
quota version of the prize-collecting Steiner tree problem with quota W − W (1 + ε)−ω, we
obtain a tree Tω with length ℓ(Tω) ≤ 2λ∗(W ) = 2dγj ≤ 2bγj , which yields nj ≥ ω, and thus,
j = m. By using γ > 1, we obtain

π
(
W
)

≤
m∑

k=0
ℓ(Tnk

) ≤
m∑

k=0
2bγk = 2b

γm+1 − 1
γ − 1 ≤ 2bγm γ

γ − 1 .

Second case: d > b. Analogously to the first case, we obtain ℓ(Tω) ≤ 2dγj . However, with
1 ≤ b and d < γ we have d < bγ which yields ℓ(Tω) ≤ 2dγj < 2bγj+1. Hence, we have that
nj+1 ≥ ω, i.e., j ≥ m − 1. In any case, by using that γ > 1, we obtain

π(W ) ≤
m∑

k=0
ℓ(Tnk

) ≤
m∑

k=0
2bγk = 2b

γm+1 − 1
γ − 1 ≤ 2bγm γ

γ − 1 .

Again, we are in the first case when U ∈ [logγ d, 1] and in the second case when U ∈
[0, logγ d). Taking the expectation over U , we obtain

EU

[
π
(
W
)]

≤
∫ 1

logγ d

2bγj γ

γ − 1 dU +
∫ logγ d

0
2bγj+1 γ

γ − 1 dU

= 2γj γ

γ − 1

[∫ 1

logγ d

γU dU + γ

∫ logγ d

0
γU dU

]
= 2γj γ

γ − 1

[
γ − d

ln γ
+ γ

d − 1
ln γ

]
= 2γjd

γ

ln γ
= 2 γ

ln γ
λ∗(W ). (1)

The expected cost of the (0, ω)-path P = (n0, n1, . . . , nm) is then given by

E
[
c(P )

]
= E

[∫ W

0
π(q) dq

]
= E

[∫ W

0
π(W − q̄) dq̄

]
.

As π(q) is piece-wise constant, we exchange the order of expectation and integral such that

E
[
c(P )

]
=
∫ W

0
E
[
π(W − q̄)

]
dq̄

= − (1 + ε)
(∫ W (1+ε)−ω

W (1+ε)−1
E
[
π
(
W − (1 + ε)q̄

)]
dq̄ +

∫ 0

W (1+ε)−ω

E
[
π
(
W − (1 + ε)q̄

)]
dq̄

)

≤ (1 + ε)
∫ W (1+ε)−1

W (1+ε)−ω

E
[
π
(
W − (1 + ε)q̄

)]
dq̄ + W (1 + ε)−(ω−1)E

[
π(W )

]
,

where we further used the substitution rule for integrals and the fact that π is non-decreasing.
Using (1), we further obtain

E
[
c(P )

]
≤ 2γ(1 + ε)

ln γ

[∫ W (1+ε)−1

W (1+ε)−ω

λ∗(W − q̄) dq̄ + W (1 + ε)−ωE
[
λ∗(W )

]]

= 2γ(1 + ε)
ln γ

∫ W (1+ε)−1

0
λ∗(W − q̄) dq̄,
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where for the equation we used that W (1 + ε)−ω < 1 and, hence, λ∗ is constant on the
interval [W − W (1 + ε)−ω, W ]. Finally, we obtain

E
[
c(P )

]
≤ 2γ(1 + ε)

ln γ

∫ W

0
λ∗(W −q̄) dq̄ = 2γ(1+ε)

ln γ

∫ W

0
λ∗(q) dq ≤ 2γ(1 + ε)

ln γ
L∗.

This shows that, in the expectation over U , P has an expected cost of at most 2γ(1+ε)
ln γ L∗.

Therefore, we obtain the same bound on the cost of the shortest path. This term is minimized
for γ = e, which implies the result. ◀

Theorem 1 now follows from combining Lemma 4 and Lemma 5.

