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Abstract
The complexity of problems involving global constraints is usually much more difficult to understand
than the complexity of problems only involving local constraints. In the realm of graph problems,
connectivity constraints are a natural form of global constraints. We study connectivity problems
from a fine-grained parameterized perspective. In a breakthrough result, Cygan et al. (TALG 2022)
first obtained Monte-Carlo algorithms with single-exponential running time αtwnO(1) for connectivity
problems parameterized by treewidth by introducing the cut-and-count-technique, which reduces
many connectivity problems to locally checkable counting problems. Furthermore, the obtained
bases α were shown to be optimal under the Strong Exponential-Time Hypothesis (SETH).

However, since only sparse graphs may admit small treewidth, we lack knowledge of the fine-
grained complexity of connectivity problems with respect to dense structure. The most popular
graph parameter to measure dense structure is arguably clique-width, which intuitively measures
how easily a graph can be constructed by repeatedly adding bicliques. Bergougnoux and Kanté (TCS
2019) have shown, using the rank-based approach, that also parameterized by clique-width many
connectivity problems admit single-exponential algorithms. Unfortunately, the obtained running
times are far from optimal under SETH.

We show how to obtain optimal running times parameterized by clique-width for two benchmark
connectivity problems, namely Connected Vertex Cover and Connected Dominating Set.
These are the first tight results for connectivity problems with respect to clique-width and these
results are obtained by developing new algorithms based on the cut-and-count-technique and
novel lower bound constructions. Precisely, we show that there exist one-sided error Monte-Carlo
algorithms that given a k-clique-expression solve

Connected Vertex Cover in time 6knO(1), and
Connected Dominating Set in time 5knO(1).

Both results are shown to be tight under SETH.
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1 Introduction

One way to cope with the NP-hardness of a problem is the theory of parameterized complexity,
where we seek to solve structured instances faster than worst-case instances; an additional
parameter quantifies how structured an instance is. Ideally, we obtain fixed-parameter
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tractable algorithms with running time1 O∗(f(k)), where k is the parameter and f some
computable function. Having established the existence of such an algorithm, the next natural
step is to take a fine-grained perspective and to determine the smallest possible function f ,
which quantifies the precise impact of the considered structure on problem complexity.

We apply this approach to connectivity problems. Our investigation starts with the
breakthrough results of Cygan et al. [16], who for the first time obtained Monte-Carlo
algorithms with running time O∗(αtw), for some constant base α > 1, for connectivity
problems parameterized by treewidth (tw). These algorithms are obtained via the so-called
cut-and-count-technique, which reduces connectivity problems to locally checkable counting
problems. In addition, the obtained bases α were proven to be optimal assuming the Strong
Exponential-Time Hypothesis (SETH) [14].

As only sparse graphs may have small treewidth, we lack knowledge of the precise
complexity of connectivity problems with respect to dense structure. In the regime of dense
graphs, clique-width (cw) is one of the most popular parameters. Bergougnoux [2] applied cut-
and-count to several width-parameters based on structured neighborhoods with clique-width
among these. Moreover, Bergougnoux and Kanté [4], building upon the rank-based approach
of Bodlaender et al. [8], obtain single-exponential running times O∗(αcw) for a large class of
connectivity problems parameterized by clique-width. As both articles are aimed at obtaining
a breadth of single-exponential algorithms for a large class of problems, the Connected
(Co-)(σ, ρ)-Dominating Set problems, the obtained bases for particular problems are far
from being optimal. For example, the former article implies an O∗(128cw)-time algorithm for
Connected Dominating Set and the latter yields an O∗((27 · 2ω+1)cw)-time algorithm
for Connected Vertex Cover and an O∗((8 · 2ω+1)cw)-time algorithm for Connected
Dominating Set, where ω is the matrix multiplication exponent, see e.g. Alman and
Vassilevska W. [1]. Even if ω = 2, this only yields the large bases 216 and 64 respectively.

We show that the running times for Connected Vertex Cover and Connected
Dominating Set parameterized by clique-width can be considerably optimized by providing
novel algorithms. These faster algorithms again rely on the cut-and-count-technique and
are fine-tuned by precisely analyzing which cut-and-count states are necessary to consider.
Moreover, we use further techniques such as fast subset convolution, inclusion-exclusion
states, and distinguishing between live and dead labels to obtain the improved running times.

▶ Theorem 1.1. There are one-sided error Monte-Carlo algorithms that, given a k-expression2

for a graph G, can solve
Connected Vertex Cover in time O∗(6k),
Connected Dominating Set in time O∗(5k).

We show that these algorithms are essentially the correct ones for these problem-parameter-
combinations by proving that the obtained running times are optimal under SETH. To prove
these lower bounds, we follow the by now standard construction principle of Lokshtanov et
al. [35] for lower bounds relative to width-parameters. To apply this principle for clique-width,
we closely investigate the problem behavior across joins, i.e., the edge-structures via which
clique-width is defined, and the results of this investigation strongly guide us in designing
appropriate gadgets. Precisely, we obtain the following tight lower bounds:

1 The O∗-notation hides polynomial factors in the input size.
2 A k-expression witnesses that the clique-width of G is at most k.
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Table 1 Optimal running-times of several connectivity problems with respect to various width-
parameters listed in increasing generality. The results in the last column are obtained in this paper.
Between modular-treewidth and clique-width, we only have the relationship cw(G) ≤ 3 ·2mod-tw(G)−1,
but the same results are also tight for the more restrictive modular-pathwidth, where we have
cw(G) ≤ mod-pw(G) + 2 by Hegerfeld and Kratsch [26]. The “?” marks problem-parameter
combinations, where an algorithm with single-exponential running time is known by Bergougnoux
and Kanté [4], but a gap between the lower bound and algorithm remains.

Parameters cutwidth treewidth modular-tw clique-width
Connected Vertex Cover O∗(2k) O∗(3k) O∗(5k) O∗(6k)
Connected Dominating Set O∗(3k) O∗(4k) O∗(4k) O∗(5k)
Steiner Tree O∗(3k) O∗(3k) O∗(3k) ?
Feedback Vertex Set O∗(2k) O∗(3k) O∗(5k) ?
References [9] [15, 16] [26] here

▶ Theorem 1.2. Assuming SETH 3, the following statements hold for all ε > 0:
Connected Vertex Cover (with unit costs) cannot be solved in time O∗((6 − ε)cw).
Connected Dominating Set (with unit costs) cannot be solved in time O∗((5 − ε)cw).

