
Solving Edge Clique Cover Exactly via Synergistic
Data Reduction
Anthony Hevia
Hamilton College, Clinton, NY, USA

Benjamin Kallus #

Dartmouth College, Hanover, NH, USA

Summer McClintic
Hamilton College, Clinton, NY, USA

Samantha Reisner
Hamilton College, Clinton, NY, USA

Darren Strash1 #

Hamilton College, Clinton, NY, USA

Johnathan Wilson
Hamilton College, Clinton, NY, USA

Abstract
The edge clique cover (ECC) problem – where the goal is to find a minimum cardinality set of
cliques that cover all the edges of a graph – is a classic NP-hard problem that has received much
attention from both the theoretical and experimental algorithms communities. While small sparse
graphs can be solved exactly via the branch-and-reduce algorithm of Gramm et al. [JEA 2009],
larger instances can currently only be solved inexactly using heuristics with unknown overall solution
quality. We revisit computing minimum ECCs exactly in practice by combining data reduction for
both the ECC and vertex clique cover (VCC) problems. We do so by modifying the polynomial-time
reduction of Kou et al. [Commun. ACM 1978] to transform a reduced ECC instance to a VCC
instance; alternatively, we show it is possible to “lift” some VCC reductions to the ECC problem.
Our experiments show that combining data reduction for both problems (which we call synergistic
data reduction) enables finding exact minimum ECCs orders of magnitude faster than the technique
of Gramm et al., and allows solving large sparse graphs on up to millions of vertices and edges that
have never before been solved. With these new exact solutions, we evaluate the quality of recent
heuristic algorithms on large instances for the first time. The most recent of these, EO-ECC by
Abdullah et al. [ICCS 2022], solves 8 of the 27 instances for which we have exact solutions. It is our
hope that our strategy rallies researchers to seek improved algorithms for the ECC problem.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms; Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Packing and covering problems

Keywords and phrases Edge clique cover, Vertex clique cover, Data reduction, Degeneracy

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.61

Related Version Full Version: https://arxiv.org/abs/2306.17804

Supplementary Material Software (Source Code): https://github.com/darrenstrash/Redu3ECC

Acknowledgements We thank the anonymous reviewers for their insightful feedback, David Swartz
from Hamilton College for technical support, and Adam Chrisman, Caitlin Matwijec-Walda, and
Jon Matwijec-Walda for a cozy space to work at The Copper Easel and Superofficial in Rome, NY.

1 Corresponding author.

© Anthony Hevia, Benjamin Kallus, Summer McClintic, Samantha Reisner, Darren Strash, and
Johnathan Wilson;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 61;
pp. 61:1–61:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0003-2049-954X
mailto:benjamin.p.kallus.gr@dartmouth.edu
https://orcid.org/0009-0007-3088-5451
mailto:dstrash@hamilton.edu
https://orcid.org/0000-0001-7095-8749
https://orcid.org/0009-0006-2992-8840
https://doi.org/10.4230/LIPIcs.ESA.2023.61
https://arxiv.org/abs/2306.17804
https://github.com/darrenstrash/Redu3ECC
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

1 Introduction

In the edge clique cover (ECC) problem, also called the clique cover problem, we are given an
unweighted, undirected, simple graph G = (V, E) and asked to find a minimum cardinality
set of cliques that cover the edges of G. The ECC problem is NP-hard, however its decision
variant did not appear in Karp’s original list of NP-complete problems [23], though the
vertex clique cover (VCC) problem did. Compared to the VCC problem, the ECC problem
has received the lion’s share of attention from researchers, in part because it has many
applications. For instance, edge clique covers can be used to succinctly represent constraints
for integer program solvers [5] and to detect communities in networks [12].

Data reduction rules, which allow one to transform an input instance to a smaller
equivalent instance of the same problem, are powerful tools for solving NP-hard problems in
practice [4, 26]. Of particular interest in the field of parameterized algorithms is whether the
repeated application of data reduction rules produces a kernel – which is a problem instance
that has size bounded by a function O(f(k)) of some parameter k of the input. Gramm
et al. [19] show that repeated application of four simple reduction rules produce a kernel
of size 2k, where the parameter k is the number of cliques in the cover. When intermixed
with branch-and-bound (a so-called branch-and-reduce algorithm), these reduction rules
enable solving sparse graphs of up to 10,000 vertices quickly in practice. Since their seminal
work, no progress has been made on solving larger instances exactly. Indeed, the prospect
of doing so is grim since polynomial kernels are unlikely to exist for the ECC problem,
when parameterized on the solution size [13]. Although researchers have found further FPT
algorithms (and smaller kernels) with other parameters [6, 32], these algorithms are still
only able to solve relatively small instances in practice. The outlook for the VCC problem is
even worse in theory: it is unlikely to have any problem kernel when parameterized on the
number of cliques k in the cover, as it is already NP-hard for k = 3 (since it is equivalent to
3-coloring the complement graph).

However, recent data reductions for the VCC problem have been shown to significantly
accelerate computing minimum VCCs exactly in practice. Strash and Thompson [31]
introduce a suite of reduction rules and show that data reduction can solve real-world sparse
graphs with up to millions of vertices in seconds.

Our Results

We show that combining VCC and ECC data reductions enables the ECC problem to be
solved exactly on large instances not previously solvable by Gramm et al. [19]. We do so by
modifying the polynomial-time transformation of Kou et al. [25] to transform a reduced ECC
instance to a VCC instance, but also show that some VCC data reductions can be “lifted”
to ECC data reductions. Their combined reduction power (which we call synergistic data
reduction) reduces an ECC instance significantly more than Gramm et al.’s reductions alone,
enabling us to exactly solve graphs with millions of vertices and edges. With these exact
results, we objectively evaluate the quality of heuristic algorithms recently introduced in
the literature. On instances not solvable exactly with our method, we give upper and lower
bounds for use by future researchers.

2 Related Work

We now briefly review the relevant previous work on the ECC and VCC problems, as well as
practical data reduction in related problems.

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:3

2.1 Edge Clique Cover
The goal of the edge clique cover (ECC) problem is to cover the edges of the graph G

with a minimum number of cliques, denoted θE(G). That is, to find a set of cliques
C = {C1, C2, . . . , Ck} such that each edge is in at least one clique in C and k = θE(G).
Although closely related to the VCC problem (to cover vertices with a minimum number of
cliques, denoted θ(G)), Brigham and Dutton [8] showed that θ(G) ≤ θE(G), and that these
cover numbers can differ significantly: θE(G) can be as large as θ(G)(n − θ(G)). Gramm et
al. [19] introduced four data reductions for the ECC problem, which they show can solve
real-world sparse graphs of hundreds of vertices, as well as synthetic instances on up to 10K
vertices in practice, when interleaved with branch and bound. Furthermore, they showed that
their data reductions produce a kernel of size 2k, where k is the number of cliques. Cygan et
al. [13] showed that it is unlikely that a polynomial-size kernel exists when parameterized by
the number of cliques in the cover, as otherwise the polynomial hierarchy collapses to its
third level. However, Blanchette et al. [6] gave a linear-time algorithm having running time
O(2(k

2)n) where k is the treewidth of the graph. In practice, their algorithm is effective on
graphs with hundreds of vertices and small treewidth. For larger graphs, heuristic methods
are used to compute inexact ECCs [12, 2, 1] in practice. No heuristic algorithm performs
best on all instances, and their overall quality is unclear.