4 The unweighted case

Compared to the weighted case we do the following adjustments in order to obtain a 2e-
approximation. First, instead of using the quota problem of k-MST, for all k ∈ {1, . . . , n}
we solve the original k-MST problem with the 2-approximation algorithm of Garg [25] and
obtain n trees T1, . . . , Tn. The auxiliary weighted directed graph H = (VH , AH) is then
defined by VH = {1, 2, . . . , n}, AH = {(i, j) ∈ V 2

H : i < j}, and ℓi,j := (n − i)c(Tj). Finally,
we compute a shortest (1, n)-path P = (n0, n1, . . . , nl) with n0 = 1 and nl = n in H. For
each phase j ∈ {1, . . . , l}, we explore all unexplored vertices of V [Tnj

] in any feasible order
using the edge-set of E[Tnj

]. The better approximation factor is due to the fact that we save
the factor of (1 + ε) since we can compute the k-MSTs for all relevant values of k, whereas
before we needed a rounding technique. We then obtain the following result, which we prove
in the full version [28].

▶ Theorem 6. There is a polynomial-time 2e-approximation algorithm for the unweighted
expanding search problem.

5 The Euclidean case

In this section, we show the following theorem.

▶ Theorem 7. On Euclidean graphs, there exists a PTAS for ESP.

Our approach has three steps, corresponding to the three subsections of this section. The
first two steps are reductions inspired by Sitters [40]. In the first step, we show a reduction
from ESP to a problem called δ-bounded ESP, for some constant δ ∈ R+, in the sense that a
PTAS for δ-bounded ESP implies a PTAS for ESP. In the next step, we reduce the latter
problem to another problem called κ-segmented ESP, for some constant κ ∈ N, with weights
in {0, 1}, in the same sense as before. Finally, we provide a PTAS for the latter problem in
the Euclidean case using ideas by Arora [9] as well as Sitters [40].

We define the auxiliary subproblems as modifications of ESP. First, in δ-bounded ESP,
the input comes with an additional delay parameter D ≥ 0, and it is guaranteed that
there exists a solution visiting all nonzero-weight vertices and completing by time δD, i.e.
this solution has length δD (recall definition in Section 2). The objective is minimizing
L′(σ) =

∑
v∈V ∗ wvL′

v(σ) where L′
v(σ) = D +Lv(σ). Second, in κ-segmented ESP, the output

needs to come with κ + 1 additional numbers 0 = t(0) ≤ t(1) ≤ · · · ≤ t(κ). For v ∈ V , its
rounded search time is then L̄v(σ) = inf{t(i) : 0 ≤ i ≤ κ, Lv(σ) ≤ t(i)}, and the objective is
minimizing L̄(σ) =

∑
v∈V ∗ wvL̄v(σ).

We assume 0 < ε ≤ 1 and use Oε(f) to denote O(f) when ε is a constant.
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5.1 Reducing ESP to δ-Bounded ESP
In this subsection, we show the following lemma.

▶ Lemma 8. Consider any class C of metric spaces and constants α > 1, ε > 0. There
exists a constant δ such that, if there exists a polynomial-time α-approximation algorithm for
δ-bounded ESP on C, then there exists an (α + ε)-approximation algorithm for ESP on C.

We follow the decomposition approach by Sitters [40] and adapt it to ESP at several places.
To do so, we assume that a polynomial-time α-approximation algorithm for δ-bounded ESP
on C, denoted Approxδ-bd in the following, is given for a yet-to-be-determined value of δ. In
the remainder of this subsection we describe, given any ε > 0, a polynomial-time algorithm
for ESP on C based on this, and we show that it is a (α + O(ε))-approximation algorithm.

For some constant β, we need, in addition to Approxδ-bd, a polynomial-time β-approxi-
mation algorithm Approxβ for ESP on C as a subroutine. We emphasize that any constant
β is sufficient to obtain an approximation guarantee of α + ε in polynomial time. Therefore,
we can pick, e.g., the algorithm from Section 3. For notational purposes, we assume α ̸= β.

In our algorithm, we apply Approxβ to obtain an order of the vertices according to their
search times in the solution, and we obtain a partition of the vertices by cutting this order
at several places. We run Approxδ-bd on the (carefully defined) emerging subinstances. We
can, however, not simply concatenate all these solutions because any of these solutions may,
despite its low cost, have large total length, which would delay the solutions of all later
subinstances. We solve this issue by cutting the solution at a certain point and using the
solution given by Approxβ from then on – a solution with a length bound.

