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Abstract
The k-means++ algorithm by Arthur and Vassilvitskii [SODA 2007] is a classical and time-tested
algorithm for the k-means problem. While being very practical, the algorithm also has good
theoretical guarantees: its solution is O(log k)-approximate, in expectation.

In a recent work, Bhattacharya, Eube, Roglin, and Schmidt [ESA 2020] considered the following
question: does the algorithm retain its guarantees if we allow for a slight adversarial noise in the
sampling probability distributions used by the algorithm? This is motivated e.g. by the fact that
computations with real numbers in k-means++ implementations are inexact. Surprisingly, the
analysis under this scenario gets substantially more difficult and the authors were able to prove only
a weaker approximation guarantee of O(log2 k). In this paper, we close the gap by providing a tight,
O(log k)-approximate guarantee for the k-means++ algorithm with noise.
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1 Introduction

The k-means problem is a classical problem in computer science: given a point set X ⊆ Rd

consisting of n points and a parameter k, we are asked to return a set of k clusters with
corresponding cluster centers C ⊆ Rd so as to minimize the sum of the squared distances
of points of X with respect to their closest cluster center in C. Formally, we are asked to
minimize the function φ(X, C) defined by φ(x, C) = minc∈C ||x − c||2 for a single point x

and as φ(X, C) =
∑

x∈X φ(x, C) for a set of points.
There exists some fixed constant c > 1 such that it is NP-hard to find a c-approximate

solution to the k-means objective [2, 4]. On the other hand, a substantial amount of work has
been devoted to finding polynomial time algorithms with a good approximation guarantee,
with the currently best approximation ratio being 5.912 [12]. On the practical side, the
celebrated clustering algorithm k-means++ by Arthur and Vassilvitskii [3] is one of the
classical algorithms for the k-means problem. Due to its simplicity, it is widely used in practice,
for example in the well-known Python Scikit-learn library [18]. It is also very appealing
from the theoretical perspective, as it returns a solution that is O(log k)-approximate, in
expectation.
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The k-means++ algorithm (Algorithm 1 with ε = 0) is indeed very simple: we sample
C ⊆ X in k steps. The first center is taken as a uniformly random point of X. To get each
subsequent center, we always first compute the current costs φ(x, Ci) for each x ∈ X; then
we sample each point of X as the next center with probability proportional to φ(x, Ci).

In [10], the authors made an intriguing observation: the classical analysis of the algorithm
by Arthur and Vassilvitski [3] fails to work if we allow small errors in the sampling probabilities.
That is, consider Algorithm 1: this is the k-means++ algorithm, however, with an additional
small positive parameter ε. In every step, before we sample, we allow an adversary to perturb
the sampling distribution such that the multiplicative change of each probability is within
1± ε of its original value.

Algorithm 1 (1 + ε)-noisy k-means++.
Input: X, k, 0 ≤ ε < 1/2

1: Sample x ∈ X w.p. in
[
(1− ε) · 1

n , (1 + ε) · 1
n

]
, set C1 = {x}.

2: for i← 0, 1, . . . , k − 1 do
3: Sample x ∈ X w.p. in

[
(1− ε) · φ(x,Ci)

φ(X,Ci) , (1 + ε) · φ(x,Ci)
φ(X,Ci)

]
and set Ci+1 = Ci ∪ {x}.

return C := Ck

Does the noisy k-means++ algorithm retain the original guarantees? This question is
natural since in every implementation, there are small numerical errors associated with
the distance computations made by Algorithm 1. It would be shocking if these errors
could substantially affect the quality of the algorithm’s output! From a more theoretical
perspective, the authors of [10] considered this problem as a first step towards understanding
other questions related to the k-means++ algorithm, in particular the analysis of the greedy
variant of k-means++, a related algorithm later analyzed in [14].

Going back to noisy k-means++, the authors of [10] proved that Algorithm 1 remains
O(log2 k)-approximate even for small constant ε (think e.g. ε = 0.01). In this paper, we
improve their analysis to recover the tight O(log k)-approximation guarantee. That is, we
show that the adversarial noise worsens the approximation guarantee by at most a constant
multiplicative factor.

▶ Theorem 1. Algorithm 1 is O(log k)-approximate, in expectation.

▶ Remark 2. It would be interesting to see an analysis of the approximation ratio of
Algorithm 1 that would be within a 1 + O(ε)-factor of the classical k-means++ analysis
from [3], or a counterexample showing this is not possible. In our analysis, we lose a very
large constant factor even for very small ε.

Related Work. There is a lot of work related to the k-means++ algorithm, both improving
the algorithm or its analysis [16, 11, 1, 20, 17, 10, 14] and adapting it to other setups
[8, 6, 19, 17, 5, 7, 9, 15].