This work is part of a research program to determine the optimal running times for
connectivity problems relative to several width-parameters ranging from restrictive to more
and more general ones, hence yielding a fine-grained understanding of the price of generality.
We summarize the known results in Table 1. The cut-and-count-technique by Cygan et
al. [15, 16] together with their lower bounds settle the complexity relative to treewidth (and
pathwidth) for many connectivity problems. Bojikian et al. [9] consider the more restrictive
cutwidth and combine cut-and-count with the rank-based approach to improve upon the
treewidth-algorithms or provide new lower bound constructions with low cutwidth when
no improved algorithm exists. Hegerfeld and Kratsch [26] consider the parameter modular-
treewidth which lifts treewidth into the dense regime by combining tree decompositions with
modular decompositions and thus serves as a natural intermediate step between treewidth
and clique-width. The results on modular-treewidth are obtained by reducing directly to
the treewidth-case or by applying the cut-and-count-technique and the modular structure
to essentially reduce to a more involved problem parameterized by treewidth; in the latter
case, new lower bound constructions are provided that follow similar high-level principles as
here, but that have to adhere to different design restrictions. Cygan et al. [16] observe that
connectivity increases the base by at most 1 in the sparse setting, e.g., Vertex Cover has
optimal base 2, see Lokshtanov et al. [35], and Connected Vertex Cover has optimal
base 3 parameterized by treewidth. For clique-width, this increase can be larger and the
impact of connectivity can even flip the relative complexities, e.g., the optimal bases of
Vertex Cover and Dominating Set are 2 and 4 [29, 32] which increase to 6 and 5,
respectively, upon adding the connectivity constraint.

Further Related Work. Beyond these tight results, the cut-and-count-technique has also
been applied to branchwidth [42] and treedepth [23, 38]. Due to its reliance on the isolation
lemma, the cut-and-count-technique yields randomized algorithms. The rank-based approach
of Bodlaender et al. [8] and the matroid-based techniques of Fomin et al. [19, 20] deal

3 If we instead assume an appropriate random variant of SETH, then these reductions also rule out
Monte-Carlo algorithms with such running times.
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with this shortcoming at the cost of a higher running time and the rank-based approach
can also be applied in other contexts. By combining the rank-based approach with other
techniques to avoid Gaussian elimination, optimal running times can be obtained in some
cases, such as for Hamiltonian Cycle parameterized by pathwidth [12, 13] or coloring
problems parameterized by cutwidth [22, 31]. There are further applications of the rank-based
approach to connectivity problems relative to dense width-parameters, such as rankwidth [5]
and mim-width [3]. We also refer to the survey of Nederlof on rank-based methods [37].

Moving away from connectivity problems, we survey some more of the literature obtaining
tight fine-grained parameterized algorithms for dense parameters. Iwata and Yoshida show
that for any ε > 0 Vertex Cover can be solved in time O∗((2 − ε)tw) if and only if
Vertex Cover can be solved in time O∗((2 − ε)cw) [29]; as the bases differ for treewidth
and clique-width in our case, it seems difficult to transfer their techniques to our setting.
Lampis [34] obtains the tight running time of O∗((2q − 2)cw) for q-Coloring and a tight result
for q-Coloring parameterized by a more restrictive variant of modular-treewidth. Generalizing
to homomorphism problems, Ganian et al. [21] obtain tight results for parameterization by
clique-width, where the obtained base depends on a special measure of the target graph.
Katsikarelis et al. [32] obtain tight results for (k, r)-Center parameterized by clique-width
and, in particular, the tight running time O∗(4cw) for Dominating Set. Jacob et al. [30]
and Hegerfeld and Kratsch [24] show that the running time O∗(4cw) is tight for Odd Cycle
Transversal, where the latter article also considers a generalization to more colors and
contains tight results for parameters that do not fall into the class of width-parameters.

Organization. We discuss the preliminaries in Section 2. Section 3 covers the algorithms
(Theorem 1.1) and Section 4 the lower bounds (Theorem 1.2); both sections first outline
the used techniques and present more details for Connected Vertex Cover. For space
reasons, we only give a few remarks regarding Connected Dominating Set. We conclude
in Section 5. Proofs and sections that are delegated to the full version [25] are denoted by ⋆.

2 Preliminaries

For two integers a, b we write a ≡c b to indicate equality modulo c ∈ N. We use Iverson’s
bracket notation: for a boolean predicate p, we have that [p] is 1 if p is true and 0 otherwise.
For a function f we denote by f [v 7→ α] the function (f \ {(v, f(v))}) ∪ {(v, α)}, viewing f

as a set; we also write f [v 7→ α, w 7→ β] instead of (f [v 7→ α])[w 7→ β]. By Z2 we denote
the field of two elements. For n1, n2 ∈ Z, we write [n1, n2] = {x ∈ Z : n1 ≤ x ≤ n2} and
[n2] = [1, n2]. For a function f : V → Z and a subset W ⊆ V , we write f(W ) =

∑
v∈W f(v).

For functions g : A → B, where B ̸⊆ Z, and A′ ⊆ A, we still denote the image of A′ under
g by g(A′) = {g(v) : v ∈ A′}. If f : A → B is a function and A′ ⊆ A, then f

∣∣
A′ denotes

the restriction of f to A′ and for a subset B′ ⊆ B, we denote the preimage of B′ under
f by f−1(B′) = {a ∈ A : f(a) ∈ B′}. An ordered tuple of sets (A1, . . . , Aℓ) is an ordered
subpartition if Ai ∩ Aj = ∅ for all i ̸= j ∈ [ℓ]. The power set of a set A is denoted by P(A).

Graph Notation. We use common graph-theoretic notation and the essentials of parameter-
ized complexity. Let G = (V, E) be an undirected graph. For a vertex set X ⊆ V , we denote
by G[X] the subgraph of G that is induced by X. The open neighborhood of a vertex v is
given by NG(v) = {u ∈ V : {u, v} ∈ E}, whereas the closed neighborhood is given by NG[v] =
NG(v)∪{v}. For sets X ⊆ V we define NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X]\X. For

two disjoint vertex subsets A, B ⊆ V , we define EG(A, B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B}
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and adding a join between A and B means adding an edge between every vertex in A and
every vertex in B. For a vertex set X ⊆ V , we define δG(X) = EG(X, V \ X) and we write
δG(v) = δG({v}) for single vertices v. We denote the number of connected components of G

by cc(G). A cut of G is a partition V = VL ∪ VR, VL ∩ VR = ∅, of its vertices into two parts.

Clique-Expressions and Clique-Width. A labeled graph is a graph G = (V, E) together
with a label function lab : V → N = {1, 2, 3, . . .}; we usually omit mentioning lab explicitly.
A labeled graph is k-labeled if lab(v) ≤ k for all v ∈ V . We consider the following four
operations on labeled graphs:

the introduce-operation ℓ(v) constructs a single-vertex graph whose vertex v has label ℓ,
the union-operation G1 ⊕ G2 constructs the disjoint union of labeled graphs G1 and G2,
the relabel-operation ρi→j(G) changes the label of all vertices in G with label i to label j,
the join-operation ηi,j(G), i ̸= j, which adds an edge between every vertex in G with
label i and every vertex in G with label j.