In the following, we present our algorithm which is given some ε > 0 as well as an instance
I of ESP on C. Our algorithm has five steps.
1) Approximate: Apply Approxβ to the instance to obtain a solution σβ .
2) Partition:

Define γ := 3/ε, a := βγ/ε, and pick b uniformly at random in [0, a].
Define time points ti := e(i−2)a+b for i ∈ [q + 1], where q is as small as possible such
that Lv(σβ) < tq+1 for all v ∈ V .
For i ∈ [q], let Vi := {v ∈ V : ti ≤ Lv(σβ) < ti+1} and Ui := V1 ∪ · · · ∪ Vi.
For i ∈ [q], define Ii to be an instance which is obtained from I by setting the weight
of all vertices in V \ Vi to zero. Note that Ii with delay parameter γti is an instance of
(ea

/γ)-bounded ESP. Indeed, the prefix σβ,i+1 of σβ visiting Ui+1 has total length at
most (ea

/γ)γti = ti+1.
3) Approximate subproblems: For i ∈ [q], apply Approxδ-bd to Ii to obtain an α-

approximation σα,i.
4) Modify: For each i ∈ [q], define σi to be σ′

α,i + σβ,i+1 where:
σ′

α,i is the longest prefix of σα,i of length at most (1 + ea
/εγ)γti.

σβ,i+1 is the prefix of σβ visiting Ui+1.
5) Concatenate: Return σ1 + · · · + σq.

We show Lemma 8 by establishing two lemmata on the above algorithm. We first prove
that partitioning the instance into multiple instances of (ea

/γ)-bounded ESP is only at the
loss of a 1 + ε factor in the achievable (total) objective-function value. Formally, we denote
by σ∗ an optimal solution for I and, for all i ∈ [q], by σ∗

i an optimal solution for Ii. The
proofs of the following two lemmata can be found in the full version [28].

▶ Lemma 9. It holds that E
[∑

i∈[q] L′(σ∗
i )
]

≤ (1 + ε)L(σ∗).
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The next lemma is concerned with Step 4 of the algorithm. For all i ∈ [q], it bounds the
cost of σi against the cost of σ∗

i , and it also bounds the total length of σi.

▶ Lemma 10. For each i ∈ [q], the total length of σi is at most γti+1 − γti. Furthermore, it
holds that L′(σi) ≤ α(1 + ε)L′(σ∗

i ).

With these lemmata at hand, Lemma 8 easily follows.

Proof of Lemma 8. Note that Lemma 10 implies that, in the concatenation of σ1, . . . , σq,
σi starts after a total length of at most γti, for all i ∈ [q]. Therefore, again by Lemma 10,
the cost of the concatenation, as a solution to I, has expected cost at most the left-hand
side of the inequality in Lemma 10 summed over all i ∈ [q]. Hence, applying this inequality,
taking expectation, and then applying Lemma 9 completes the proof. ◀

The partition as stated in the decomposition algorithm is a random partition. We
note that the algorithm can be derandomized using the same techniques as in [40], i.e., by
enumerating all partitions.

We also observe that, from now on, we may also assume that all weights are in {0, 1}.
This is due to the following lemma, proven by Sitters [40] for pathwise search, but the same
proof works in our case as shown in the full version [28].

▶ Lemma 11 (See [40], Lemma 2.10). Consider any class C of metric spaces and any
constants α > 0, δ, ε > 0. If there exists a polynomial-time α-approximation algorithm for δ-
bounded ESP with weights in {0, 1}, then there exists a polynomial-time (α+ε)-approximation
algorithm for δ-bounded ESP.

Note that Lemma 10 and 11, together with Theorem 6, yields an alternative polynomial-
time (2e + ε)-approximation algorithm for the general ESP (Theorem 1).

5.2 Reducing δ-Bounded ESP to κ-Segmented ESP
The following lemma can be proven analogously to a lemma of Sitters [40].

▶ Lemma 12 (See [40], Lemma 2.14). Consider any class of metric spaces C, any class
of weights W, and any constants α > 1, δ, ε > 0. If, for each constant κ, there exists a
polynomial-time α-approximation algorithm for κ-segmented ESP on C with weights W, then
there exists a polynomial-time (α + ε)-approximation algorithm for δ-bounded ESP C with
weights W.

In the proof of the lemma, a similar idea as for the proof of Lemma 10 is used to show
that there is a cheap solution that completes before time Oε(1 + δ)D, where D is the given
delay of the instance. Then, by considering appropriate time points starting at D and
growing exponentially with base (1 + Θ(ε)), one can show that for κ ∈ Oε(log(1 + δ)), an
α-approximate solution for the κ-segmented version of the instance can be transformed into
the desired ((1 + ε)α)-approximate solution for the original instance.