2 Reduction to a Sampling Game

To analyze Algorithm 1, the authors of [10] follow the proof of [3] (more precisely, they follow
the proof from [13]) and show that most arguments of that proof, in fact, work even in the
adversarial noise scenario. The part of the proof that does not generalize from ε = 0 to
ε > 0 can be distilled into a simple sampling process that we analyze in this paper. We
next describe this process and state its relation to the analysis of noisy k-means++ (cf. the
discussion on page 15 of [10]).
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▶ Definition 3 ((1 + ε)-adversarial sampling process). Let 0 < ε < 1/2. We define the
(1 + ε)-adversarial sampling process as follows. At the beginning, there is a set E0 of k

elements where each element e ∈ E0 has some nonnegative weight w0(e). The process has k

rounds where in each round, we form the new set Ei+1 from Ei as follows:
1. We define the distribution Di over Ei where the probability of selecting e ∈ Ei is defined

as wi(e)/
∑

e∈Ei
wi(e). Next, an adversary chooses an arbitrary distribution Dε

i over Ei

that satisfies for any e ∈ Ei that

(1− ε)PDi
(e) ≤ PDε

i
(e) ≤ (1 + ε)PDi

(e). (1)

We sample an element ei+1 ∈ Ei according to Dε
i and set Ei+1 = Ei \ {ei+1}.

2. Next, an adversary chooses a new weight function wi+1(e) for every element e ∈ Ei+1 as
an arbitrary function that satisfies

0 ≤ wi+1(e) ≤ wi(e).

We will be interested in the expected average weight of an element after some number

of steps in this process, that is, we need to understand the value of E
[∑

e∈Ei
wi(e)

k−i

]
for

0 ≤ i < k. If ε = 0, one can prove that

E
[∑

e∈Ei
wi(e)

k − i

]
≤
∑

e∈Ei−1
wi−1(e)

k − (i− 1) (2)

where the randomness is over the sampling in the i-th step (we always regard the adversary
as fixed in advance). Why is Equation (2) true? The inequality would clearly hold with
equality if the distribution Di were a uniform one and there was no adversary; we in fact
give larger sampling probabilities to heavier elements in Di and, moreover, the adversary
can lower the weights arbitrarily after we sample, but both of these operations can make the
left-hand side of Equation (2) only smaller.

However, this monotonic behavior is no longer true for ε > 0. The question that needs
to be analyzed as a part of the analysis of noisy k-means++ is whether the adversarial
choices can make the average size of an element drift so that in the end the left-hand side
of Equation (2) is substantially larger than

∑
e∈E0

w0(e)/k. More precisely, we will need to
bound the following quantity that we call the adversarial advantage.

▶ Definition 4 (Adversarial advantage). We say that the adversarial advantage is at most
some function f if the following conclusion holds: Consider a (1 + ε)-adversarial sampling
process on k elements for any 0 < ε < 1

2 , any starting set E0, and any adversary. For any
0 ≤ i < k, we have

E
[∑

e∈Ei
wi(e)

k − i

]
≤ f(k) ·

∑
e∈E0

w0(e)
k

. (3)

Although we require the inequality Equation (3) to hold for all i, note that for all
0 ≤ i ≤ (1 − δ)k we can choose f(k) = 1/δ in Equation (3) and it will be satisfied for
those values of i simply because

∑
e∈Ei

wi(e) ≤
∑

e∈E0
w0(e) is true deterministically. Thus,

intuitively, i = k − 1 is the hardest case.
In [10], the authors proved that if we adapt the analysis of k-means++ to the noisy

k-means++, it only picks up the multiplicative factor of f(k). That is, analyzing the (1 + ε)-
adversarial sampling process is enough to get an upper bound for noisy k-means++. The
following theorem is proven in [10] (it is proven only for f(k) = O(log k), but it directly
generalizes to any f(k)).

ESA 2023
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▶ Theorem 5 (Theorem 2 in [10]). For any 0 < ε < 1/2, (1 + ε)-noisy k-means++ is
O(f(k) · log k)-approximate, in expectation.

In Lemma 10 of [10], the authors prove that f(k) = O(log k). The reason for this is that
if an element e ∈ E0 is Θ(log k) times larger than the average size of an element of E0, it
will be sampled in the first k/2 steps of the process with probability 1− 1/kO(1). Thus, the
contribution of elements Ω(log k) larger than the average to the left-hand side of Equation (3)
is negligible even for i = k − 1. Hence, f(k) = O(log k).

▶ Lemma 6 (Lemma 10 in [10]). The adversarial advantage is at most O(log k).

Our technical contribution is to show that the adversarial advantage is bounded by O(1).

▶ Lemma 7. The adversarial advantage is at most O(1).