A valid expression that only consists of introduce-, union-, relabel-, and join-operations
is called a clique-expression. The graph constructed by a clique-expression µ is denoted
Gµ and the constructed label function is denoted labµ : V (Gµ) → N. We associate to a
clique-expression µ the syntax tree Tµ in the natural way and to each node t ∈ V (Tµ)
the corresponding operation. For any node t ∈ V (Tµ) the subtree rooted at t induces a
subexpression µt. When µ is fixed, we define Gt = Gµt

, Vt = V (Gt), Et = E(Gt), and
labt = labµt

for any v ∈ V (Tµ). We write V ℓ
t = lab−1

t (ℓ) for the set of all vertices with
label ℓ at node t and we write Lt = {ℓ ∈ N : V ℓ

t ̸= ∅} for the set of nonempty labels at node t.
A clique-expression µ is a k-clique-expression or just k-expression if Gt is k-labeled

for all t ∈ V (Tµ). The clique-width of a graph G, denoted by cw(G), is the minimum k

such that a k-expression µ with G = Gµ exists. A clique-expression µ is linear if in every
union-operation the second graph consists only of a single vertex. Accordingly, we define the
linear-clique-width of a graph G, denoted lin-cw(G), by only considering linear expressions.

Strong Exponential-Time Hypothesis. The Strong Exponential-Time Hypothesis (SETH)
[10, 28] concerns the complexity of q-Satisfiability, i.e., every clause contains at most q

literals. We define cq = inf{δ : q-Satisfiability can be solved in time O(2δn)} for all q ≥ 3.
The weaker Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [27] posits that
c3 > 0 and the Strong Exponential-Time Hypothesis states that limq→∞ cq = 1. Equivalently,
for every δ < 1, there is some q such that q-Satisfiability cannot be solved in time O(2δn).
For our lower bounds, the following weaker variant of SETH is sufficient.

▶ Conjecture 2.1 (CNF-SETH). For every ε > 0, there is no algorithm solving Satisfiability
with n variables and m clauses in time O(poly(m)(2 − ε)n).

Cut and Count. Let G = (V, E) denote a connected graph. For easy reference, we repeat
the key definition and lemmas of the cut-and-count-technique here.

▶ Definition 2.2 ([16]). A cut (VL, VR) of an undirected graph G = (V, E) is consistent if
u ∈ VL and v ∈ VR implies {u, v} /∈ E, i.e., EG(VL, VR) = ∅. A consistently cut subgraph of
G is a pair (X, (XL, XR)) such that X ⊆ V and (XL, XR) is a consistent cut of G[X]. We
denote the set of consistently cut subgraphs of G by C(G).

▶ Lemma 2.3 ([16]). Let X be a subset of vertices such that v∗ ∈ X ⊆ V . The number of
consistently cut subgraphs (X, (XL, XR)) such that v∗ ∈ XL is equal to 2cc(G[X])−1.

ESA 2023
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▶ Corollary 2.4 (⋆). Let R ⊆ P(V ) be a family of vertex sets so that every X ∈ R contains
v∗. If the set A = {(X, (XL, XR)) ∈ C(G) : X ∈ R, v∗ ∈ XL} has odd cardinality, then there
exists an X ∈ R such that G[X] is connected.

With the isolation lemma we avoid unwanted cancellations in the cut-and-count-technique.

▶ Definition 2.5. A function w : U → Z isolates a set family F ⊆ P(U) if there is a unique
S′ ∈ F with w(S′) = minS∈F w(S); recall that w(X) =

∑
u∈X w(u) for subsets X of U .

▶ Lemma 2.6 (Isolation Lemma, [36]). Let F ⊆ P(U) be a nonempty set family over a
universe U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N ] uniformly and
independently at random. Then P[w isolates F ] ≥ 1 − |U |/N .

3 Dynamic Programming Algorithms

Cut and Count. The cut-and-count-technique by Cygan et al. [16] allows us to reduce
the global connectivity constraint to a locally checkable counting problem. Consistent cuts,
cf. Definition 2.2, are the main driver of the cut-and-count-technique. Any graph G = (V, E)
admits exactly 2cc(G) distinct consistent cuts, where cc(G) is the number of connected
components of G. By fixing a vertex v∗ and only considering consistent cuts (VL, VR) with
v∗ ∈ VL, this number reduces to 2cc(G)−1, so that G admits an odd number of such consistent
cuts if and only if G is connected. This behavior implies that if we count pairs (X, (XL, XR)),
where v∗ ∈ X ⊆ V is a partial solution and (XL, XR) a consistent cut of G[X] with v∗ ∈ XL,
modulo two, that all disconnected solutions cancel. When multiple connected solutions exist,
they could also cancel modulo two, but this issue can be avoided at the cost of randomization
by using the isolation lemma, cf. Lemma 2.6. So, if there exists a connected solution, then
we can assume that Lemma 2.3 applies and let the algorithm answer accordingly.

Lifting Vertex States to Label States. For dynamic programming along clique-expressions,
we have to characterize the relevant interactions of a partial solution with the labels which
govern which joins can be constructed by the expression. In the considered problems, a single
vertex v can take a constant number of different states with respect to a partial solution
which we capture with a problem-dependent set Ω; e.g., for Connected Vertex Cover,
we have Ω = {0, 1L, 1R}, representing v /∈ X (state 0), v ∈ XL (state 1L), and v ∈ XR (state
1R), respectively. A clique-expression repeatedly adds joins between pairs of vertex sets, say
A and B, i.e., all possible edges between A and B are added, and the algorithm must check
whether a partial solution remains feasible after adding a join and possibly update some
states. A priori, each choice of vertex states in a label could yield different behaviors for
partial solutions. However, for the considered problems the precise multiplicity of a vertex
state in A or in B is irrelevant for a join; it suffices to distinguish for each side which vertex
states appear and which do not. Therefore, the label states are captured by the subsets of Ω.
The next two techniques will allow us to reduce the number of considered states further.

