
Parameterized Complexity of Fair Bisection
FPT-Approximation meets Unbreakability

Tanmay Inamdar #

University of Bergen, Norway

Daniel Lokshtanov # Ñ

University of California Santa Barbara, CA, USA

Saket Saurabh # Ñ

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Vaishali Surianarayanan #Ñ

University of California Santa Barbara, CA, USA

Abstract
In the Minimum Bisection problem input is a graph G and the goal is to partition the vertex set
into two parts A and B, such that ||A| − |B|| ≤ 1 and the number k of edges between A and B is
minimized. The problem is known to be NP-hard, and assuming the Unique Games Conjecture
even NP-hard to approximate within a constant factor [Khot and Vishnoi, J.ACM’15]. On the other
hand, a O(log n)-approximation algorithm [Räcke, STOC’08] and a parameterized algorithm [Cygan
et al., ACM Transactions on Algorithms’20] running in time kO(k)nO(1) is known.

The Minimum Bisection problem can be viewed as a clustering problem where edges represent
similarity and the task is to partition the vertices into two equally sized clusters while minimizing
the number of pairs of similar objects that end up in different clusters. Motivated by a number of
egregious examples of unfair bias in AI systems, many fundamental clustering problems have been
revisited and re-formulated to incorporate fairness constraints. In this paper we initiate the study of
the Minimum Bisection problem with fairness constraints. Here the input is a graph G, positive
integers c and k, a function χ : V (G) → {1, . . . , c} that assigns a color χ(v) to each vertex v in G,
and c integers r1, r2, · · · , rc. The goal is to partition the vertex set of G into two almost-equal sized
parts A and B with at most k edges between them, such that for each color i ∈ {1, . . . , c}, A has
exactly ri vertices of color i. Each color class corresponds to a group which we require the partition
(A, B) to treat fairly, and the constraints that A has exactly ri vertices of color i can be used to
encode that no group is over- or under-represented in either of the two clusters.

We first show that introducing fairness constraints appears to make the Minimum Bisection
problem qualitatively harder. Specifically we show that unless FPT=W[1] the problem admits no
f(c)nO(1) time algorithm even when k = 0. On the other hand, our main technical contribution
shows that is that this hardness result is simply a consequence of the very strict requirement that
each color class i has exactly ri vertices in A. In particular we give an f(k, c, ϵ)nO(1) time algorithm
that finds a balanced partition (A, B) with at most k edges between them, such that for each color
i ∈ [c], there are at most (1 ± ϵ)ri vertices of color i in A.

Our approximation algorithm is best viewed as a proof of concept that the technique introduced
by [Lampis, ICALP’18] for obtaining FPT-approximation algorithms for problems of bounded tree-
width or clique-width can be efficiently exploited even on graphs of unbounded width. The key
insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags
(as introduced in [Cygan et al., SIAM Journal on Computing’14]). An important ingredient of
our approximation scheme is a combinatorial result that may be of independent interest, namely
that for every k, every graph G admits a tree decomposition with adhesions of size at most O(k),
unbreakable bags, and logarithmic depth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

© Tanmay Inamdar, Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 63;
pp. 63:1–63:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tanmay.inamdar@uib.no
https://orcid.org/0000-0002-0184-5932
mailto:daniello@ucsb.edu
https://sites.cs.ucsb.edu/~daniello/
mailto:saket@imsc.res.in
https://sites.google.com/view/sakethome
https://orcid.org/0000-0001-7847-6402
mailto:vaishali@ucsb.edu
https://vaishalisurianarayanan.weebly.com/
https://orcid.org/0000-0003-3091-3823
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Parameterized Complexity of Fair Bisection

Keywords and phrases FPT Approximation, Minimum Bisection, Unbreakable Tree Decomposition,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.63

Related Version Full Version: https://arxiv.org/abs/2308.10657

Funding Tanmay Inamdar : Supported by the European Research Council (ERC) under the European

 Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416).

Daniel Lokshtanov: NSF award CCF-2008838.
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020

 research and innovation programme (grant agreement No. 819416), and Swarnajayanti Fellowship

grant DST/SJF/MSA01/2017-18.
Vaishali Surianarayanan: NSF award CCF-2008838.

1 Introduction

Clustering is one of the most fundamental problems in computer science. In a clustering
problem, we are typically interested in dividing the given collection of data points into a
group of clusters, such that the set of data points belonging to each cluster are more “similar”
to each other, as compared to the points belonging to other clusters. Depending on the
specific setting and application, there are a number of ways to model this abstract task
of clustering as a concrete mathematical problem. We refer the reader to surveys such as
[30, 27, 3] for a detailed background and literature on the topic.