2.2 Vertex Clique Cover
The vertex clique cover (VCC) problem is NP-hard, and closely related to the maximum
independent set and graph coloring problems. The size of a minimum VCC (also called the
clique cover number) θ(G) is lower bounded by the size of a maximum independent set (the
independence number α(G)) and equivalent to the chromatic number of the complement
graph, χ(G). There is a rich line of research on the graph coloring problem, which seeks
to compute the chromatic number; many of the theoretical results for the VCC problem
come via the graph coloring problem. The fastest exact exponential-space algorithm for
computing the chromatic number on an n-vertex graph has time O∗(2n) (where O∗ hides
polynomial factors) using a generalization of the exclusion-inclusion principle [24], and in
polynomial space the problem can be solved in time O(2.2356n) [18]. Furthermore, there
exists no polynomial-time algorithm with approximation ratio better than n1−ϵ for ϵ > 0
unless P = NP [34].

In terms of data reduction, we note that it is unlikely that a kernel exists when paramet-
erized on the (vertex) clique cover number. Deciding if a cover with even 3 cliques exists is
NP-complete (since 3-coloring the complement is NP-hard). A polynomial kernel would have
size O(1) and could be computed in polynomial time. Solving the kernel with brute-force
computation would solve the VCC problem in polynomial time, implying P = NP . However,
in practice, the VCC problem can be solved on large, sparse real-world graphs using the data
reductions by Strash and Thompson [31].

2.3 Data Reduction in Practice for Related Problems
Other classical NP-hard problems have large suites of data reductions that are effective in
practice, including minimum vertex cover [4, 15], maximum cut [16], and cluster editing [7].
Popular data reductions include variations of simplicial vertex removal, degree-2 folding,
twin, domination, unconfined, packing, crown, and linear-programming-relaxation-based
reductions [4]. Even the simplest reductions can be highly effective when combined with

ESA 2023

61:4 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

other techniques [10, 30]. Data reductions are most effective in sparse graphs, which are
the graphs that we consider here. Finally, similar to what we propose here, other NP-hard
problems are solved by first applying a problem transformation. In particular, algorithms for
minimum dominating set problem first transform the problem to an instance of the set cover
problem [33].

3 Preliminaries

We consider a simple finite undirected graph G = (V, E) with vertex set V and edge set
E ⊆ {{u, v} | u, v ∈ V }. For brevity, we denote by n = |V | and m = |E| the number of
vertices and edges in the graph, respectively. When more specificity is needed, we denote
the vertex and edge set of a graph G by V (G) and E(G) respectively. We say two vertices
u, v ∈ V are adjacent (or neighbors) when {u, v} ∈ E. The open neighborhood of a vertex
v ∈ V is the set of its neighbors N(v) := {u | {u, v} ∈ E}, and the degree of v is |N(v)|. We
further define the closed neighborhood of a vertex v ∈ V to be N [v] := N(v) ∪ {v}. Extending
these definitions, the open neighborhood of a set A ⊆ V is N(A) :=

⋃
v∈A N(v) \ A and the

closed neighborhood of A is N [A] :=
⋃

v∈A N [v]. The subgraph of G induced by a vertex set
V ′ ⊆ V , denoted G[V ′], has vertex set V ′ and edge set E′ = {{u, v} ∈ E | u, v ∈ V ′}. The
degeneracy d of a graph G is the smallest value such that every nonempty subgraph of G

has a vertex of degree at most d [27]. It is possible to order the vertices of a graph G in
time O(n + m) so that every vertex has d or fewer neighbors later in the ordering; such an
ordering is called a degeneracy ordering [14].

A vertex set C ⊆ V is called a clique if, for each pair of distinct of vertices u, v ∈ C,
{u, v} ∈ E. A set of cliques C is called an edge clique cover (ECC) (or just a clique cover) of
G if for every edge {u, v} ∈ E there exists at least one C ∈ C such that {u, v} ⊆ C. That is,
there is some clique in C that covers {u, v}. The set of cliques C is said to cover the graph G.
An ECC of minimum cardinality is called a minimum ECC, and its cardinality is denoted by
θE(G), called the edge clique cover number.

Similarly, in a vertex clique cover (VCC), every vertex v ∈ V is covered by some clique.
The cardinality of a minimum VCC is the clique cover number, denoted by θ(G).

4 Existing Tools Discussion

In this section, we discuss basic tools that we will use to solve the ECC problem, together
with insights into their behavior on sparse graphs. We begin by describing the existing ECC
data reductions by Gramm et al. [19]. We then discuss how to convert an input ECC instance
to an equivalent VCC instance using the technique of Kou et al. [25]. We will extend these
tools to develop our full algorithm combining ECC and VCC reductions in the next section.

4.1 ECC Reduction Rules
Gramm et al. [19] introduce four data reduction rules that either cover edges by a clique
known to be in a minimum cardinality ECC or add edges to the input graph G. Once all of
a vertex v’s incident edges are covered, v can be removed from the graph.

With each edge {u, v}, Gramm et al. store the common neighbors in G, denoted by
N{u,v}, as well as a count c{u,v} = |E(G[N{u,v}])| of the edges between common neighbors.
These values are updated in ECC Reduction 1 and are used in ECC Reduction 2.

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:5

v

C1

x y

z v

x y

z

x y

z

C2

Figure 1 Illustrating Gramm et al. [19]’s data reductions: (left) edge {v, x} is in exactly one
maximal clique C1, triggering ECC Reduction 2 and covering edges {v, x}, {v, z}, and {x, z} (middle).
Vertex v can then be removed with ECC Reduction 1. The remaining triangle (right) is covered by
clique C2 by applying ECC Reduction 2 to either {x, y} or {y, z}.

Throughout the application of data reductions, vertices are removed from G and edges
are covered. Figure 1 illustrates an example of the reductions. Set let edge set E′ ⊆ E be
the set of uncovered edges (by extension, E \ E′ are the covered edges). The graph G only
changes when a vertex is removed.

We note that the data reductions by Gramm et al. [19] are particularly effective for
sparse graphs; however, the original data reductions were not written with efficiency in mind.
Although these reductions have (very) slow theoretical running times, we offer insights as to
why their reductions are faster in practice than indicated by the theoretical running time
from Gramm et al. [19].

▶ ECC Reduction 1 ([19]). Let v ∈ V be a vertex whose incident edges are all covered (i.e.,
in E \ E′). Then remove v from the graph G, along with its incident edges, and update values
c{w,x} and N{w,x} for all uncovered edges {w, x} ∈ E′ whose endpoints are both adjacent to
v, i.e., {w, x} ⊆ N(v).

As noted by Gramm et al. [19], this step can be applied to all vertices in running time
O(n2m) by iterating over each vertex v and updating N{u,w} for all edges {u, w} ∈ E′ whose
endpoints are adjacent to v. However, in sparse graphs the maximum degree in G, denoted
∆, is significantly smaller than n. Each edge {u, w} has its set N{u,w} updated at most ∆
times, taking O(∆) time to update each time, giving a more reasonable running time of
O(∆2m). We note that with adjustments, this can be run faster by enumerating all triangles
in G in time O(dm) using the triangle listing by Chiba and Nishizeki [11] and updating
N{u,w} for edge {u, w} in each triangle; however, this is a different implementation than that
done by Gramm et al. [19] and not our focus here.

▶ ECC Reduction 2 ([19]). Let edge {u, v} ∈ E′ be an uncovered edge such that c{u,v} =(|N{u,v}|
2

)
(i.e., the edge is in exactly one maximal clique in G′). Then C = N{u,v} ∪ {u, v}

is a maximal clique of G in some minimum ECC. Add the clique C to the clique cover, and
cover any uncovered edges in C in G.