Nice Clique-Expressions. We refine and augment standard clique-expressions to distinguish
between live and dead labels. When performing dynamic programming along a clique-
expression, we consider the induced subgraphs defined by subexpressions of the given
clique-expression. At a subexpression, we say that a label ℓ is live if in the remaining
expression the vertices with label ℓ receive further edges that are not present in the current
subexpression, otherwise ℓ is dead. First, we observe that we do not need to track the
states of a partial solution at the dead labels, as they only have trivial interactions with
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the other states in the remaining expression. Hence, we only need to consider the states
that can be attained at live labels which allows us to reduce the number of considered states
for Connected Vertex Cover. To simplify the algorithms and avoid handling of edge
cases, we transform the clique-expressions so that no degenerate cases occur and add a
dead-operation ⊥ℓ which handles label ℓ turning from live to dead. The dead-operation is
similar to forget vertex nodes in nice tree decompositions [33]. Distinguishing live and dead
labels has been used before [21, 32, 34] to obtain improved running times, but handling the
label types explicitly via an additional operation is new to the best of the authors’ knowledge.

Inclusion-Exclusion States. For Connected Dominating Set, we transform to a different
set of vertex states, called inclusion-exclusion states, which have proven helpful for domination
problems before [23, 39, 41, 43]. These states do not track whether a vertex is undominated
or dominated by a partial solution, but allow a vertex to be dominated or forbid it. A
solution to the original problem can usually be recovered by an inclusion-exclusion argument,
however when lifting to label states this argument does not directly transfer. We show that
the argument can be adapted for label states when working modulo two, whereas for vertex
states the argument is known to also work for non-modular counting. The advantage of
the inclusion-exclusion states is that at joins we do not have to update vertex states from
undominated to dominated, thus simplifying the algorithm and also allowing us to collapse
several label states into a single one. The dead-operations of nice clique-expressions serve as
suitable timepoints to apply the adapted inclusion-exclusion argument.

Fast Convolutions. To quickly compute the recurrences for union-operations, we utilize
algorithms for fast subset convolution. We tailor the techniques developed by Björklund et
al. [6] on trimmed subset convolutions to obtain a fast algorithm for the union-recurrence
appearing in the Connected Vertex Cover algorithm. For Connected Dominating
Set, we employ the lattice-based results of Björklund et al. [7].

3.1 Nice Clique-Expressions
Let µ be a k-expression for G = (V, E); the associated syntax tree is Tµ. We say that a
clique-expression µ is irredundant if for any join-operation ηi,j(Gt′) = t ∈ V (Tµ), it holds
that EGt′ (V i

t′ , V j
t′ ) = ∅, i.e., no edge added by the join existed before.

▶ Theorem 3.1 ([11]). Any k-expression µ can be transformed into an equivalent, i.e.,
Gµ′ = Gµ, irredundant k-expression µ′ in polynomial time.

Irredundancy still allows several edge cases regarding empty labels to occur, which require
special handling in the dynamic programming algorithms. To avoid this extra effort in the
algorithms, we transform any clique-expression so that these edge cases do not occur.

▶ Definition 3.2. A clique-expression µ of G is nice if µ satisfies the following properties:
µ is irredundant,
for every join-node ηi,j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that Gt ̸= Gt′ ,
i.e., t adds at least one edge and V i

t′ ̸= ∅ and V j
t′ ̸= ∅,

for every relabel-node ρi→j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that
V i

t′ ̸= ∅ and V j
t′ ̸= ∅.

In the full version of the paper, we give a short proof how to transform a k-expression
into an equivalent nice k-expression. However, Ducoffe [17] has also shown how to perform
such a transformation in only linear time with a more involved proof.

ESA 2023
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▶ Lemma 3.3 (⋆, [17]). Any k-expression µ can be transformed into an equivalent, i.e.,
Gµ′ = Gµ, nice k-expression µ′ in polynomial time.

For nice clique-expressions, we will now present how we augment the associated syntax
tree to distinguish between live and dead labels. For the remainder of this section, we assume
that G is a connected graph with at least two vertices. We begin with the following definition.

▶ Definition 3.4. Given a clique-expression µ for G = (V, E) and a node t ∈ V (Tµ), the set
of dead vertices at t is defined by Dt = {v ∈ Vt : δG(v) ⊆ Et}. A vertex v ∈ Vt \ Dt is called
live at t.

The next lemma shows that in an irredundant clique-expression either none or all vertices
in a label are dead, thus allowing us to sensibly speak of dead and live labels.

▶ Lemma 3.5 (⋆). Given an irredundant k-expression µ for G = (V, E), a node t ∈ V (Tµ),
and a nonempty label ℓ ∈ Lt, we have that either V ℓ

t ∩ Dt = ∅ or V ℓ
t ⊆ Dt.

The following definition formalizes the handling of live and dead labels and the dead
nodes that are added when a label turns from live to dead.

▶ Definition 3.6. Given an irredundant k-expression µ for G = (V, E), the augmented syntax
tree T̂µ of µ is obtained from Tµ by inserting up to two dead nodes directly above every join
node t = ηi,j(Gt′), where t′ is the child of t in Tµ, based on the following criteria:

if V i
t ⊆ Dt \ Dt′ , then the node ⊥i is inserted,

if V j
t ⊆ Dt \ Dt′ , then the node ⊥j is inserted,

if both nodes ⊥i and ⊥j are inserted, then we insert them in any order.
We extend the notations Gt, Vt, Dt, V ℓ

t , for ℓ ∈ [k], to dead nodes by inheriting the values of
the child node. For every node t ∈ V (T̂µ), we inductively define the live labels Llive

t ⊆ Lt by

Llive
t = {ℓ} if t = ℓ(v), Llive

t = Llive
t′ \ {i} if t = ρi→j(Gt′),

Llive
t = Llive

t′ if t = ηi,j(Gt′), Llive
t = Llive

t′ \ {ℓ} if t = ⊥ℓ(Gt′),
Llive

t = Llive
t1

∪ Llive
t2

if t = Gt1 ⊕ Gt2 .

Dually, the set of dead labels Ldead
t ⊆ Lt is given by Ldead

t = Lt \ Llive
t .

The next lemma shows that, up to pending dead nodes, Llive
t contains all nonempty

labels that only consist of live vertices at t. Due to Lemma 3.5, no label of an irredundant
k-expression can contain both live and dead vertices simultaneously.

▶ Lemma 3.7 (⋆). Let µ be a nice k-expression of G = (V, E) and T̂µ its augmented syntax
tree. For any node t ∈ V (T̂µ) and ℓ ∈ Lt, we have that V ℓ

t ∩ Dt = ∅ implies ℓ ∈ Llive
t . If t is

not the child of a dead node, then we even have that V ℓ
t ∩ Dt = ∅ if and only if ℓ ∈ Llive

t .

3.2 Connected Vertex Cover

Connected Vertex Cover
Input: An undirected graph G = (V, E), a cost function c : V → N \ {0} and an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that G − X contains no edges and G[X] is

connected?