In one such model of clustering, the input is represented as a simple, undirected graph,
and the existence of an edge between a pair of vertices denotes that the two vertices are
related to, or similar to, each other. For example, this is how one models social networks
as graphs [25] – the set of vertices corresponds to people, and an edge represents that the
two people are friends with each other. In this setting, the classical Minimum Bisection
problem can be thought of as a clustering problem [31, 7] – we are interested in finding
two size-balanced clusters of vertices, such that the number of edges going across the two
clusters is minimized. More formally, in Minimum Bisection problem, we are given a graph
G = (V, E) on n vertices, and a non-negative integer k, and the goal is to determine whether
there exists a balanced edge cut (A, B) of order k. Here, an edge cut (A, B) is a partition of
V (G) into two non-empty subsets A and B, an edge cut is balanced if ||A| − |B|| ≤ 1, and
the order of the cut (A, B) is the number of edges with one endpoint in A and the other
in B. The NP-completeness of Minimum Bisection has long been known [13], and it is
extensively studied from the perspective of approximation and parameterized algorithms.
Minimum Bisection admits a logarithmic approximation in polynomial time [26], and it is
hard to approximate within any constant factor, assuming the Unique Games Conjecture
[19]. In the realm of Parameterized Algorithms, one can solve the problem exactly in time
2O(k log k) · nO(1), i.e., it is Fixed-Parameter Tractable (FPT) parameterized by k [10, 9].

More recently, the notion of fairness has gained prominence in the literature of clustering
algorithms – and algorithm design in general. This is motivated from the fact that, often the
real-life data reflects unconscious biases, and unless the algorithm is explicitly required to
counteract these biases, the output of the algorithm may have real-life consequences that
are unfair ((see, e.g., [15, 24, 11]). Researchers have proposed different models of fairness
for the traditional center-based clustering problems, such as k-Median/Means/Center.
These models of fairness can be broadly classified into two types – individual fairness, and
group fairness. At a high level, individual fairness requires that the solution treats each of

https://doi.org/10.4230/LIPIcs.ESA.2023.63
https://arxiv.org/abs/2308.10657

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:3

the individuals (a point) in a fair way, e.g., every point has a cluster-center “nearby” [6].
On the other hand, in the group fairness setting, the set of points is typically divided into
multiple colors, where each color represents, say a particular demographic (such as gender,
ethnicity etc.). In this setting, the fairness constraints are represented in terms of the colors
as a group. There are multiple notions of group fairness (see, e.g., [2, 6, 12, 22, 14, 18]), but
to the specific interest to us is the color-balanced clustering model, studied in [28, 17, 1].
Roughly speaking, in this setting we want the “local proportions” of all colors in every cluster
to be approximately equal to their “global proportions”. Inspired from this color-balanced
notion of fairness, study the following fair version of Minimum Bisection.

In this problem formulation the color classes i ∈ {1, . . . , c} are protected groups which
are required to be treated fairly by the clustering algorithm. The imposed fairness constraint
for group i is that, in the edge cut (A, B), the set A contains precisely ri vertices colored i.

Fair Bisection
Input: An instance (G, c, k, r◦, χ), where

G is an unweighted graph
c and k are positive integers
χ : V (G) → c is a coloring function on V (G) using at most c colors
r◦ = (r1, · · · , rc) is a c length tuple of positive integers

Question: Does there exist an edge cut (A, B) of G of order at most k having exactly
ri vertices of color i in A for each i ∈ [c].

We will say that an edge cut that satisfies the fairness constraints imposed by the tuple
r◦ is r◦-fair.

Thus, when ri is set to be precisely half of the number ci of vertices colored i an r◦-fair
edge cut must evenly split each color class across the two sides A and B.

Our Results

It is quite easy to see that the existing parameterized algorithms [9, 10] for Minimum
Bisection directly generalize to a nO(c)kO(k) time algorithm for Fair Bisection1. Therefore,
the first natural question is whether it is possible to eliminate the dependence on c in
the exponent of n in the running time. Our first result (Theorem 20) is that, assuming
FPT ̸= W[1], an f(c)nO(1) time algorithm is not possible even when k = 0. In fact, this
hardness result holds even in the special case where the vertices of each color are required to
be evenly split across both partitions (in particular, when 2ri = ci for every i).