As noted by Gramm et al. [19], ECC Reduction 2 can be implemented in time O(n2m)
by iterating over each edge {u, v} ∈ E′, checking if c{u,v} =

(|N{u,v}|
2

)
in O(1) time, and

covering the edges of {u, v}’s clique in time O(n2) time.
However, when run on sparse graphs, which tend to have low degeneracy d [14], this rule

is much faster. Graphs with degeneracy d have cliques of at most d + 1 vertices, therefore
the reduction is only triggered when |N{u,v}| < d. Hence, in practice, we should observe the
much faster running time of O(d2m).

ESA 2023

61:6 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

vde

vab

vef

vbc

d e f g

cba

vae
vbe

vbf

vfg

vcg

vcfvbgG GV CC

C1

C3

C2

C4

C ′
1

C ′
3

C ′
2 C ′

4

Figure 2 An example graph G with minimum ECC and its transformed graph GV CC with a
corresponding minimum VCC.

Gramm et al. introduce two more ECC reductions (which we’ll refer to as ECC Reduc-
tions 3 and 4), however, they are more complex and less effective than ECC Reductions 1
and 2 in practice. Experiments by Gramm et al. show that these reductions are very slow,
and only improve the search tree size by a constant factor when incorporated into branch
and reduce [19]. We therefore omit them from our discussion and implementation.

4.2 Transforming an ECC Instance to a VCC Instance
Kou et al. [25] showed that the ECC problem is NP-hard via a polynomial-time reduction
from the VCC problem. Furthermore, they gave a polynomial-time reduction to the VCC
problem, which we use as the basis of our transformation. We describe their transformation
and briefly justify why it works.

Given an input graph G = (V, E) for the ECC problem Kou et al. [25] transform G to a
new graph GV CC = (VV CC , EV CC) that is an equivalent VCC instance as follows. For each
edge {x, y} ∈ E, create a new vertex vxy ∈ VV CC , then add an edge {vxy, vwz} to EV CC if
and only if there exists a clique C in G containing both {x, y} and {w, z}. Now, for any
given subset C ⊂ VV CC , C is a clique in GV CC iff its vertices’ corresponding edges in E

also induce a clique in G. Hence, a minimum cardinality VCC in GV CC corresponds to a
minimum cardinality ECC in G. (See Figure 2.)

To determine if two edges are in a clique together in G, Kou et al. [25] make the following
observation:

▶ Observation 1 ([25]). Two distinct edges {x, y}, {w, z} are in a clique together in G iff
{x, y} and {w, z} are incident and {x, y} ∪ {w, z} induce a triangle, or {x, y} and {w, z} are
not incident and {w, x, y, z} form a 4-clique.

However, there is a clear issue when using this transformation: GV CC can be very large.
We briefly discuss its size and sparsity.

4.2.1 The Effect of Transformation on Graph Size and Sparsity
In the worst case, the size of GV CC is a quadratic factor larger than G. Indeed, if the graph
G is itself the complete graph Kn, on n vertices and Θ(n2) edges, then the transformed graph
is the complete graph Kn(n−1)/2 having Θ(n2) nodes and Θ(n4) edges. However, we show
that the size of the graph only increases by a factor of O(d2), where d is the degeneracy of
the graph. Real-world sparse graphs have low degeneracy [14], and thus this is a significant
improvement over the worst case.

▶ Theorem 2. Let the degeneracy of G = (V, E) be d. Then |VV CC | = m ≤ dn and
|EV CC | = O(d2m).

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:7

Proof. By construction |VV CC | = m; hence, to bound |VV CC |, we bound the number of
edges in G. In a degeneracy ordering of the graph, each vertex has at most d later neighbors
in the ordering. Therefore, |VV CC | = m ≤ dn. To bound |EV CC |, we compute an upper
bound on the number of triangles and 4-cliques in G. Following Observation 1, each edge in
EV CC corresponds to a pair of edges in E contained in a triangle or a pair of non-incident
edges in a 4-clique. Each triangle has 3 edges, and each 4-clique has 3 pairs of non-incident
edges. Therefore, an asymptotic upper bound of the number of triangles and 4-cliques in G

gives an upper bound for |EV CC |.
In any triangle, some vertex must come first in a degeneracy ordering, and can be in a

triangle with at most
(

d
2
)

of its at most d later neighbors. Therefore each vertex is in O(d2)
triangles with its later neighbors and, summing up over all vertices, contributes at most
O(d2n) edges to EV CC . Similarly, for each edge {u, v} we count the number of 4-cliques it is
in with (non-incident) edges that come lexicographically after it in the degeneracy ordering.
The number of triangles the second vertex can be in with later neighbors is

(
d
2
)

and hence
the edge is in at most O(d2) 4-cliques with v’s at most d later neighbors, giving at most
O(d2m) 4-cliques total. Thus, we conclude that |EV CC | = O(d2m). ◀

Thus, GV CC has at size at most O(d2m), a factor O(d2) larger than G. As a con-
sequence, the average degree of the graph may increase, but by no more than a factor O(d):
whereas G has average degree 2|E|/|V | = O(dn)/n = O(d), graph GV CC has average degree
2|EV CC |/|VV CC | = O(d2m)/m = O(d2). Therefore, for input graphs with small degeneracy,
the transformed graph is expected to be sparse as well.

However, even if the degeneracy d is small, the graph GV CC may be very large in practice.
Hence, to use this transformation, we require techniques to keep the graph size manageable.

5 Synergistic Reductions: Applying ECC and VCC Reductions

We propose to handle the blow-up by Kou et al. [25] by applying both ECC and VCC
reductions to the problem, which we call synergistic data reduction. We first show how to
adjust the transformation to work on reduced ECC instances, after which we can apply VCC
reductions. We also explore the possibility of “lifting” VCC reductions to ECC reductions.

5.1 Transforming a Partially-Covered ECC Problem Kernel

Recall that the data reductions from Gramm et al. [19] result in a graph in which some edges
are covered, which is not supported by the transformation of Kou et al. [25]. While it is
tempting to modify the transformation to operate on only the uncovered edges E′, this does
not necessarily result in an equivalent instance, as already-covered edges may still be needed
to compute a minimum number of cliques covering E′. For instance, in Figure 1, covering
edges {x, y} and {y, z} with the single clique C2 uses the already-covered edge {x, z}.

One way to correct for this is to first perform the transformation on the entire graph
G = (V, E), and then take the subgraph induced by the vertices corresponding to uncovered
edges in E′. However, this strategy is slow when the edge set E is significantly larger than
E′. We show that it is possible to perform the transformation without making vertices for
all edges in E. Note that since all that remains is to cover the edges in E′, we now focus on
covering all E′ using a minimum number of cliques in G. Taken together with already-chosen
cliques from ECC reductions, this gives us a covering of all of G. (See Figure 3.)

ESA 2023

61:8 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

G G′
V CC

vde

vab

vef

vbc

d e f g

cba

vbf

vfg

vcg

vcfvbg

vbeC1

C2

C ′
1

C ′
2

Figure 3 A partially-covered graph G with cliques C1, C2 already added to the cover, and its
transformed graph G′

V CC . Grayed vertices and (dotted) edges are those in GV CC , but not G′
V CC .

We transform G to a graph G′
V CC = (V ′

V CC , E′
V CC), where V ′

V CC = {vxy | {x, y} ∈ E′}
and E′

V CC = {{vxy, vwz} | {x, y}, {w, z} ∈ E′ and {x, y} ∪ {w, z} is a clique in G}. This
transformation preserves cliques in G that cover edges in E′, which we capture with the
following observation.

▶ Observation 3. If C ′ is a clique in G′
V CC then C = ∪vxy∈C′{x, y} is a clique covering

|C ′| edges of E′ in G.