Let (G = (V, E), c, b) be a Connected Vertex Cover instance with c(v) ≤ |V |O(1) for
all v ∈ V . Furthermore, we assume that G is connected and contains at least two vertices.
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Let µ be a nice k-expression for G. To apply the cut-and-count-technique, we first pick
an edge in G, branch on one of its endpoints v∗, and in this branch only consider solutions
containing v∗. Furthermore, we sample a weight function w : V → [2|V |] for the isolation
lemma, cf. Lemma 2.6. We perform bottom-up dynamic programming along the augmented
syntax tree T̂µ. At every node t ∈ V (T̂µ), we consider the following family of partial solutions

At = {(X, (XL, XR)) ∈ C(Gt) : Gt − X contains no edges and (v∗ ∈ Vt ⇒ v∗ ∈ XL)}.

In other words, At contains all consistently cut vertex covers of Gt such that v∗ is on the
left side of the cut if possible. For every t ∈ V (T̂µ), c ∈ [0, c(V )], w ∈ [0, w(V )], we define
Ac,w

t = {(X, (XL, XR)) ∈ At : c(X) = c, w(X) = w}. Let r̂ denote the root node of the
augmented syntax tree T̂µ. By Corollary 2.4, there exists a connected vertex cover X of G

with c(X) ≤ b if there exist c ∈ [0, b] and w ∈ [0, w(V )] such that Ac,w
r̂ has odd cardinality.

We proceed by analyzing the behavior of a partial solution (X, (XL, XR)) ∈ At with
respect to a label V ℓ

t , ℓ ∈ Lt. A vertex v ∈ V ℓ
t can take one of the states Ω = {0, 1L, 1R},

meaning respectively v /∈ X, or v ∈ XL, or v ∈ XR. To check the feasibility of (X, (XL, XR)),
it suffices to store for each label which vertex states appear and which do not, as the
constraints implied by At are “CSP-like”, i.e., they apply to every edge, and they can be
evaluated for every join by considering all pairs of involved vertex states. Hence, the power
set P(Ω) of Ω captures all possible label states.

The power set P(Ω) a priori yields eight different states per label. However, we can exclude
the state ∅ and the state Ω = {0, 1L, 1R} from consideration. The former can be excluded,
since we only need to store the state for nonempty labels, i.e., containing at least one vertex.
The exclusion of the state Ω = {0, 1L, 1R} is more subtle: any additional incident join would
lead to an infeasible solution for this state, hence only dead labels, cf. Definition 3.6, may
sensibly take this state. We return to this issue in a moment. Since it suffices to store the states
of live labels, we set States = P(Ω) \ {∅, Ω} = {{0}, {1L}, {1R}, {0, 1L}, {0, 1R}, {1L, 1R}}.

Given a node t ∈ V (T̂µ), a t-signature is a function f : Llive
t → States. For every node

t ∈ V (T̂µ), c ∈ [0, c(V )], w ∈ [0, w(V )], and t-signature f , we define

Ac,w
t (f) = {(X, (XL, XR)) ∈ Ac,w

t : 0 ∈ f(ℓ) ⇔ V ℓ
t ̸⊆ X for all ℓ ∈ Llive

t ,

1L ∈ f(ℓ) ⇔ XL ∩ V ℓ
t ̸= ∅ for all ℓ ∈ Llive

t ,

1R ∈ f(ℓ) ⇔ XR ∩ V ℓ
t ̸= ∅ for all ℓ ∈ Llive

t }.

We claim that excluding the state Ω does not cause issues. Consider some node t whose
parent is not a dead node, and (X, (XL, XR)) ∈ Ac,w

t such that there is a live label ℓ ∈ Llive
t

for which the three cases V ℓ
t ̸⊆ X, XL ∩V ℓ

t ̸= ∅, and XR ∩V ℓ
t ̸= ∅ simultaneously occur. Since

ℓ is live, there is some v ∈ NG(V ℓ
t ) \ NGt(V ℓ

t ) by Lemma 3.7. We claim that (X, (XL, XR))
cannot be extended to a consistently cut vertex cover (X ′, (X ′

L, X ′
R)) of G′ = G[Vt ∪ {v}]

(hence also not of G). If v /∈ X ′, then there is an uncovered edge in G′ between V ℓ
t and v. If

v ∈ X ′, then some edge in G′ crosses the cut (X ′
L, X ′

R) and so the cut cannot be consistent.
Hence, partial solutions attaining the state {0, 1L, 1R} at a live label can be discarded.

Instead of computing the sets Ac,w
t (f) directly, we only compute the quantities Ac,w

t (f) =
|Ac,w

t (f)| mod 2. The recurrences for computing Ac,w
t (f), for every t ∈ V (T̂µ), t-signature

f , c ∈ [0, c(V )], w ∈ [0, w(V )] depend on the type of the considered node t:

Introduce node. If t = ℓ(v) for some ℓ ∈ [k], then Llive
t = {ℓ} and

Ac,w
t (f) = [v ̸= v∗ ∨ f(ℓ) = {1L}]

· [(f(ℓ) = {0} ∧ c = w = 0) ∨ (f(ℓ) ∈ {{1L}, {1R}} ∧ c = c(v) ∧ w = w(v))],

since in a singleton graph any choice of singleton state leads to a valid solution, but if v = v∗
then only the solution with v∗ on the left side of the cut is allowed.
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Relabel node. If t = ρi→j(Gt′), where t′ is the child of t, for some i, j ∈ [k], then by niceness
of µ it follows that i ∈ Lt′ , j ∈ Lt′ , Lt = Lt′ \ {i} and either i, j ∈ Llive

t′ or i, j ∈ Ldead
t′ .

If labels i and j are live at t′, then label j is live at t and the recurrence is given by

Ac,w
t (f) =

∑
S1,S2∈States :

S1∪S2=f(j)

Ac,w
t′ (f [i 7→ S1, j 7→ S2]),

since V j
t = V i

t′ ∪ V j
t′ and we simply have to iterate over all possible combinations of

previous states at labels i and j that yield the desired state f(j).
If labels i and j are dead at t′, then label j is dead at t and since we do not track the
state of dead labels, we can simply copy the previous table, i.e., Ac,w

t (f) = Ac,w
t′ (f).

Join node. To check whether two states can lead to a feasible solution after adding a join
between their labels, we introduce a helper function feas : States × States → {0, 1} defined
by feas(S1, S2) = [0 /∈ S1 ∨ 0 /∈ S2][1L ∈ S1 ⇒ 1R /∈ S2][1R ∈ S1 ⇒ 1L /∈ S2]. There are two
reasons for infeasibility: a join edge is not covered, i.e., 0 appears on both sides, or a join
edge connects both sides of the cut, i.e., 1L appears on one side and 1R on the other.