Theorem 1 then follows from Theorem 5 and Lemma 7.

3 Analysis of the Sampling Process

This section is devoted to the proof of Lemma 7. We view the adversary as a function fixed
at the beginning of the argument. We start by normalizing the starting weights w0 so that
the average at the beginning is one, i.e., from now on we assume that (

∑
e∈E0

w0(e))/k = 1.
For every E ⊆ Ei, we define wi(E) =

∑
e∈E wi(e) and similarly PDε

i
(E) =

∑
e∈E PDε

i
(e). In

every step i, we consider the partition Ei = Bi ⊔Mi ⊔ Si where e ∈ Ei is in
1. the big set Bi iff wi(e) ≥ 80,
2. the medium set Mi iff 2 < wi(e) < 80 and
3. the small set Si iff wi(e) ≤ 2.
The main idea of the analysis is to show that wi(Bi) = O(|Si|), and thus wi(Ei)

k−i =
O(|Si|)

|Si|+|Mi|+|Bi| = O(1), with probability 1 − e−Ω(|Si|). This turns out (see the proof of
Lemma 7) that this is sufficient to show that the adversarial advantage is O(1), i.e., that
E
[

wi(Ei)
k−i

]
= O(1).

Roughly speaking, we call an iteration with ℓ small elements bad, if the total weight of
the big elements is greater than 4ℓ, which intuitively means the average drifted way above
1. In general we use the number of the small elements as our main way to refer to the
iterations. Then in Lemma 9 we denote with ℓmax the number of small elements at the first
bad iteration. Using that the previous iterations were good, and wi2ℓ

(Bi2ℓ
) ≤ 8ℓ for the

bad iterations (Definition 8), we provide an upper bound on the average element size for
the following iterations. Even though this bound is depending on the number of the small
elements ℓ, we show in Lemma 10 that an iteration is bad with probability at most e− ℓ

40 ,
which is enough to show the constant average in expectation.

The following definition is crucial for our analysis.

▶ Definition 8. For every ℓ ∈ {1, 2, . . . , |S0|}, we define iℓ as the smallest i for which |Si| = ℓ.
We refer to a given ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋} as bad if both wi2ℓ

(Bi2ℓ
) ≤ 8ℓ and wiℓ

(Biℓ
) > 4ℓ

and otherwise we refer to ℓ as good.

Note that iℓ is well-defined in the sense that there has to exist at least one i with |Si| = ℓ for
every ℓ ∈ {1, 2, . . . , |S0|}. This follows from |Si+1| ≥ |Si| − 1 for every i ∈ {1, 2, . . . , k − 1}
and |Sk−1| ≤ 1.

▶ Lemma 9. Let ℓmax be defined as the largest ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋} such that ℓ is bad, if
there exists such an ℓ, and otherwise let ℓmax = 1. Then, for every i ∈ {0, 1, . . . , k − 1}, we
have wi(Ei)

k−i ≤ 90ℓmax.
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Proof. We first prove by induction that wi(Bi) ≤ max(4|Si|, 8ℓmax) for every i ∈
{0, 1, . . . , k − 1}. As our base case, we consider any i with |Si| ≥ |S0|/2. Using that
the average weight is 1 at the beginning, we get |S0| ≥ k/2 by Markov’s inequality and
therefore wi(Bi) ≤ k ≤ 2|S0| ≤ 4|Si|. For our induction step, consider some arbitrary i with
|Si| < |S0|/2. Let ℓ := |Si|. First, we consider the case that ℓmax ≥ ℓ. In particular, this
implies |Si−1| ≤ |Si|+ 1 ≤ ℓ + 1 ≤ ℓmax + 1 and therefore we get by induction that

wi(Bi) ≤ wi−1(Bi−1) ≤ max(4|Si−1|, 8ℓmax) ≤ max(4(ℓmax + 1), 8ℓmax) ≤ 8ℓmax.

Thus, it suffices to consider the case that ℓ > ℓmax, which in particular implies that ℓ is
good. We have i2ℓ < iℓ ≤ i (since ℓ ≤ |S0|/2 ≤ i) and therefore we can assume by induction
that wi2ℓ

(Bi2ℓ
) ≤ max(4(2ℓ), 8ℓmax) = 8ℓ. As ℓ is good, this implies that wiℓ

(Biℓ
) ≤ 4ℓ and

therefore wi(Bi) ≤ wiℓ
(Biℓ

) ≤ 4ℓ = 4|Si|. This finishes the induction and thus we indeed
have wi(Bi) ≤ max(4|Si|, 8ℓmax) for every i ∈ {0, 1, . . . , k − 1}. Therefore,

wi(Ei)
k − i

≤ wi(Ei)
|Si| + |Mi| + |Bi|

≤ wi(Bi)
max(|Si|, 1) + 80(|Si| + |Mi|)

|Si| + |Mi|
≤ max(4, 8ℓmax) + 80 ≤ 90ℓmax.