Furthermore, the transformation gives a correspondence between cliques covering E′ in
G and VCCs in G′

V CC .

▶ Theorem 4. If C′ is a VCC in G′
V CC then C = {∪vxy∈C′{x, y} | C ′ ∈ C′} is a set of cliques

covering E′ in G.

Proof. By Observation 3, every clique C ′ ∈ C′ in G′
V CC corresponds to a clique C =

∪vxy∈C′{x, y} in G that covers its corresponding edges of E′. Hence, a VCC that covers all
V ′

V CC of G′
V CC corresponds to a collection of cliques covering all edges E′ in G. ◀

Note that in Theorem 4, |C| = |C′|. Hence, a minimum VCC in G′
V CC corresponds

to a minimum-cardinality set of cliques covering E′ in G. This transformation gives us a
technique for computing a minimum ECC: First apply the data reductions of Gramm et al.,
then compute G′

V CC and use VCC reductions and any VCC solver to compute a minimum
VCC in G′

V CC , giving us cliques covering E′ in G and, ultimately an entire ECC of G. While
applying VCC reductions to G′

V CC may produce a smaller instance, these data reductions
are not actually producing a smaller ECC instance. However, as we now show, we can also
“lift” some VCC reductions to the ECC problem, by keeping the equivalence between cliques
in the transformation in mind.

5.2 Lifting VCC Reduction Rules to ECC

Unlike the ECC problem, the VCC problem has many data reduction rules [31]. These
include reductions based on simplicial vertices, dominance, twins, degree-2 folding, and
crowns. We briefly discuss two classes of VCC reductions: clique-removal-based rules and
folding-based rules. We place them in the context of the ECC problem, discuss whether it
is viable to “lift” them to the ECC problem, and consider if the graph transformation is
needed. By combining existing ECC reductions with VCC reductions, we aim to reduce ECC
instances even further.

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:9

v
C = N [v]

(a) C is in a minimum VCC.

u w
vuw

G G′
V CC

(b) Edge {u, w} ∈ E′ is in two cliques in G, but vuw in G′
V CC is

simplicial.

Figure 4 The simplicial vertex VCC reduction can be applied after transforming G to G′
V CC .

5.2.1 Clique-Removal-Based VCC Reductions
We call a VCC reduction that removes a set of cliques from the graph a clique-removal-based
rule. Four VCC reductions (simplicial vertex, dominance, twin removal, and crown) are
clique-removal-based rules [31]. Such rules can be easily transformed into an ECC reduction:
By the equivalence between cliques in the problem transformation, stated in Observation 3,
removing a clique in G′

V CC is equivalent to covering its corresponding clique in G. Thus, to
apply clique-removal-based VCC reductions directly to the ECC problem, we can compute
G′

V CC , apply any clique-removal-based rules, and then cover these cliques in G. We capture
this with the following theorem.

▶ Theorem 5. Any clique-removal-based VCC reduction can be lifted to an ECC reduction.

Of course, we could try to apply these reductions more efficiently to G directly. We discuss
two clique-removal-based VCC reductions and discuss whether they are worth implementing
for ECC directly, or if we should transform G to G′

V CC first.

Simplicial Vertex Reduction

A vertex v is simplicial if N [v] forms a clique. In this case, the clique C = N [v] is in some
minimum VCC. (See Figure 4a.)

▶ VCC Reduction 1 (Simplicial Vertex Reduction [31]). Let v ∈ V be a simplicial vertex.
Then C = N [v] is a clique in some minimum VCC. Add C to the clique cover and remove C

from the graph.

Applying VCC Reduction 1 on G′
V CC is reminiscent of applying ECC Reduction 2 on

the untransformed graph G. While it is true that for {u, w} ∈ E′, if N{u,w} is a clique in G,
then vuw is simplicial in G′

V CC , the converse is not true in general. Hence, VCC Reduction 1
is more powerful. Consider the counterexample in Figure 4b. Vertex vuw is simplicial in
G′

V CC , but {u, w} ∈ E′ is in two cliques of G.
Thus, we have a new data reduction for the ECC problem, which subsumes ECC

Reduction 2:

▶ ECC Reduction 5 (Lifted Simplicial Vertex Reduction). Let edge {u, w} ∈ E′ and let set
C = {x, y ∈ V | {x, y} ∈ E′ and {u, w} ∪ {x, y} is a clique in G} be the set of vertices of
edges in some clique with {u, w}. If C is a clique, then add C to the clique cover, and cover
any uncovered edges of C in G.

To apply our lifted reduction, we could of course first compute G′
V CC and then apply

VCC Reduction 1. However, we can also apply it directly to G with a slight modification to
ECC Reduction 2. For each edge {u, w} ∈ E′ compute the common neighborhood N{u,w}.
Instead of checking that the common neighborhood is a clique, collect the uncovered edges

ESA 2023

61:10 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

I

H

M = {C1, C2} I ′ = C3

(a) A flared crown. Cliques C1, C2,
and C3 are in some minimum VCC.

I

H

a b c d

x y z

vab vbc vcd

vxy vyz

G G′
V CC

(b) A partially-covered G where G′
V CC is a flared crown.

Figure 5 The crown removal VCC reduction can be applied after transforming G to G′
V CC .

between vertices in N{u,w}, and check if they induce a clique. Since |N{u,w}| ≤ ∆, it takes
O(d∆) to collect uncovered edges by iterating through the at most d later neighbors of each
vertex, which dominates the running time of this step. Exhaustively applying the reduction
to all edges takes time O(d∆m), which is slightly slower than the O(d2m) time for ECC
Reduction 2.

Is it worth applying ECC Reduction 5 directly to G, or should we first transform G

and run VCC Reduction 1 instead? The transformation can be done in time O(d2m) by
enumerating all of the triangles and 4-cliques of G [11], hence performing the transformation
is faster in theory than applying ECC Reduction 5 to G directly. However, in G′

V CC the
largest clique may have as many as Θ(d2) vertices and Θ(d4) edges since a clique of size d + 1
in G has Θ(d2) edges in G. Therefore, the time to apply VCC Reduction 1 for each of the m

vertices of G′
V CC is O(d4m). Thus, in theory, it is more efficient to apply ECC Reduction 5

directly, rather than first applying a conversion.
However, there are compelling reasons to perform the conversion. For one, most imple-

mentations of simplicial vertex reductions limit the degree of the vertex considered – in some
cases to as small as two – since large-degree simplicial vertices rarely appear in sparse graphs.
Therefore, in practice, it is unlikely that we would observe this large running time. However,
a more compelling reason to perform the transformation is that there are two highly effective
VCC reductions that we do not currently know how to apply directly to G. The first is the
crown removal reduction (a clique-removal-based reduction) and the second is the degree-2
folding-based reduction.

Crown Removal Reduction

The crown removal reduction is arguably one of the most powerful data reductions, successfully
reducing sparse instances for the minimum vertex cover and VCC problems [3, 4, 10].

In a pair of vertex sets (H, I), H is called a head and I a crown if: I is an independent
set, N(I) = H, and there exists a matching from H to I of size |H|. Figure 5a shows a crown
structure. Note that, due to the matching requirement, |I| ≥ |H|. If |I| = |H|, the crown
is called straight, otherwise it is flared. Strash and Thompson [31] give the following data
reduction for the VCC problem, adapting a data reduction for the dual coloring problem [17].

▶ VCC Reduction 2 (Crown Removal Reduction [31]). Let (H, I) be a head and crown with
matching M and unmatched vertices I ′ ⊆ I. Then add cliques in M and I ′ to the clique
cover and remove N [I] from the graph. (See Figure 5a.)