We have t = ηi,j(Gt′) for some i ̸= j ∈ Lt′ , where t′ is the child of t. We have i, j ∈ Llive
t′

and if vertices turn dead at t, i.e., Dt′ ⊊ Dt, then a future dead node will handle it. Hence,
we simply filter out all partial solutions that become infeasible due to the new join:

Ac,w
t (f) = feas(f(i), f(j))Ac,w

t′ (f).

Dead node. We have that t = ⊥ℓ(Gt′), where t′ is the child of t, ℓ /∈ Llive
t , and Llive

t =
Llive

t′ \{ℓ}. Since the only change is that t-signatures do not track the state of label ℓ anymore,
we add up the contributions of all previous states of label ℓ. Hence, the recurrence is given by

Ac,w
t (f) =

∑
S∈States

Ac,w
t′ (f [ℓ 7→ S]).

Although this recurrence looks simple, its correctness proof is nontrivial as it relies on the
previous argument why label state Ω can be excluded.

Union node. We omit the standard, but somewhat technical, description of the union-
recurrence here. After handling labels that are nonempty at only one of the children, a
trimmed subset convolution remains that we can solve in time O∗(6|Llive

t |) for all c, w, and f

simultaneously via the convolution algorithms developed in the appendix of the full version.

▶ Lemma 3.8 (⋆). Given a nice k-expression µ of G = (V, E), the quantities Ac,w
t (f) for all

nodes t ∈ V (T̂µ), t-signatures f , and appropriate c, w, can be computed in time O∗(6k).

Proof sketch. For introduce nodes, relabel nodes, or join nodes, the recurrence for Ac,w
t (f)

can be computed in polynomial time, as additions and multiplications in Z2 take constant
time. For union nodes t, we compute the recurrence for all f , c, w simultaneously in time
O∗(6|Llive

t |) as discussed. As µ is a k-expression, we have |Llive
t | ≤ k for all t ∈ V (T̂µ) and in

particular at most 6k t-signatures for any node t ∈ V (Tµ). Hence, the running time follows.
The proof of correctness for introduce nodes, relabel nodes, join nodes, and union nodes

is straightforward. For dead nodes, the proof of correctness follows from the discussion on
the exclusion of state {0, 1L, 1R} and the construction of the augmented syntax tree T̂µ. ◀
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▶ Theorem 3.9 (⋆). There is a randomized algorithm that given a nice k-expression µ for a
graph G = (V, E) can solve Connected Vertex Cover in time O∗(6k). The algorithm
does not return false positives and returns false negatives with probability at most 1/2.

Proof. We sample a weight function w : V → [2n] uniformly at random. Then, we pick an
edge in G and branch on its endpoints; the chosen endpoint takes the role of v∗ in the current
branch. Using Lemma 3.8, we compute the quantities Ac,w

t (f). At the root node r̂, we have
that Llive

r̂ = ∅. The algorithm returns true if in one of the branches there is some choice of
c ≤ b, w ∈ [0, 2n2], such that Ac,w

r̂ (∅) ̸= 0, otherwise the algorithm returns false.
The running time directly follows from Lemma 3.8. The correctness and error probability

follow from Corollary 2.4, Lemma 2.3 and the isolation lemma, Lemma 2.6. Since these
arguments are standard for the cut-and-count-technique, we omit them here. ◀

3.3 Remarks on Connected Dominating Set Algorithm (⋆)

Connected Dominating Set
Input: An undirected graph G = (V, E), a cost function c : V → N \ {0} and an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that N(X) ∪ X = V and G[X] is connected?

To obtain our algorithm for Connected Dominating Set, we transform to the inclusion-
exclusion states and apply the cut-and-count-technique. We again have the vertex states 1L

and 1R, but the state 0 splits into the allowed (A) and forbidden state (F), which denote
that a vertex is allowed or forbidden to be dominated. Lifting to label states, we see that
the presence of allowed vertices is irrelevant, as they impose no constraint on future joins,
and that all label states containing at least two distinct non-allowed states behave in the
same way. This allows us to collapse the number of considered label states down to five.

To count solutions dominating a vertex v with the inclusion-exclusion states, one usually
subtracts the number of solutions where v is forbidden from the solutions where v is allowed.
This argument fails when applied to labels, i.e., groups of vertices. Instead, our dynamic
program counts solutions with a label containing u undominated vertices exactly 2u times,
so that all solutions with u > 0 cancel modulo two. Whenever a label turns dead, we apply
this argument to ensure that all vertices in dead labels are dominated.

4 Lower Bounds

Construction Principle. The high-level construction principle of the lower bounds follows
the style of Lokshtanov et al. [35]. That means the resulting graphs can be interpreted as
a matrix of blocks, where each block spans several rows and columns. Every row is a long
path-like gadget that simulates a constant number of variables of the Satisfiability instance
and which contributes 1 unit of clique-width. The number of simulated variables is tied to
the running time that we want to rule out. For technical reasons, we consider bundles of
rows simulating a variable group of appropriate size. Every column corresponds to a clause
and consists of gadgets that decode the states on the path gadgets and check whether the
resulting assignment satisfies the clause. As a consequence of the construction principle, the
lower bounds already apply to linear clique-width.

Path Gadgets and State Transitions. Our main contribution is the design of the path
gadgets that lie at the intersection of every row and column, whereas the decoding gadgets
can be adapted from Cygan et al. [15]. To ensure that each row contributes one unit of
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clique-width, adjacent path gadgets in a row are connected by a join. Our goal is to design a
path gadget admitting as many states as possible. An important issue is how the state of
the path gadgets may transition along each row, as the reduction only works when the state
transitions follow some transition order, i.e, state i can transition to state j only if i ≤ j.

Determining the Transition Order. For sparse width-parameters such as pathwidth, de-
termining an appropriate transition order is much simpler, as the number of possible states is
very small, e.g., there are at most four vertex states for the considered benchmark problems.
The possible set of states for clique-width is much larger and we must select a specific subset
of states, as not all of them admit a transition order. Hence, we analyze the possible state
transitions across a join, obtaining a transition/compatibility matrix showing which pairs of
states can lead to a globally feasible solution and which cannot. After possibly reordering the
rows and columns of the compatibility matrix, a transition order must induce a triangular
submatrix with ones on the diagonal. From a largest possible such triangular submatrix of
the compatibility matrix, we can then deduce an appropriate transition order which guides
the design of the path gadget.

Anatomy of a Path Gadget. Our path gadgets consist of a central clique communicating
with the decoding gadgets, and two boundary parts, i.e., the left and right part connecting
to the previous and following join. In the central clique, each solution avoids exactly one
vertex representing the state of the path gadget. To implement the transition order, the left
and right part have to communicate appropriate states to the two adjacent path gadgets.
By pairing states along the main diagonal of the triangular submatrix, we see which states
must be communicated in each case. The central idea behind designing the left and right
part is to isolate the constituent state properties of the boundary vertices, such as, whether
they are contained in the partial solution or whether they are dominated. This simplifies the
communication with the central clique and expedites implementing the transition order.