5.3 A PTAS for κ-Segmented ESP in the Euclidean Case
Sitters [40] observed that, in Euclidean space, the QPTAS for the traveling repairperson
problem [10] (which is based on the well-known PTAS by Arora for TSP [9]) can be turned
into a PTAS for the segmented version of the traveling repairperson problem. In this section,
we observe that an adapted approach yields a PTAS for Euclidean segmented ESP with
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weights in {0, 1}. We focus on the two-dimensional case; an extension to the d-dimensional
case for constant d is straightforward. The following description is self-contained up to parts
deferred to the full version [28], but familiarity with Arora’s PTAS [9] may still be helpful.

5.3.1 Setup
The core of our PTAS for segmented ESP is the dynamic-programming procedure. Before
this procedure is called, however, there are several preprocessing steps. First, consider a
smallest axis-aligned square that contains all weight-1 vertices from the input. We denote it
by S0 and its side length by d0. Note that d0 is a lower bound on the cost of an optimal
solution. An optimal solution is, however, not necessarily entirely contained in the square as
it may use a weight-0 vertex outside the square as a “Steiner” vertex. We therefore enlarge
the square from its center by a factor of 3n2 + 1, yielding a new square S with side length
d = (3n2 + 1)d0. The scaling factor is chosen such that all points whose distance from S0
is at least

√
2n2d0 are included. Note that there exists an optimal solution that is entirely

contained in S because a trivial upper bound on the cost of the optimal solution of
√

2n2d0
can be obtained by connecting all weight-1 vertices to r. We can therefore ignore all input
points outside S.

Round the instance. We place a grid of granularity Θ(εd/n4) within S and move each
input point to a closest grid point. Note that, this way, several input points may end up at
the same location. In the same way as in the literature [10], any solution for the rounded
instance can be turned into a solution for the original instance at a cost of O(ε)OPT in the
objective-function value: The additional cost of O(εd/n3) per vertex can be charged to the
objective as it is Ω(d/n2) by construction of S.

Build random quadtree. We first obtain an even larger square from S by enlarging it by
an additional factor of 2 from its center and then shifting it to the left by a value a chosen
uniformly at random from {−d/2, −d/2 + 1, . . . , d/2 − 1, d/2} and to the top by a value b

chosen uniformly at random from the same set, independently from a. Note that, in any
event, the resulting square S′ contains S.

We partition S′ into four equal-sized squares, which are recursively partitioned in the
same way until they only contain a single grid point at which there is a vertex (but possibly
many vertices). From this partition, a so-called quadtree naturally emerges by identifying
each of the squares (also called cells in the following) with a node and making a node a child
of another node if its corresponding square is one of the four smaller squares within that
node’s square. We root the quadtree at the node corresponding to S′. Since the minimum
distance between any two vertices not at the same grid point is Θ(εd/n4) by the rounding
step, the quadtree has depth O(log d).

Derandomization. We remark that the randomization is only for a simpler analysis. Indeed,
our algorithm can be derandomized in the same way as Arora’s PTAS and its variants:
Simply try all, polynomially many, values for the random variables a and b, and output the
cheapest solution obtained this way.

5.3.2 Portal-respecting solutions and the structural result
The set of solutions over which the dynamic-programming procedure optimizes are so-called
portal-respecting solutions. Such solutions only cross cell boundaries at so-called portals,
and they do so only a constant number of times at each portal. For each cell, we place
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Θ(log n/ε) equidistant portals on each side of that cell, from corner to corner and including
the corners. Additionally, each cell inherits all portals from all its ancestors in the quadtree.
The following structural result states that we only lose a 1 + O(ε) factor when restricting to
portal-respecting solutions.

▶ Lemma 13. With constant probability (over the random placement of the quadtree), there
exists a (1 + O(ε))-approximate portal-respecting solution.

The result can be proved precisely in the same way as in [10], by applying Arora’s structural
result [9] to each segment. In [10], the pathwise version of our problem is considered, but
this difference does not affect the proof.

5.3.3 Further setup
Before we describe the dynamic program, we need two additional setup steps.

Additional rounding. Since we guess lengths of parts of the solution, we assume at the loss
of another 1+O(ε) factor that the distance between any two relevant points (i.e., input points
or portals) is a polynomially bounded integer. This is possible because the objective-function
value is the sum of polynomially many distances.