Note that it is possible to identify flared crowns by applying a reduction based on an
LP relaxation, originally introduced for the minimum vertex cover problem by Nemhauser
and Trotter [29]. A variant of this algorithm due to Iwata et al. [21] identifies and removes
all flared crowns at once by computing a maximum matching on a bipartite graph with 2n

vertices and 2m edges using the Hopcroft-Karp algorithm [20] with running time O(m
√

n).

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:11

v

u w

v′
Gf

C ∪ {v′}C ∪ {u}

(a) The degree-2 folding VCC reduction.

u w
vuw

G G′
V CC

(b) Edge {u, w} ∈ E′ in G transforms into a degree-
2 vertex vuw with non-adjacent neighbors in G′

V CC .

Figure 6 The degree-2 folding VCC reduction can be applied after transforming G to G′
V CC .

As Figure 5b illustrates, after exhaustively applying Gramm et al.’s [19] ECC reductions
it is possible to have a crown structure after transforming to G′

V CC . Thus, lifting the crown
removal reduction can further reduce an ECC instance. However, algorithms for computing
a maximum matching for the LP relaxation use an explicit representation of G′

V CC and
therefore it is unclear how to run this reduction without first transforming G to G′

V CC . The
transformation and maximum matching can be computed in time O(d2m + d2m

√
m) =

O(d2m3/2), since there are O(m) vertices and O(d2m) edges in G′
V CC . We leave the question

of whether the LP relaxation reduction can be more efficiently lifted to an ECC reduction as
an open problem.

5.2.2 Folding-Based VCC Reductions
In contrast to clique-removal-based reductions, folding-based reductions contract a subset
S ⊆ V of vertices into a single vertex v′. Folding S produces a new graph Gf = (V f , Ef) with
V f = (V \S)∪{v′} and Ef = (E\{{v, x} ∈ E | v ∈ S})∪{{v′, x} | ∃v ∈ S, x ̸∈ S, {v, x} ∈ E}.
We discuss the connections between the ECC problem and the simplest folding-based
reduction, folding vertices of degree two.

Degree-2 Folding

The degree-2 folding reduction for VCC contracts a degree-2 vertex v with non-adjacent
neighbors u and w that are crossing independent [31]. That is, for each edge {x, y} ⊆
N(u) ∪ N(w) either {x, y} ⊆ N(u) or {x, y} ⊆ N(w). This condition ensures that no
spurious cliques are formed after folding. A vertex v meeting these conditions is foldable.

▶ VCC Reduction 3 (Degree-2 Folding Reduction [31]). Let v ∈ V be a foldable degree-2
vertex with non-adjacent neighbors N(v) = {u, w}. Let Gf be the graph obtained by folding
{v, u, w}. Let Cf be a minimum VCC of Gf with clique Cv′ ∈ Cf covering vertex v′ and let
C = Cv′ \ {v′}. Then, the clique cover

C =
{

(Cf \ {Cv′}) ∪ {C ∪ {u}, {v, w}} if C ⊆ N(u),
(Cf \ {Cv′}) ∪ {C ∪ {w}, {v, u}} otherwise,

is a minimum VCC of G.

See Figure 6a for an example of the degree-2 folding VCC reduction. We note that the
transformation from an ECC instance to a VCC instance by Kou et al. [25] does not produce
any degree-2 vertices with non-adjacent neighbors, as edges forming a triangle or 4-clique in
G form a triangle or 6-clique in GV CC . However, our transformation with covered edges can
result in such vertices (see Figure 6b). Thus, the degree-2 folding VCC reduction can be
used to further reduce the instance when applied to G′

V CC .

ESA 2023

61:12 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

We leave as an open problem whether folding-based rules can be lifted to new ECC
reductions; we conjecture that it is possible to lift at least degree-2 folding. However, given
how effective the degree-2 folding reduction is in practice for the VCC problem, we highly
recommend applying it, even though it incurs the overhead of the transformation to G′

V CC .

5.3 Wrapping It All Up

With the tools in this section in hand, we have a clear path to solving the ECC problem on
sparse graphs: first apply the data reductions due to Gramm et al. [19], then transform the
partially-covered graph into a VCC instance, then apply VCC reductions and solve what
remains with any VCC solver. We next perform experiments to evaluate this method.

6 Experimental Evaluation

We now compare our technique to the state of the art through extensive experiments on
both synthetic instances and real-world graphs.

6.1 Experimental Setup

We implemented the ECC reductions and ECC to VCC transformation in C++ and integrated
our methods with the VCC reductions and VCC algorithms by Strash and Thompson2 [31],
which we then compiled with g++ version 11 using the -O3 optimization flag. Our source
code is available under the open source MIT license3. All experiments were conducted on
Hamilton College’s High Performance Computing Cluster (HPCC), on a machine running
CentOS Linux 7.8.2003, with four Intel Xeon Gold 6248 processors running at 2.50GHz with
20 cores each, and 1.5TB of memory. Each algorithm is run sequentially on its own core.

We run experiments on six different algorithms. Gramm is the original branch-and-reduce
code by Gramm et al. [19] written in OCaml, which we compiled with ocamlc version 3.10.2,
and provided a sufficiently large stack size due to its heavy use of recursion. We implement
three algorithms in C++ that first exhaustively apply ECC Reductions 1 and 2, perform a
problem reduction to a VCC instance, apply VCC reductions, and then run a VCC solver:
Redu3BnR solves with the VCC branch-and-reduce algorithm by Strash and Thompson [31],
Redu3IG solves with the VCC iterated greedy (IG) heuristic algorithm by Chalupa [9], and
Redu3ILP solves with an assignment-based ILP formulation [22, 28] for VCC and Gurobi
version 9.5.1. Finally, the two heuristic algorithms Conte [12] and EO-ECC [1] are from their
respective authors and are compiled with javac version 8 and g++ version 11 with -O3,
respectively. Unless stated otherwise, we run each algorithm with a 24-hour time limit. Our
stated running times do not include I/O time such as graph reading and writing.

In our tables, “Kernel” denotes the relevant size of the graph after reductions as either
uncovered edges (Gramm) or vertices remaining (for VCC-based algorithms). “Time” is the
time (in seconds) the solver takes to exactly solve the instance. A “–” indicates that the
solver did not finish in the 24-hour time limit. Bold values indicate the value is the smallest
among all algorithms in the table.

We run our experiments on randomly-generated instances as well as real-world graphs.

2 https://github.com/darrenstrash/ReduVCC
3 https://github.com/darrenstrash/Redu3ECC

https://github.com/darrenstrash/ReduVCC
https://github.com/darrenstrash/Redu3ECC

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:13

Erdős-Rényi Graphs. We generate 70 instances of varying density using the G(n, p) model
of generating an n-vertex graph where each edge is selected independently with probability
p. We use values of n that are powers of two from 64 to 2048, with two different values of p

for each to show the effect of density on the tested algorithms. We generate 5 graphs with
each n, p pair using different random seeds to observe the behavior of algorithms on multiple
instances of similar size and density.

Real-World Instances. We run our experiments on 52 large, sparse, complex networks
from the Stanford Network Data Repository (SNAP)4, the Laboratory for Web Algorithmics
(LAW)5, and the Koblenz Network Collection (KONECT)6. These graphs include citation
networks, web-crawl graphs, and social networks; the largest graph has 18M vertices, and
most graphs follow a scale-free degree distribution: there are many low degree vertices and
few high degree vertices. The number of vertices and edges for each instance can be found
with experimental results in Tables 2 and 3.