◀

▶ Lemma 10. Let ℓ ∈ {1, 2, . . . , ⌊|S0|/2⌋}. Then, ℓ is bad with probability at most e− ℓ
40 .

For the proof of Lemma 10, we need the following Chernoff-bound variant.

▶ Lemma 11 (Chernoff bound). Let X1, . . . , Xℓ be independent Bernoulli-distributed random
variables, each equal to one with probability p. Then,

P
(

ℓ∑
i=1

Xi <
pℓ

2

)
≤ e−pℓ/8.

Proof of Lemma 10. Throughout the proof, we assume that wi2ℓ
(Bi2ℓ

) ≤ 8ℓ. In particular,

|Bi2ℓ
| ≤ wi2ℓ

(Bi2ℓ
)

80 ≤ ℓ

10 .

Below, we will define for every j ∈ {1, 2, . . . , ℓ} an indicator variable Xj in such a way that

1. E[Xj |X1, X2, . . . , Xj−1] ≥ 1
5 for every j ∈ {1, 2, . . . , ℓ} and

2. if X :=
∑ℓ

j=1 Xj ≥ ℓ
10 , then wiℓ

(Biℓ
) ≤ 4ℓ.

The first property implies that X stochastically dominates a random variable X ′ which is
the sum of ℓ independent Bernoulli-distributed random variables, each equal to one with
probability 1/5. Thus, using Lemma 11, we get

P
[
X <

ℓ

10

]
≤ P

[
X ′ <

ℓ

10

]
≤ e− ℓ

40 .

Thus, we can now use the second property to deduce that ℓ is bad with probability at most
e− ℓ

40 . It thus remains to define the random variables and show that they indeed satisfy
the two properties. To that end, fix some j ∈ {1, 2, . . . , ℓ}. We define i′

j as the smallest
i ∈ {i2ℓ, i2ℓ + 1, . . . , iℓ − 1} with |Si| = 2ℓ − j + 1 and ei+1 /∈ Mi. Note that there exists
at least one such i as there exists some i with |Si| = 2ℓ − j + 1 and |Si+1| = 2ℓ − j, and
for this i it holds that ei+1 ∈ Si and therefore ei+1 /∈ Mi. Note that it furthermore holds
that i′

1 < i′
2 < . . . < i′

ℓ. We set Xj = 1 if wi′
j
(Bi′

j
) ≤ 4ℓ or ei′

j
+1 ∈ Bi′

j
and otherwise we set

Xj = 0. We start by showing that the second property holds by proving the contrapositive.

ESA 2023
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To that end, assume that wiℓ
(Biℓ

) > 4ℓ. In particular, we have for every j that wi′
j
(Bi′

j
) > 4ℓ.

Thus, if Xj = 1, we get ei′
j
+1 ∈ Bi′

j
and therefore |Bi′

j
+1| ≤ |Bi′

j
| − 1. As |Bi2ℓ

| < ℓ
10 , we

therefore get that X < ℓ
10 , as needed.

It remains to show the first property. To that end, consider any i and assume we have
already sampled e1, . . . , ei in an arbitrary manner such that |Si| ≤ 2ℓ and wi(Bi) ≥ 4ℓ. Then,
conditioned on ei+1 /∈Mi, we get ei+1 ∈ Bi with probability at least

Dε
i (Bi)

Dε
i (Bi) + Dε

i (Si)
≥ (1− ε)wi(Bi)

(1− ε)wi(Bi) + (1 + ε)wi(Si)
≥ 0.5 · 4ℓ

0.5 · 4ℓ + 1.5 · 2 · 2ℓ
≥ 1

5 .

In particular, this directly implies E[Xj |X1, X2, . . . , Xj−1] ≥ 1
5 for every j ∈ {1, 2, . . . , ℓ}.

◀

Finally, we are ready to prove Lemma 7 by combining Lemmas 9 and 10.

Proof of Lemma 7. Fix some i ∈ {0, 1, . . . , k − 1}. Let ℓmax be defined as in Lemma 9.
Lemma 9 gives that for every ℓ with Pr[ℓmax = ℓ] > 0, we have

E
[∑

e∈Ei
wi(e)

k − i
|ℓmax = ℓ

]
≤ 90ℓ.

Moreover, for ℓ > 1 , we can use Lemma 10 to deduce that P[ℓmax = ℓ] ≤ P[ℓ is bad] ≤ e− ℓ
40 .

Therefore,

E
[∑

e∈Ei
wi(e)

k − i

]
≤

∞∑
ℓ=1

90ℓ · e− ℓ−1
40 = O(1). ◀
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