Our main technical contribution (Theorem 11) is to show that this hardness result is
quite brittle. Indeed, the requirement that each color class i have exactly ri vertices in A

is probably much too strong in the color-balanced fairness setting. We are satisfied even if
the number of vertices of each color class is sufficiently close to the desired target number.
We will say that an edge cut (A, B) is (ϵ, r◦)-fair if A contains no more than ri(1 + ϵ) of
vertices colored i and B contains no more than (ci − ri)(1 + ϵ) vertices colored i. We show
(in Theorem 11) that there exists an algorithm that takes as input an instance (G, c, k, r◦, χ),
together with an ϵ > 0, runs in time f(ϵ, k, c)nO(1), and if G has a r◦-fair edge cut (Â, B̂) of
order at most k then the algorithm produces a (ϵ, r◦)-fair edge cut (A, B) of order at most k.

1 A formal proof of this claim is a corollary of our Theorem 11.

ESA 2023

63:4 Parameterized Complexity of Fair Bisection

Our Methods

The hardness result of Theorem 20 is a fairly straightforward parameterized reduction from
Multi-Dimensional Subset Sum parameterized by the dimension2, whose main purpose is
to put the parameterized approximation scheme of Theorem 11 in context. We only discuss
here the methods in the proof of of Theorem 11.

At a very high level the algorithm of Theorem 11 is the combination of two well-known
techniques in parameterized algorithms: dynamic programming over tree decompositions with
unbreakable bags (introduced by Cygan et al. [10]), and the geometric rounding technique of
Lampis [20] for parameterized approximation schemes for problems on graphs of bounded
tree-width or clique-width. The conceptual novelty in (and perhaps the most interesting
technical aspect of) our work is to realize that Lampis’ technique can be applied even to
dynamic programming algorithms over tree decompositions with unbounded width to yield
approximation schemes for parameterized problems on general graphs. Executing on this
vision requires a few non-trivial technical insights, which we will shortly highlight. However,
to describe these technical insights in more detail we first give a brief description of the two
techniques that we combine.

Lampis’ Geometric Rounding Technique

We first discuss how the technique of Lampis [20] applies to tree decompositions of bounded
width. A tree decomposition of a graph G is a pair (T, β) where T is a tree and β is a function
that assigns to each vertex t ∈ V (T) a vertex set β(t) ⊆ V (G) (called a bag) in G. To be a
tree decomposition the pair (T, β) must satisfy the tree-decomposition axioms: (i) for every
v ∈ V (G) the set {t ∈ V (T) : v ∈ β(t)} induces a non-empty and connected subgraph of
T , and (ii) for every edge uv ∈ E(G) there exists a t ∈ V (T) such that {u, v} ⊆ β(t). The
width (or tree-width) of a decomposition (T, β) is defined as maxt∈V (T) |β(t)| − 1.

Roughly speaking, Lampis’ technique considers dynamic programming (DP) algorithms
over a tree decomposition (T, β) of G of width k. In such an algorithm there is a DP-table for
every node t of the decomposition tree, and suppose that the entries in these tables are indexed
by vectors in {1, 2, . . . , n}d (for some integer d), where n is the number of vertices of G. To
decrease the size of the DP tables and thereby also the running time of the algorithm, one
“sparsifies” the DP table to only consider entries in Sd, where S =

{
⌊(1 + δ)i⌋ : i ≥ 0

}
. This

makes the size of the DP table upper bounded by (log1+δ n)O(d), at the cost of introducing
a multiplicative error of (1 + δ) in every round of the DP algorithm (since now vectors in
{1, 2, . . . , n}d are “approximated” by their closest vector in Sd). If the decomposition tree T

has depth O(log n) the dynamic program only needs O(log n) rounds, and so the total error
of the algorithm is a multiplicative factor of (1 + δ)O(log n). Setting δ = ϵ/ log2 n gives the
desired trade-off between DP table size (and therefore running time) and accuracy. Luckily,
every tree decomposition of width k can be turned into a tree decomposition of width at
most 3k + 2 and depth O(log n) [4] and so this approach works on all graphs of tree-width k.

Tree Decompositions with Unbreakable Bags

We now turn to the technique of Cygan et al. [10] for Minimum Bisection, namely dynamic
programming over tree decompositions with small adhesions and unbreakable bags. We again
need to define a few technical terms. An adhesion of a tree decomposition (T, β) of a graph

2 The hardness of Multi-Dimensional Subset Sum parameterized by the dimension is folklore, but we
were unable to find a reference, so for completeness we provide a proof.