6.2 Results on Synthetic Instances
We begin by comparing the performance of Gramm and Redu3BnR on synthetic instances
generated with the Erdős-Rényi G(n, p) model. In Table 1, we present the average kernel
size and running time executing Gramm and Redu3BnR on the 5 instances of each pair of n

and p. We disable ECC Reduction 3 in Gramm, since this configuration enables it to solve
the largest number of synthetic instances within the time limit.

Focusing on running time, Gramm and Redu3BnR are equally matched on very sparse
graphs, quickly solving many instances in significantly less than one second. Though, as the
density increases even slightly, which can be seen when fixing n but increasing p, Gramm
is no longer able to solve even small instances in a 24-hour time limit. However, on all
instances, Redu3BnR easily computes exact solutions. The reason why is clear: on instances
that Gramm is unable to solve, Gramm’s kernel is large (for the highest density instance with
n = 64, p = 0.2, even a kernel of average size 100 is too large for Gramm to solve), whereas
the VCC kernels for Redu3BnR are significantly smaller in all cases. Indeed, for the densest
graphs of each value of n, Gramm is unable to solve every instance in 24 hours, but Redu3BnR
solves all graphs in less than a second. This illustrates that the combined reduction power of
ECC and VCC reductions is able to handle denser instances than running ECC reductions
alone.

6.3 Solving Large Real-World Instances Exactly
We now see which graphs can be solved exactly by one of three algorithms: Gramm, Redu3BnR,
and Redu3ILP. We disable ECC Reductions 3 and 4 in Gramm, since this configuration enables
it to reduce all instances within the time limit. The results are presented in Table 2. Gramm
was able to solve 12 of the 27 instances exactly; 10 of these graphs were solved because the
kernel had 0 uncovered edges and the other two instances (ca-CondMat and ca-GrQc) had
small kernels of less than 100 uncovered edges. However, Gramm exceeds the 24-hour time
limit on the 15 other instances, even those with as few as 176 uncovered edges.

4 https://snap.stanford.edu/data/
5 http://law.di.unimi.it/datasets.php
6 http://konect.cc/

ESA 2023

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://konect.cc/

61:14 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

Table 1 Results on small Erdős-Rényi graphs of varying density. A “∗” indicates that not all
runs finished in the 24-hour time limit, “–” indicates that no runs finished in the 24-hour time limit.

Graph Gramm Redu3BnR

n p m Kernel Time (s) Kernel Time (s)
64 0.15 300 1 < 0.01 0 < 0.01
64 0.2 404 100 1 324.52∗ 10 < 0.01

128 0.1 805 0 < 0.01 0 < 0.01
128 0.15 1 218 491 – 51 0.03
256 0.075 2 433 42 0.02 0 < 0.01
256 0.1 3 264 1 105 – 12 0.02
512 0.05 6 557 137 0.21 1 0.02
512 0.065 8 513 2 281 – 5 0.04

1 024 0.0365 19 072 1 259 153.21∗ 4 0.08
1 024 0.0375 19 596 1 704 – 4 0.07
2 048 0.025 52 245 3 147 5.18 4 0.18
2 048 0.0275 57 488 7 235 – 5 0.20

In contrast, Redu3BnR solves 18 of the instances. On all instances, the kernel computed by
Redu3BnR was smaller than that of Gramm, the smallest of which is on zhishi-hudong-int,
which is reduced to 2% of the size of Gramm’s kernel. With the exception of three instances
(email-EuAll, web-NotreDame, and web-Stanford), every instance was reduced to at most
10% of Gramm’s kernel size. However, the limitations of branch and reduce for the VCC
problem begin to show on these instances. Similar to Gramm, Redu3BnR only finishes within
the 24-hour time limit on graphs with kernel size less than 100, and therefore its success is
largely due to the reduction of the input instance (a pattern observed in other problems [30]).
On the other hand, the Gurobi solver with an ILP formulation is able to solve kernels of
much larger size, even up to 536 209 vertices (in the case of eu-2005).

6.4 Solving Remaining Instances Heuristically
We now look at the instances that could not be solved in the 24-hour time limit by any
exact method. The results are presented in Table 3. Nine instances were reduced to VCC
within the time limit of 24 hours, and the remaining instances were too large to finish in
the time limit (not in the table). After fully transforming the input ECC instance to a
reduced VCC instance, we ran the iterated greedy approach IG due to Chalupa et al. [9],
which we call Redu3IG, and compare its best solution with a lower bound from KaMIS,
a state-of-the-art evolutionary algorithm for finding near-maximum independent sets on
huge networks [26]. Four instances were solved to within 300 cliques of optimum, two of
which (soc-Slashdot0811 and soc-Slashdot0902) are within 100 cliques. The remaining
instances are solved to within 6 000 cliques of optimum.

6.5 Summarizing the Quality of Existing Heuristic Solvers
Finally, using our exact results, we evaluate the quality of two heuristic solvers designed
for large sparse graphs. We compare Conte, an algorithm by Conte et al. [12] designed for
large sparse graphs, and EO-ECC by Abdullah et al. [1]. We run Conte and EO-ECC on all
instances that were solved exactly (i.e., those from Table 2). The results are presented in
Table 4.

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:15

Table 2 Comparing exact algorithms Gramm, Redu3BnR, and Redu3ILP on real-world instances
solved by at least one of the algorithms in a 24-hour time limit. Times marked with a “*” indicate
that the algorithm’s speed was due to programming language differences and not algorithmic
improvements.

Graph Gramm Redu3BnR Redu3ILP

Name n m Kernel Time (s) Kernel Time (s) Time (s)
ca-AstroPh 18 772 198 050 2 837 – 0 0.33 0.33
ca-CondMat 23 133 93 439 62 1.74 0 0.10 0.10
ca-GrQc 5 242 14 484 9 0.15 0 0.02 0.02
ca-HepPh 12 008 118 489 491 – 0 0.16 0.16
ca-HepTh 9 877 25 973 176 – 0 0.03 0.03
cnr-2000 325 557 2 738 969 755 617 – 23 880 – 10 727.29
dblp-2010 326 186 807 700 868 – 0 1.98 1.98
dblp-2011 986 324 3 353 618 8 898 – 50 9.13 9.88
email-EuAll 265 214 364 481 20 648 – 5 064 – 6.99
eu-2005 862 664 16 138 468 5 555 826 – 536 209 – 12 966.59
p2p-Gnutella04 10 876 39 994 0 0.34 0 0.05∗ 0.05∗

p2p-Gnutella05 8 846 31 839 0 0.23 0 0.05∗ 0.05∗

p2p-Gnutella06 8 717 31 525 0 0.33 0 0.04∗ 0.04∗

p2p-Gnutella08 6 301 20 777 261 – 17 0.04 0.06
p2p-Gnutella09 8 114 26 013 214 – 5 0.04 0.08
p2p-Gnutella24 26 518 65 369 0 0.91 0 0.10∗ 0.10∗

p2p-Gnutella25 22 687 54 705 0 0.63 0 0.08∗ 0.08∗

p2p-Gnutella30 36 682 88 328 0 1.27 0 0.09∗ 0.09∗

p2p-Gnutella31 62 586 147 892 0 2.14 0 0.23∗ 0.23∗

roadNet-CA 1 965 206 2 766 607 0 115.17 0 5.60∗ 5.60∗

roadNet-PA 1 088 092 1 541 898 0 45.75 0 2.94∗ 2.94∗

roadNet-TX 1 379 917 1 921 660 0 73.21 0 3.64∗ 3.64∗

web-BerkStan 685 230 6 649 470 2 096 936 – 152 581 – 6 753.27
web-Google 875 713 4 322 051 266 455 – 16 440 – 35.58
web-NotreDame 325 729 1 090 108 98 861 – 14 553 – 20.10
web-Stanford 281 903 1 992 636 523 480 – 57 463 – 981.82
zhishi-hudong-int 1 984 484 14 428 382 1 175 068 – 26 536 – 568.26

Table 3 Heuristic solutions for graphs that could not be solved exactly in 24 hours. “lb” is a
lower bound on θE(G) from KaMIS, “ub” is the smallest clique cover computed by Redu3IG, and
“Time” is the time in seconds for Redu3IG to reach this result.