Guessing of segment lengths. It will be useful to know the completion times t(1), . . . , t(κ)

before running the dynamic-programming procedure. By our rounding procedure, we know
that there are only nO(1) options for each of these O(1) lengths, meaning that there are nO(1)

combinations of different completion times for each of the segments, which we can all guess.

5.3.4 Dynamic programming
For each cell z of the quadtree we additionally “guess” the following pieces of information
relevant for the other quadtree cells (reflected in the fact that there is a DP entry for each
combination). Specifically, for each segment i ∈ [κ], we guess

(i) the total length ℓi of segment i within the cell,
(ii) the number mi of times that the segment crosses the boundary of the cell, and for each

j ∈ [mi] of these crossing a type τi,j for the j-th such time, containing
the portal pi,j at which the cell is intersected, and
whether the segment enters or leaves the cell at pi,j .

Note that, again, there are only polynomially many options for each of the parameters (in
particular, mi can be assumed to be at most O(log n/ε), and we only have constantly many
options for the type of each crossing) and therefore only polynomially many DP entries.

Any DP entry DP[z, (ℓi, (τi,j)j∈[mi])i∈[κ]] is supposed to contain the cost of the cheapest
portal-respecting solution restricted to the corresponding cell obeying the constraints imposed
by the guessed parameters and visiting all vertices within the cell. Note that such a solution
may not exist (e.g., the cell does not contain the root but some other vertices, and no segment
ever enters the cell), in which case the cost is ∞. Otherwise, the cost of a solution restricted
to a cell refers to the sum over all vertices in that cell of the completion time of the segment
that they are visited in.

With this definition, the entry DP[z0, (t(i) −
∑

i′<i t(i′), ())i∈[κ]] is supposed to contain
the cost of the optimal portal-respecting solution, where z0 is the root of the quadtree and
() is the empty tuple. By standard techniques, the actual solution can be recovered from
these entries. The DP entries can be computed in a fairly standard manner. A more detailed
description can be found in the full version [28].
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6 Hardness of approximation

This section is dedicated to the following theorem.

▶ Theorem 14. There exists some constant ε > 0 such that there is no polynomial-time
(1 + ε)-approximation algorithm for the expanding search problem, unless P = NP.

The hardness result for ESP follows by a reduction from a variant of the Steiner tree
problem which is defined as follows. Given a graph G = (V, E) with non-negative edge costs
and a set T ⊆ V of vertices, the so-called terminals, the Steiner tree problem on graphs asks
for a minimum-cost tree that is a subgraph of G and that contains all vertices in T . The
variant that we consider and use is the so-called SteinerTree(1,2), short ST(1,2), where
G is a complete graph and all edge costs are either 1 or 2. Bern and Plassmann [14] showed
the following theorem.

▶ Theorem 15 (Theorem 4.2 in [14]). SteinerTree(1,2) is MaxSNP-hard.

It was shown in [11] that there exists no polynomial-time approximation scheme for any
MaxSNP-hard problem, unless P = NP. Hence, there exists some constant ρ > 0 such that
there is no polynomial-time (1 + ρ)-approximation algorithm for ST(1,2), unless P = NP.
We use this to show the hardness result for ESP.

The main idea of the proof of Theorem 14 is as follows. Given a β-approximation algorithm
Alg′ for the expanding search problem for any β > 1, we construct a γ-approximation
algorithm Alg for ST(1,2) with γ < 1 + ρ. With the approximation hardness of ST(1,2),
this contradicts the existence of a β-approximation algorithm Alg′ for the expanding search
problem for any β > 1. The construction of the ESP instance in the reduction from ST(1,2)
is similar to the one used for the travelling repairperson problem. Therein, we construct
several copies of the ST(1,2) instance, which are then connected to a root vertex with
an edge of high cost. However, a significant challenge is that we need to prove that the
obtained expanding search sequence fulfills a property which we call structured. Intuitively,
this property means that no copy of the original ST(1,2) instance is visited more than once
and that all edges belonging to one copy are contiguous within the expanding search pattern.
This property is trivial for the travelling repairperson problem since here using an expensive
edge from the root to one of the copies more than once increases the total cost significantly.
In the expanding search problem, however, these costs are not paid multiple times. The
exact construction of the ESP instance and the proof of Theorem 14 can be found in the full
version [28].
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