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:5

G is a set β(u) ∩ β(v) for an edge uv ∈ E(T). The adhesion size of a tree-decomposition is
just the maximum size of an adhesion of the decomposition. A tree decomposition (T, β)
is said to have (q, k)-unbreakable bags if for every bag β(t) of the decomposition and every
edge-cut (A, B) of order at most k in G it holds that min(|A ∩ β(t)|, |B ∩ β(t)|) ≤ q.

The main engine behind the algorithm of Cygan et al. [10] (see also [9]) is a structural
theorem that for every graph G and integer k there exists a tree decomposition (T, β) of
G with adhesion size at most k and (k + 1, k)-unbreakable bags. This is coupled with an
observation that even though this tree decomposition might have unbounded tree-width, we
can still do dynamic programming over this tree decomposition, keeping a DP table for every
adhesion of the tree decomposition, rather than for every bag. However, while tree-width
based DP algorithms utilize a simple recurrence to calculate the DP table at a bag from the
tables of its children, Cygan et al. [10] need to turn to a clever “randomized contraction”
(see [8]) based algorithm to compute the DP table for an adhesion from the DP tables of its
children.

Combining Tree Decompositions with Unbreakable Bags and Geometric Rounding

As we mentioned eariler, the technique of Cygan et al. [10] for Minimum Bisection
generalizes in a relatively straightforward way, to give a f(k)nO(c) time algorithm for Fair
Bisection. Here we do dynamic programming over the tree decomposition of G with
adhesions of size k and (k + 1, k)-unbreakable bags. We have a DP table for every adhesion
that is indexed by a vector in [n]c (this vector describes partial solutions, where the ith

element of the vector is the number of vertices of color i that have so far been put on the A

side in this partial solution).
We want to apply Lampis’ geometric rounding technique and “sparsify” the DP table

to only consider entries in Sc, where S =
{

⌊(1 + δ)i⌋ : i ≥ 0
}

. There are a few technical
obstacles to realizing this plan, that we overcome. The most important one of them is that the
depth reduction theorem of Bodlaender and Hagerup [4] only applies to tree decompositions
of bounded width, therefore it is not immediate how to obtain a tree decomposition with
small adhesions, unbreakable bags and logarithmic depth. A closer inspection of the proof
sketch of Bodlaender and Hagerup [4] reveals that a tree decomposition with adhesions of size
k and (k + 1, k)-unbreakable bags can be turned into a tree decomposition with adhesions of
size O(k), and logarithmic depth, such that each bag of the new decomposition is the union
of a constant number of bags of the old one (the bags in this new decomposition do not
need to themselves be unbreakable). Nevertheless we prove that some careful modifications
to this tree decomposition are sufficient to obtain a tree decomposition with adhesions of
size O(k), logarithmic depth, and (O(k), k)-unbreakable bags (see Theorem 9). We believe
that Theorem 9 will be a useful tool for future applications of Lampis’ geometric rounding
technique to tree decompositions with unbreakable bags.

Organization of the Paper

We begin by defining the basic notions on graphs and tree decompositions in Section 2. In
Section 3, we prove Corollary 10 that shows how to obtain logarithmic-depth unbreakable
tree decompositions. Then, in Section 4, we use such a tree decomposition to design our
exact and approximate algorithms. In Section 5, we sketch the proof of our hardness result,
which shows that Fair Bisection is W[1]-hard parameterized by c even when k = 0. Finally,
in Section 6, we give concluding remarks and future directions. Proofs marked with ∗ can be
found in the full version of the paper.

ESA 2023

63:6 Parameterized Complexity of Fair Bisection

2 Preliminaries

For an integer k, we denote the set {1, 2, . . . , k} by [k]. For a graph G, an edge cut is a pair
A, B ⊆ V (G) such that A ∪ B = V (G) and A ∩ B = ∅. The order of an edge cut (A, B) is
|E(A, B)|, that is, the number of edges with one endpoint in A and the other in B. For a
subset X ⊆ V (G), let G \ X denote the graph G[V (G) \ X]. For an edge cut (A, B), and a
subset X ⊆ V (G), the cut induced on X by (A, B) is (A ∩ X, B ∩ X).

▶ Definition 1 (unbreakability). A set X ⊆ V (G) is (q, s)-edge-unbreakable if every edge cut
(A, B) of order at most s satisfies |A ∩ X| ≤ q or |B ∩ X| ≤ q.

For a rooted tree T and vertex t ∈ V (T), we denote by Tt the subtree of T rooted at t. For a
rooted tree T and a non-root vertex t ∈ V (T), we denote the parent of t by P(t). The depth
of a tree Tt is the maximum length of a t to leaf path in Tt. For a node t, we denote htT (t)
to be the the depth of the subtree Tt rooted at t in T .