Graph KaMIS Redu3IG

Name n m lb ub Time (s)
as-skitter 1 696 415 11 095 298 5 843 072 5 847 591 20 848.17
email-Enron 36 692 183 831 42 141 42 207 2 201.00
soc-Epinions1 75 879 405 740 185 544 186 384 18 064.79
soc-pokec-relationships 1 632 803 22 301 964 12 222 248 12 227 949 21 451.91
soc-Slashdot0811 77 360 469 180 328 018 328 079 3 073.75
soc-Slashdot0902 82 168 504 230 351 012 351 072 3 125.21
wiki-Talk 2 394 385 4 659 565 3 645 692 3 648 312 21 088.53
wiki-Vote 7 115 100 762 34 789 35 004 21 424.48
zhishi-baidu-relatedpages 415 641 2 374 044 1 372 941 1 373 912 9 989.00

ESA 2023

61:16 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

From among the 27 graphs, Conte solves five instances exactly. A further nine instances
are solved within 50 cliques of optimal, and eight additional graphs are solved within 2 000
of optimal. EO-ECC, on the other hand, solves eight instances exactly (a superset of Conte’s
five) and solves these faster than Conte. Furthermore, EO-ECC finds 14 smaller solutions
faster than Conte (Conte only finds four smaller solutions faster). However, a distinct negative
is EO-ECC’s running time and solution quality on cnr-2000, eu-2005, and web-BerkStan,
which is much worse than Conte. We conclude that Conte gives consistently fast results with
reasonable solutions, and EO-ECC is sometimes very fast and accurate, and other times not.

Table 4 Evaluation of the quality of heuristic solvers Conte and EO-ECC on all graphs with
known edge clique cover number θE(G). “ub” is the solution found by the given algorithm, and
“Time” is the algorithm’s time in seconds. Values of “ub” marked in bold indicates the algorithm
found an optimal solution, with its time in bold if it did so faster than its competitor. Values of
“ub” in italics indicate that an algorithm found an ECC smaller than its competitor, with its time in
italics if it did so faster than its competitor.

Graph G Conte EO-ECC

Name n m θE(G) ub Time (s) ub Time (s)
ca-AstroPh 18 772 198 050 15 134 15 481 0.92 15 373 0.50
ca-CondMat 23 133 93 439 16 283 16 378 0.54 16 307 0.07
ca-GrQc 5 242 14 484 3 737 3 749 0.15 3 739 0.01
ca-HepPh 12 008 118 489 10 031 10 142 0.69 10 097 0.35
ca-HepTh 9 877 25 973 9 190 9 264 0.19 9 212 0.02
cnr-2000 325 557 2 738 969 752 118 756 905 14.92 763 365 2 820.97
dblp-2010 326 186 807 700 186 834 187 395 2.22 186 968 0.44
dblp-2011 986 324 3 353 618 707 773 713 219 13.56 709 156 3.48
email-EuAll 265 214 364 481 297 092 298 943 2.58 299 257 2.14
eu-2005 862 664 16 138 468 2 832 059 2 883 585 108.67 3 032 337 8 458.21
p2p-Gnutella04 10 876 39 994 38 491 38 491 0.29 38 491 0.04
p2p-Gnutella05 8 846 31 839 30 523 30 527 0.25 30 525 0.04
p2p-Gnutella06 8 717 31 525 30 322 30 327 0.26 30 324 0.04
p2p-Gnutella08 6 301 20 777 19 000 19 042 0.20 19 012 0.03
p2p-Gnutella09 8 114 26 013 24 117 24 150 0.24 24 133 0.03
p2p-Gnutella24 26 518 65 369 63 725 63 726 0.41 63 725 0.06
p2p-Gnutella25 22 687 54 705 53 367 53 367 0.33 53 367 0.05
p2p-Gnutella30 36 682 88 328 85 821 85 823 0.52 85 821 0.10
p2p-Gnutella31 62 586 147 892 144 478 144 478 0.83 144 478 0.15
roadNet-CA 1 965 206 2 766 607 2 537 936 2 537 945 17.90 2 537 936 1.02
roadNet-PA 1 088 092 1 541 898 1 413 370 1 413 370 10.62 1 413 370 0.69
roadNet-TX 1 379 917 1 921 660 1 763 295 1 763 298 13.48 1 763 295 0.89
web-BerkStan 685 230 6 649 470 1 834 074 1 850 605 54.34 1 903 872 2 089.25
web-Google 875 713 4 322 051 1 242 770 1 254 107 24.96 1 251 672 33.10
web-NotreDame 325 729 1 090 108 451 424 453 864 7.09 453 805 7.31
web-Stanford 281 903 1 992 636 562 417 570 958 16.85 591 957 326.92
zhishi-hudong-int 1 984 484 14 428 382 10 557 244 10 698 424 123.45 10 678 121 322.89

Summary (#optimal / #smaller and faster) (5 / 4) (8 / 14)

7 Conclusion and Future Work

We introduced a technique to further reduce ECC problem instances via VCC data reductions,
enabling us to solve large sparse real-world graphs that could not be solved before. Critical
to this technique is the ability to transform reduced ECC instances to the VCC problem,

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:17

through a modification of the polynomial-time reduction of Kou et al. [25]. The combined
reduction power of ECC and VCC reductions, which we call synergistic data reduction,
produces significantly smaller kernels than ECC reductions alone. Of particular interest for
future work is integrating data reduction rules with existing heuristic algorithms for the
ECC problem, trying to implement a more efficient LP relaxation ECC reduction without a
transformation, and to see if folding-based reductions can be lifted to the ECC problem.

References
1 Wali M. Abdullah and Shahadat Hossain. A sparse matrix approach for covering large

complex networks by cliques. In Derek Groen, Clélia de Mulatier, Maciej Paszynski, Valeria V.
Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science
- ICCS 2022 - 22nd International Conference, London, UK, June 21-23, 2022, Proceedings,
Part III, volume 13352 of Lecture Notes in Computer Science, pages 505–517. Springer, 2022.
doi:10.1007/978-3-031-08757-8_43.

2 Wali M. Abdullah, Shahadat Hossain, and Muhammad. A. Khan. Covering large complex net-
works by cliques—A sparse matrix approach. In D. Marc Kilgour, Herb Kunze, Roman Makarov,
Roderick Melnik, and Xu Wang, editors, Recent Developments in Mathematical, Statistical and
Computational Sciences, pages 117–127. Springer, 2021. doi:10.1007/978-3-030-63591-6_11.

3 Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters.
Crown structures for vertex cover kernelization. Theor. Comput. Syst., 41(3):411–430, 2007.
doi:10.1007/s00224-007-1328-0.

4 Tokuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theor. Comput. Sci., 609, Part 1:211–225, 2016. doi:10.1016/
j.tcs.2015.09.023.

5 Alper Atamtürk, George L. Nemhauser, and Martin W.P. Savelsbergh. Conflict graphs in
solving integer programming problems. European Journal of Operational Research, 121(1):40–
55, 2000. doi:10.1016/S0377-2217(99)00015-6.

6 Mathieu Blanchette, Ethan Kim, and Adrian Vetta. Clique cover on sparse networks. In 2012
Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), pages
93–102. SIAM, 2012. doi:10.1137/1.9781611972924.10.