Root-Connectivity. To capture the connectivity constraint, we create a distinguished vertex
r̂ called the root and attach a vertex of degree 1 to ensure that every connected vertex cover
or connected dominating set must contain r̂. Given a vertex subset X ⊆ V (G) with r̂ ∈ X,
we say that a vertex v ∈ X is root-connected in X if there is a v, r̂-path in G[X]. We will
just say root-connected if X is clear from the context. The graph G[X] is connected if and
only if all vertices of X are root-connected in X. For the state of a partial solution X, it is
important to consider which vertices are root-connected in X and which are not.

4.1 Path Gadget for Connected Vertex Cover
This subsection is devoted to constructing and analyzing the path gadget used to prove that
Connected Vertex Cover (with unit costs) cannot be solved in time O∗((6 − ε)lin-cw(G))
for some ε > 0 unless the CNF-SETH fails. The remaining parts of the construction are
standard and can be found in the full version. We build a path gadget admitting 6 distinct
states which narrows down to a single label/join, so that each row contributes one unit of
linear clique-width. Each single vertex v has one of 3 states with respect to a partial solution
X: v /∈ X (state 0), v ∈ X and v is root-connected (state 11) or not root-connected (state
10). The state of a label can be described as a subset of {0, 10, 11}.

We proceed by studying the compatibility of theses label states across a join, but we will
only give an informal description here. Essentially, we assume that the considered join is
the final opportunity for two partial solutions X1, X2 ⊆ V with r̂ ∈ Xi, i ∈ [2], living on
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Figure 1 Several cases of partial solution compatibility across a join. The first row depicts the
vertex states in X1 and X2, separated by the dashed line. The second row depicts the vertex states in
X1 ∪ X2 and highlights, from left to right, the induced edges, the uncovered edges, and a connected
component not containing the root r̂.

Table 2 A large triangular submatrix in the compatibility matrix of Connected Vertex Cover.
The rows and columns have been reordered.

X1 vs. X2 {0} {10, 0} {10} {11, 0} {11, 10} {11}
{11} 1 1 1 1 1 1
{11, 10} 0 1 1 1 1 1
{11, 0} 0 0 1 0 1 1
{10} 0 0 0 1 1 1
{10, 0} 0 0 0 0 1 1
{0} 0 0 0 0 0 1

separate sides of the join (with the exception of r̂) to connect. Hence, the partial solutions
X1 and X2 are considered to be compatible when in X1 ∪ X2 every vertex incident to the
considered join has state 0 or 11 and every edge of the join is covered by X1 ∪ X2; see
Figure 1. Since the interaction of Xi, i ∈ [2], with the respective side of the join is captured
by the aforementioned states, we obtain a compatibility matrix of size 7 × 7.

In this compatibility matrix, we find the triangular submatrix depicted in Table 2, after
reordering rows and columns. Independent sets of size two are sufficient to generate the
relevant label states and they are represented by the following ordered pairs of vertex states:
(0, 0), (10, 0), (10, 10), (11, 0), (11, 10), (11, 11). Pairing these states along the diagonal, we
learn which states should be communicated to the left and right boundary in each case.

States. We define the three atomic states Atoms = {0, 10, 11}, with their usual inter-
pretation, and two predicates sol, conn : Atoms → {0, 1} by sol(a) = [a ∈ {10, 11}] and
conn(a) = [a = 11]. We define six (gadget) states consisting of four atomic states each:

s1 = (0 , 0 , 11, 11), s2 = (10, 0 , 11, 10), s3 = (10, 10, 11, 0 ),
s4 = (11, 0 , 10, 10), s5 = (11, 10, 10, 0 ), s6 = (11, 11, 0 , 0 ).
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Figure 2 The path gadget P with the join vertices u1, u2 and u3, u4 joined to further vertices.
All vertices depicted by a rectangle are adjacent to the root r̂. The vertices inside the cyan dashed
rectangle induce a clique. We have highlighted the edges incident to v2 as an example.

The gadget states are numbered in the transition order. We collect the six gadget states in
the set States = {s1, . . . , s6} and use the notation sℓ

i ∈ Atoms, i ∈ [4], ℓ ∈ [6], to refer to
the i-th atomic component of state sℓ. Given a partial solution Y ⊆ V (G), we associate to
each vertex its state in Y with the map stateY : V (G) \ {r̂} → Atoms, which is defined by
stateY (v) = 0 if v /∈ Y ; stateY (v) = 10 if v ∈ Y and v is not root-connected in Y ∪ {r̂};
stateY (v) = 11 if v ∈ Y and v is root-connected in Y ∪ {r̂}.

Construction. The construction of the path gadget P is as follows. We create 4 join vertices
u1, . . . , u4, 12 auxiliary vertices a1,1, a1,2, a1,3, a2,1, . . . , a4,3, 8 solution indicator vertices
b1,0, b1,1, b2,0, b2,1, . . . , b4,1, 8 connectivity indicator vertices c1,0, c1,1, c2,0, c2,1, . . . , c4,1 and 6
clique vertices v1, . . . , v6. We add edges so that the clique vertices vℓ, ℓ ∈ [6], induce a clique
of size 6. Next, we explain how to connect the indicator vertices to the clique vertices. The
clique vertex vℓ corresponds to choosing state sℓ on the join vertices (u1, u2, u3, u4). The
desired behavior of P is that a partial solution X of P + r̂ contains bi,1 if and only if X

contains ui and for the connectivity indicators, that X contains ci,1 if and only if X contains
ui and ui is root-connected in X. Accordingly, for all i ∈ [4] and ℓ ∈ [6], we add the edges
{vℓ, bi,sol(sℓ

i
)} and {vℓ, ci,conn(sℓ

i
)}. For the remaining edges, we refer to Figure 2.

Behavior of a Single Path Gadget. We assume that G is a graph that contains P + r̂ as
an induced subgraph and that only the join vertices ui, i ∈ [4], and clique vertices vℓ, ℓ ∈ [6],
have neighbors outside this copy of P + r̂. Furthermore, let X be a connected vertex cover
of G with r̂ ∈ X; we abuse notation and write X ∩ P instead of X ∩ V (P ).

We begin by showing a lower bound for |X ∩P | via a vertex-disjoint packing of subgraphs.
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▶ Lemma 4.1 (⋆). We have that |X ∩ P | ≥ 21 = 4 · 4 + 5 and more specifically ai,1 ∈ X,
|X ∩ {ui, ai,3, bi,1, bi,0}| ≥ 2, |X ∩ {ci,0, ci,1}| ≥ 1 for all i ∈ [4] and |X ∩ {v1, . . . , v6}| ≥ 5.