Consider a tree decomposition (T, β) of a graph G. For every t ∈ V (T) a set β(t) ⊆ V (G),
is called a bag. We can extend the function β to subsets of V (T) in the natural way: for a
subset X ⊆ V (T), β(X) :=

⋃
x∈X β(x). Another important notion that we need is of tree

decomposition where bags are “highly connected”, i.e., unbreakable. For a rooted tree T and
vertex v ∈ V (T) we denote by Tv the subtree of T rooted at v. We refer to the vertices of T

as nodes.
For s, t ∈ V (T) we say that s is a descendant of t or that t is an ancestor of s if t lies on

the unique path from s to the root; note that a node is both an ancestor and a descendant
of itself. By child(t), we denote the set of children of t in T . For any X ⊆ V (T), define
GX := G[∪t∈Xβ(V (Tt))].

We define an adhesion of an edge e = (t, t0) ∈ E(T) to be the set σ(e) := β(t) ∩ β(t0),
and an adhesion of t ∈ V (T) to be σ(t) := σ(t,P(t)), or σ(t) = ∅ if the parent of t does not
exist, i.e., when t is the root of T . We define the following notation for convenience:

γ(t) :=
⋃

s: descendant of t

β(s)

α(t) := γ(t)\σ(t), Gt := G[γ(t)] − E(G[σ(t)]).
We say that a rooted tree decomposition (T, β) of G is compact if for every node t ∈ V (T)
for which α(t) ̸= ∅ we have that G[α(t)] is connected and NG(α(t)) = σ(t).

3 Obtaining a Low Depth Unbreakable Tree Decomposition

In this section we show that there exists a tree decomposition that has low (i.e., O(log n))
depth, small-size (i.e., O(k)) adhesions, and (O(k), k)-unbreakable bags. To this end, we
design a polynomial-time algorithm that, given a tree decomposition with small adhesions
and unbreakable bags, produces a tree decomposition with the aforementioned properties.
In the next section, we design a dynamic programming algorithm over such a low depth
decomposition to obtain an FPT approximation for Fair Bisection.

In our algorithm, we use the notion of a tree partition of a graph, which, informally,
captures the “tree-likeness” of a graph. Tree partitions were introduced by [29, 16], and are
easy to define.

▶ Definition 2 (Tree Partition). A tree partition of a graph G is a pair (T , τ) where T is a tree
and τ : V (G) → V (T) is a function from V (G) to V (T) such that for each e = (u, v) ∈ E(G)
either τ(u) = τ(v) or (τ(u), τ(v)) ∈ E(T). A rooted tree partition (T , τ) with root r is the
tree partition (T , τ) where the tree T is a rooted tree with root r.

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:7

We remark that we use calligraphic font (T) to denote trees corresponding to Tree Partitions
to easily distinguish them from graphs that are trees. Observe that for a tree T , the pair
(T = T, τ) where τ(v) = v for each v ∈ T is a trivial tree partition of T . For our result we
only use tree partitions of trees. Given a tree decomposition (T, β) with small adhesions and
unbreakable bags, our goal in this section is to use (T, β) to obtain a tree decomposition
of bounded height without blowing up the adhesion size and unbreakability guarantees too
much. For this we first find a tree partition (T , τ) of T that satisfies additional properties,
such as logarithmic depth and for each t ∈ V (T), it holds that |τ−1(t)| ≤ 4. Using this tree
partition, we obtain a tree decomposition (T , β1) whose underlying tree is T , and each bag
β1(t), t ∈ V (T) is a union of at most 4 bags of (T, β); β1(t) =

⋃
x∈τ−1(t) β(x). This tree

decomposition already has bounded height, small adhesion size and each bag is a union of
at most four unbreakable bags of (T, β). From here with some extra work we obtain a tree
decomposition with unbreakable bags as well. For this we use other properties of (T , τ) to
modify (T , β1) to obtain our desired tree decomposition. As outlined above, for our result we
need tree partitions of a tree satisfying some properties. We now define such tree partitions
below and show how to find one in polynomial time.

▶ Definition 3 (Nice Tree Partition). A tree partition (T , τ) of a tree T is said to be a nice
tree partition if it satisfies the following properties:
1. T has depth at most ⌈log2 |V (T)|⌉
2. for each t ∈ V (T), 1 < |τ−1(t)| ≤ 4.
3. for each t ∈ V (T), T [Vt] is a subtree of T , where Vt =

⋃
x∈V (Tt) τ−1(x).