7 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. A branch-and-bound algorithm for
cluster editing. In Christian Schulz and Bora Uçar, editors, 20th International Symposium
on Experimental Algorithms (SEA 2022), volume 233 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 13:1–13:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2022.13.

8 Robert C. Brigham and Ronald D. Dutton. On clique covers and independence numbers of
graphs. Discrete Mathematics, 44(2):139–144, 1983. doi:10.1016/0012-365X(83)90054-7.

9 David Chalupa. Construction of near-optimal vertex clique covering for real-world networks.
Computing and Informatics, 34(6):1397–1417, 2015. URL: http://www.cai.sk/ojs/index.
php/cai/article/view/1276.

10 Lijun Chang, Wei Li, and Wenjie Zhang. Computing a near-maximum independent set in
linear time by reducing-peeling. Proc. 2017 ACM International Conference on Management
of Data (SIGMOD ’17), pages 1181–1196, 2017. doi:10.1145/3035918.3035939.

11 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing, 14(1):210–223, 1985. doi:10.1137/0214017.

12 Alessio Conte, Roberto Grossi, and Andrea Marino. Large-scale clique cover of real-world
networks. Information and Computation, 270:104464, 2020. doi:10.1016/j.ic.2019.104464.

13 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: New incompressibility results. ACM Trans. Comput.
Theory, 6(2), May 2014. doi:10.1145/2594439.

ESA 2023

https://doi.org/10.1007/978-3-031-08757-8_43
https://doi.org/10.1007/978-3-030-63591-6_11
https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/S0377-2217(99)00015-6
https://doi.org/10.1137/1.9781611972924.10
https://doi.org/10.4230/LIPIcs.SEA.2022.13
https://doi.org/10.1016/0012-365X(83)90054-7
http://www.cai.sk/ojs/index.php/cai/article/view/1276
http://www.cai.sk/ojs/index.php/cai/article/view/1276
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1137/0214017
https://doi.org/10.1016/j.ic.2019.104464
https://doi.org/10.1145/2594439

61:18 Solving Edge Clique Cover Exactly via Synergistic Data Reduction

14 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs in near-optimal time. ACM J. Exp. Algorithmics, 18, 2013. doi:
10.1145/2543629.

15 Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Hans-Joachim Böckenhauer,
Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher
Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, pages
330–356. Springer, 2018. doi:10.1007/978-3-319-98355-4_19.

16 Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, and
Darren Strash. Engineering kernelization for maximum cut. In Proc. 2020 Symposium
on Algorithm Engineering and Experiments (ALENEX), pages 27–41. SIAM, 2020. doi:
10.1137/1.9781611976007.3.

17 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

18 Serge Gaspers and Edward J. Lee. Faster graph coloring in polynomial space. In Yixin Cao
and Jianer Chen, editors, Proc. 23rd International Computing and Combinatorics Conference
(COCOON 2017), volume 10392 of LNCS, pages 371–383. Springer, 2017. doi:10.1007/
978-3-319-62389-4_31.

19 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. J. Exp. Algorithmics, 13, February 2009. doi:10.1145/1412228.
1412236.

20 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

21 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network flow.
In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1749–1761.
SIAM, 2014. URL: https://dl.acm.org/doi/10.5555/2634074.2634201.

22 Adalat Jabrayilov and Petra Mutzel. New integer linear programming models for the vertex
coloring problem. In Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro,
editors, LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos
Aires, Argentina, April 16-19, 2018, Proceedings, volume 10807 of Lecture Notes in Computer
Science, pages 640–652. Springer, 2018. doi:10.1007/978-3-319-77404-6_47.

23 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by
the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the
IBM Research Mathematical Sciences Department, pages 85–103. Springer US, Boston, MA,
1972. doi:10.1007/978-1-4684-2001-2_9.

24 Mikko Koivisto. An O∗(2n) algorithm for graph coloring and other partitioning problems
via inclusion-exclusion. In Proc. 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 583–590, 2006. doi:10.1109/FOCS.2006.11.

25 Lawrence T. Kou, Larry J. Stockmeyer, and C. K. Wong. Covering edges by cliques with
regard to keyword conflicts and intersection graphs. Commun. ACM, 21(2):135–139, February
1978. doi:10.1145/359340.359346.

26 Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
Finding near-optimal independent sets at scale. Journal of Heuristics, 23(4):207–229, August
2017. doi:10.1007/s10732-017-9337-x.

27 Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian Journal of Mathematics,
22(5):1082–1096, 1970. doi:10.4153/CJM-1970-125-1.

28 Anuj Mehrotra and Michael A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996. doi:10.1287/ijoc.8.4.344.

https://doi.org/10.1145/2543629
https://doi.org/10.1145/2543629
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/978-3-319-62389-4_31
https://doi.org/10.1007/978-3-319-62389-4_31
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1137/0202019
https://dl.acm.org/doi/10.5555/2634074.2634201
https://doi.org/10.1007/978-3-319-77404-6_47
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/FOCS.2006.11
https://doi.org/10.1145/359340.359346
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/10.1287/ijoc.8.4.344

A. Hevia, B. Kallus, S. McClintic, S. Reisner, D. Strash, and J. Wilson 61:19

29 George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Math. Program., 8(1):232–248, 1975. doi:10.1007/BF01580444.

30 Darren Strash. On the power of simple reductions for the maximum independent set problem.
In Thang N. Dinh and My T. Thai, editors, Computing and Combinatorics (COCOON’16),
volume 9797 of LNCS, pages 345–356. Springer, 2016. doi:10.1007/978-3-319-42634-1_28.

31 Darren Strash and Louise Thompson. Effective data reduction for the vertex clique cover
problem. In Cynthia A. Phillips and Bettina Speckmann, editors, Proceedings of the Symposium
on Algorithm Engineering and Experiments, ALENEX 2022, Alexandria, VA, USA, January
9-10, 2022, pages 41–53. SIAM, 2022. doi:10.1137/1.9781611977042.4.

32 Ahammed Ullah. Clique cover of graphs with bounded degeneracy. CoRR, abs/2108.09851,
2021. arXiv:2108.09851.

33 Johan M.M. van Rooij and Hans L. Bodlaender. Exact algorithms for dominating set. Discrete
Applied Mathematics, 159(17):2147–2164, 2011. doi:10.1016/j.dam.2011.07.001.

34 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(6):103–128, 2007. doi:10.4086/toc.2007.v003a006.

ESA 2023

https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/978-3-319-42634-1_28
https://doi.org/10.1137/1.9781611977042.4
https://arxiv.org/abs/2108.09851
https://doi.org/10.1016/j.dam.2011.07.001
https://doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	2 Related Work
	2.1 Edge Clique Cover
	2.2 Vertex Clique Cover
	2.3 Data Reduction in Practice for Related Problems

	3 Preliminaries
	4 Existing Tools Discussion
	4.1 ECC Reduction Rules
	4.2 Transforming an ECC Instance to a VCC Instance
	4.2.1 The Effect of Transformation on Graph Size and Sparsity

	5 Synergistic Reductions: Applying ECC and VCC Reductions
	5.1 Transforming a Partially-Covered ECC Problem Kernel
	5.2 Lifting VCC Reduction Rules to ECC
	5.2.1 Clique-Removal-Based VCC Reductions
	5.2.2 Folding-Based VCC Reductions

	5.3 Wrapping It All Up

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Results on Synthetic Instances
	6.3 Solving Large Real-World Instances Exactly
	6.4 Solving Remaining Instances Heuristically
	6.5 Summarizing the Quality of Existing Heuristic Solvers

	7 Conclusion and Future Work