Using Lemma 4.1, we precisely analyze the solutions that match the lower bound of 21
on P and show that these have the desired state behavior. We define for any Y ⊆ V (P ) the
4-tuple state(Y ) = (stateY (u1), stateY (u2), stateY (u3), stateY (u4)) and show that the
states communicated to the boundary depend on the state of the central clique as desired.

▶ Lemma 4.2 (⋆). If |X ∩P | ≤ 21, then |X ∩P | = 21 and ai,1 ∈ X, X ∩{ui, ai,3, bi,1, bi,0} ∈
{{ui, bi,1}, {ai,3, bi,0}}, |X ∩ {ci,0, ci,1}| = 1 for all i ∈ [4] and |X ∩ {v1, . . . , v6}| = 5.
Furthermore, we have state(X ∩ P ) = sℓ for the unique integer ℓ ∈ [6] with vℓ /∈ X.

Proof sketch. The first part follows by observing that the inequalities of Lemma 4.1 must be
tight and that we must pick an antipodal pair in the cycle {ui, ai,3, bi,1, bi,0}. For the second
part, we show that stateX∩P (ui) = sℓ

i for all i ∈ [4]. If vℓ /∈ X, then bi,sol(sℓ
i
), ci,conn(sℓ

i
) ∈ X

by construction of P and because X is a vertex cover. Using the packing equations, we can
propagate this information to ui and obtain the desired state. ◀

Similarly, we also establish that for every state sℓ ∈ States a partial solution Xℓ
P attaining

sℓ actually exists. This is made precise by the following Lemma 4.3, which also shows that
for these partial solutions it is sufficient to establish root-connectivity for the join vertices.

▶ Lemma 4.3. For every ℓ ∈ [6], there exists a vertex cover Xℓ
P of P such that |Xℓ

P | = 21,
Xℓ

P ∩ {v1, . . . , v6} = {v1, . . . , v6} \ {vℓ}, and state(Xℓ
P ) = sℓ. If X is a vertex cover of G

with r̂ ∈ X and X ∩ P = Xℓ
P and for every i ∈ [4] either ui /∈ X or ui is root-connected in

X, then every vertex of Xℓ
P is root-connected in X.

State Transitions. To study the state transitions, suppose that we have two copies P 1 and
P 2 of P such that the vertices u3 and u4 in P 1 are joined to the vertices u1 and u2 in P 2.
We denote the vertices of P 1 with a superscript 1 and the vertices of P 2 with a superscript
2, e.g., u1

3 refers to the vertex u3 of P 1. Again, suppose that P 1 and P 2 are embedded
as induced subgraphs in a larger graph G with a root vertex r̂ and that only the vertices
u1

1, u1
2, u2

3, u2
4 and the clique vertices v1

ℓ , v2
ℓ , ℓ ∈ [6], have neighbors outside of P 1 + P 2 + r̂.

Using the previous lemmas, we show that the state transitions respect the transition
order and that it is also feasible for the state to remain stable.

▶ Lemma 4.4 (⋆). Suppose that |X ∩ P 1| ≤ 21 and |X ∩ P 2| ≤ 21, then state(X ∩ P 1) = sℓ1

and state(X ∩P 2) = sℓ2 with ℓ1 ≤ ℓ2. Additionally, for each ℓ ∈ [6], the set Xℓ = Xℓ
P 1 ∪Xℓ

P 2

is a vertex cover of P 1 + P 2 with stateXℓ({u1
3, u1

4, u2
1, u2

2}) ⊆ {0, 11}.

Proof sketch. By Lemma 4.2, we have state(X ∩ P 1) = sℓ1 and state(X ∩ P 2) = sℓ2 for
some ℓ1, ℓ2 ∈ [6]. Showing ℓ1 ≤ ℓ2 corresponds to proving that all entries below the main
diagonal of the chosen submatrix of the compatibility matrix are zero, i.e., that the submatrix
is triangular. The second part corresponds to checking that all diagonal entries are ones.
Both parts are proved by case checking. ◀

4.2 Remarks on Connected Dominating Set Lower Bound (⋆)
The path gadget construction for Connected Dominating Set is very similar to Connec-
ted Vertex Cover as large parts of the gadget can be reused by subdividing edges. For
Connected Dominating Set, we have to work with 4 vertex states instead of 3 due to
tracking whether a vertex is dominated or not. Hence, we have to contend with, a priori,
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15 = 24 − 1 possible label states instead of 7 = 23 − 1. Surprisingly however, there are only
five different behaviors for these label states, so that we obtain a smaller base, namely 5, for
Connected Dominating Set compared to Connected Vertex Cover.

5 Conclusion and Open Problems

We have provided the first tight results under SETH for connectivity problems parameterized
by clique-width, namely the problems Connected Vertex Cover and Connected
Dominating Set. For several important benchmark problems such as Steiner Tree,
Connected Odd Cycle Transversal, and Feedback Vertex Set, we are not able
to achieve tight results with the current techniques. For Steiner Tree, our algorithmic
techniques readily yield an O∗(4cw)-time algorithm, but the compatibility matrix for the
lower bound only contains a triangular submatrix of size 3 × 3, hence we are not able to
prove a larger lower bound than for treewidth. Similarly for Connected Odd Cycle
Transversal, the techniques for Connected Vertex Cover yield an O∗(14cw)-time
algorithm and a larger lower bound can be proven by adapting the gadgets for Connected
Vertex Cover and adding a gadget to detect the used color at join-vertices, however there
is again no large enough triangular submatrix that would allow us to show that O∗(14cw) is
optimal. For Feedback Vertex Set, a problem with a negative connectivity constraint in
the form of acyclicity, the usual cut-and-count approach involves counting the edges induced
by a partial solution, but this immediately leads to an XP-algorithm parameterized by
clique-width as already noted by Bergougnoux and Kanté [4, 5]. Hence, a different approach
is required to obtain plausible running times for tight results.

A big caveat in applying algorithms parameterized by clique-width is that we are lacking
good algorithms for computing clique-expressions. The currently best algorithms rely on
approximating clique-width via rankwidth, see Oum and Seymour [40] for the first such
algorithm and Fomin and Korhonen [18] for the most recent one. However, the approximation
via rankwidth introduces an exponential error, therefore all single-exponential algorithms
parameterized by clique-width become double-exponential algorithms unless we are given a
clique-expression by other means. A first step towards better approximation algorithms for
clique-width could be a fixed-parameter tractable algorithm with subexponential error.
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