We now show how to find a nice tree partition of a tree in polynomial time. For this
we use a recursive procedure. The core idea in each recursive step is to map a balanced
separator b of the tree to the root of the tree partition. To ensure the connectivity properties
of a tree partition, we have a set M of marked vertices in the tree that are always mapped
to the root of the tree partition in addition to b. Then for each connected component in the
forest obtained by removing M ∪ {b} from the tree, we mark new vertices and recurse. We
need some extra work to make sure that every node in the tree partition is mapped to by
only a constant number of nodes in the tree. For this we ensure that in each recursive call
we mark only a few (≤ 2) new vertices.

▶ Lemma 4. Given a tree T on n vertices with root r, one can in polynomial time compute
a rooted nice tree partition (T , τ) of T with root rT such that τ(r) = rT .

Proof. We now design a procedure FindBalancedTP that takes as an argument a tree T ′,
and a non-empty set M ⊆ V (T ′) of size at most 2, and returns a rooted nice tree partition
(T ′, τ ′) of T ′ with root r′, such that M ⊆ τ ′−1(r′). We will invoke this procedure on the
input tree T with M = {r}, where r is the root of T to obtain a rooted nice tree partition
(T , τ) of T .

In the procedure FindBalancedTP(T ′, M) we carry out the following steps:
We find a balanced bisector b of T ′ and initialize M ′ = M ∪ {b}.
If all vertices in M ′ do not lie on a path in T ′, we add an extra vertex x to M ′. Let x

be the last common vertex on the path from m1 to m2 and the path from m1 to b in T .
Modify M ′ = M ′ ∪ {x}.
For each tree H in the forest T ′ \ M ′, we recursively call FindBalancedTP(H,MH) where
MH = NT ′(M ′) ∩ V (H) is the set of neighbors of vertices in M ′ in H. Let (H, τH) be
the tree partition returned by this procedure call.

ESA 2023

63:8 Parameterized Complexity of Fair Bisection

We now construct a tree partition (T ′, τ ′) with root r′. We assign τ ′−1(r′) = M ′. Then
for each tree H in the forest T ′ \ M ′, we make H a subtree of T ′ by attaching the root of
H as a child to r′. Further for each t ∈ V (H) we assign τ ′−1(t) = τH(t).
We return (T ′, τ ′).

We now prove that for any tree T ′ with root r′, and any non-empty subset M ⊆ V (T ′)
with 0 < |M | ≤ 2, the procedure FindBalancedTP(T ′, M) returns a rooted nice tree partition
(T ′, τ ′) of T ′ with root r′ such that M ⊆ τ ′−1(r′). The proof is by induction.

Base Case |V (T ′)| = 1 or V (T ′) = M ′: In this case V (T ′) = {r′} and τ(r′) = M ′.
Observe that 0 < |M ′| ≤ 4. This is because the procedure is called with a non-empty set M

of size at most two. Then, the procedure initializes M ′ = M , and adds at most two other
vertices (b and x) in V (T ′) to M ′. Thus (T ′, τ ′) is a nice tree partition with root r′ and
M ⊆ τ ′−1(r′).

Now we prove the inductive case where V (T ′) has size i, i > 1 and V (T ′) ̸= M ′. For
this we assume the inductive hypothesis that the procedure returns a tree partition with the
desired properties for all trees H having less than i vertices and non-empty sets M ′ ⊆ V (H)
of size at most two.

Let H be a tree in the forest T ′ \ M ′. We now show that |V (H)| ≤ ⌈|V (T ′)|/2⌉ and
1 < |MH | ≤ 2. By construction M ′ contains the vertex b, a balanced bisector of T ′. Thus
V (H) has size at most ⌈|V (T ′)|/2⌉. |MH | > 1 since H contains at least one child of M ′ since
it is a tree in the forest T ′ \ M ′. To show |MH | ≤ 2, we first show there is a vertex s in M ′

such that in the forest T ′ \ {s} every vertex s′ ∈ M ′ \ {s} is contained in a different tree. If
all vertices in M ∪ {b} do not lie on a path in T ′, then s is just the vertex x we added to M ′

in the second step of the procedure. If the vertices of M ∪ {b} lie on a path P in T ′ then
M ′ = M ∪ {b}. In this case if |M ′| ≤ 2, then s is any vertex in M ′. On the other hand if
|M ′| = 3, then s is the second vertex from M ′ in the path P . Due to the property of s, H

may contain a child of s and a child of one other s′ ∈ M ′ \ {s}. Thus |MH | ≤ 2.
Since H is a tree with |V (H)| ≤ ⌈|V (T ′)|/2⌉ and 1 < |MH | ≤ 2, by induction the tree

partition (H, τH) returned by the call to the procedure FindBalancedTP(H,MH) is a nice
tree partition with root rH and MH ⊆ τ−1

H (rH).
We now show that (T , τ ′) is a rooted tree partition of T ′ with root r′. First we show

that each vertex v ∈ T is mapped to exactly one vertex t ∈ T by τ ′. If v ∈ M ′, then τ(v)
is mapped to r′. If v ∈ H, H ∈ T ′ \ M ′, then since (H, τH) is a rooted tree partition of
H, τ(v) = τH(v) by construction. Next we show that each edge (x, y) ∈ T ′ satisfies either
τ ′(x) = τ ′(y) or (τ ′(x), τ ′(y)) ∈ E(T), by considering three cases. (i) If x, y ∈ M ′, then
this is trivially true. (ii) If x, y /∈ M ′ then x, y must belong to some tree H ∈ T ′ \ M ′ and
thus by induction (τ ′(x) = τH(x), τ ′(y) = τH(y)) ∈ E(T). (iii) If x ∈ M ′ and y /∈ M ′, by
construction, τ(x) = r′ and y ∈ MH for some H ∈ T ′ \ M ′. Since MH ⊆ τ−1

H (rH) and rH is
a child of r′ in T ′, (τ ′(x) = r, τ ′(y) = rH) ∈ E(T).

M ⊆ τ ′−1(r′) just by construction. We now prove properties (1) − (4) in Definition 3
to show that (T ′, τ ′) is a nice tree partition. Recall that for each H ∈ T ′ \ M ′, H is a
subtree of T ′ with rH being a child of r′ in T ′. Then, since |V (H)| ≤ |V (T)|

2 , by inductive
hypothesis, H has depth at most ⌈log2(|V (T ′)|/2)⌉ = ⌈log2(|V (T ′)|)⌉ − 1. Therefore, T ′ has
depth ⌈log2 |V (T ′)|⌉, since the addition of the root r′ increases the depth by 1. For each
t′ ∈ V (T ′), 1 < |τ ′−1(t′)| ≤ 4 since 1 < |τ ′−1(r′)| ≤ 4 and for each H ∈ T ′ \ M ′ and for
each t ∈ V (H), 1 < |τ−1

H (t)| ≤ 4. For each t′ ∈ V (T ′), T ′[Vt′] is a subtree of T ′, where
Vt′ =

⋃
x∈V (T ′

t′) τ ′−1(x) because for each H ∈ T ′ \ M ′ and t ∈ V (H), H[Vt] is a subtree of
H, where Vt =

⋃
x∈V (Ht) τ−1

H (x) and H is subtree of T ′. This completes the proof. ◀

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:9

3

5
10

3 7 10

t ∈ T
Yt

⇒

1

2

4

6

7

9

8

11 12

Figure 1 Left: Tree decomposition (T, β) with bags colored for easy understanding. Right: tree
decomposition (T , β1) that is constructed using a tree partition (T , τ). The bags in (T, β) are
mapped according to τ to (T , β1). The bags in τ−1(t), t ∈ T can overlap as demonstrated by bags
3, 7, 10 but their overlap is small and contained in YT .

Let (T, β) be a rooted tree decomposition of a graph G with root r, (q, k)-unbreakable
bags and adhesions of size at most k. Further let (T , τ) be a rooted nice tree partition
of T with root rT as provided by Lemma 4. We now show that we can obtain a natural
rooted tree decomposition (T , β1) of G where the tree in the decomposition is T . Here
β1 : V (T) → 2V (G) and β1(t) =

⋃
x∈τ−1(t) β(x). See Figure 1 for an example of (T , β1).

From now on we fix G, (T, β), (T , τ), and β1 for the rest of the section. We remark that
to prove (T , β1) is a tree decomposition we will not need the nice properties of (T , τ) nor
the properties of the bags and adhesions in (T, β). We will later use them to deduce some
helpful structural properties of (T , β1). Figure 1 is the accompanying figure for the proof of
the following lemma.

▶ Lemma 5 (∗). The pair (T , β1) is a tree decomposition of G.

Observe that since (T , τ) is a nice tree partition of T , the tree decomposition (T , β1) has
depth at most ⌈log2 |V (G)|⌉ and each of its bags is a union of at most four bags of (T, β).
We now prove a few other useful properties of (T , β1) that will help us design our desired
tree decomposition.

▶ Lemma 6. There exists a function γ : V (T) → V (T), and a set Yt ⊆ β1(t) for each node
t ∈ V (T), that satisfy, for each node t ∈ V (T), the following properties:
1. |Yt| ≤ 8k

2. If t is not the root rT then β1(P(t)) ∩ β1(t) ⊆ Yt

3. for each distinct x, y ∈ τ−1(t), β(x) ∩ β(j) ⊆ Yt

4. for each child tc of t in T , it holds that t = τ(γ(tc)) and β1(tc) ∩ β1(t) ⊆ Yt ∪ β(γ(tc))
Furthermore, γ and the sets Yt for each t ∈ V (T) can be computed in polynomial time.

Proof. For e = (x, x′) ∈ E(T), let σ(e) = β(x) ∩ β(x′) be the adhesion of edge e in (T, β).
For rT , let TrT =

⋃
x∈τ−1(rT) σ((x,P(x))) and γ(rT) = r. For t ∈ V (T), t ̸= rT , let Et =

{e : e = (x, y) ∈ E(T), x ∈ τ−1(P(t)), y ∈ τ−1(t)}. Then let Yt =
⋃

x∈τ−1(rT) σ((x,P(x))) ∪⋃
e∈ET

σ(e).
For each x in τ−1(P(t)), there exists at most one y ∈ τ−1(t) such that (x, y) ∈ E(T).

This is because T [Vt] is connected, where t =
⋃

x∈V (Tt) τ−1(x). If x has an edge to two
vertices in τ(t), then there would be a cycle in T . Thus, |Et| ≤ 4. Further since T is from a
nice tree partition, |τ−1(t)| ≤ 4|. Therefore |Yt| ≤ 8k for each t ∈ V (T).

ESA 2023

63:10 Parameterized Complexity of Fair Bisection

≤ 8k

9
1

2 4 3 7 10

≤ 8k

5 8 6
11 12

Figure 2 This shows the final tree decomposition (T ∗, β∗) constructed using (T, β) and (T , β1)
as shown in Fig 1. (T ∗, β∗) is our desired tree decomposition with low depth, unbreakable bags and
small adhesions. Recall that, V (T ∗) = V (T) ∪ V (T) and E(T ∗) = {(τ(x), x) : x ∈ T } ∪ {(γ(t), t) :
t ∈ T \ {rT }}.

For t ̸= rT , t ∈ V (T). Since (T, β) is a tree decomposition and Et are the only set of edges
in T between vertices in τ−1(t) and τ−1(P(t)). Further since (T , β1) is a tree decomposition
with β1(t) =

⋃
x∈τ−1(t) β(x), β1(P(t)) ∩ β1(t) ⊆ Yt.

Recall that (T, β) is a tree decomposition. Therefore, for any two nodes x, y ∈ V (T),
consider a vertex v ∈ β(x)∩β(y). Note that v must belong to every bag of the node appearing
on the unique x to y path in T . Let z ∈ V (T) be the least common ancestor of x and y –
note that z may be equal to x or y or neither. Suppose z ̸∈ {x, y}. Then, v must appear
in β(x) ∩ β(P(x)) = σ(x,P(x)), as well as in σ(y,P(y)). Otherwise, if z = x (w.l.o.g.), then
v ∈ σ(y,P(y)). Since Yt ⊇ σ(x,P(x)) ∪ σ(y,P(y)), we get the third property.

Let tc ∈ V (T), tc ̸= rT . Further let t = P(tc) in T . We now show that for all but at
most one vertex x ∈ τ−1(t), β1(tc) ∩ β(x) ⊆ Yt. If for all x ∈ τ−1, β1(tc) ∩ β(x) ⊆ Yt then
we assign γ(tc) = y for some y ∈ τ−1. In this case, property 4 directly holds. Otherwise
there is one vertex x ∈ τ−1(t) such that β1(tc) ∩ β(x) is not a subset of Yt, then we assign
γ(tc) = x. Here too, property 4 holds.

Now we show that for all but at most one vertex x ∈ τ−1(t), β1(tc) ∩ β(x) ⊆ Yt. Since T
is a nice tree partition, T [Vtc] is a subtree of T , where Vtc =

⋃
x∈V (Ttc) τ−1(x). Next Vtc does

not contain rT because tc ̸= rT and τ(rt) = rT . Further Vtc
is tree in the forest T \ τ−1(t).

Every vertex in τ−1(t) has at most one neighbor in Vtc
otherwise it will form a cycle. Since

T is a rooted tree there is at most one node x ∈ τ−1(t) whose neighbor in Vtc is not an
ancestor (or a parent) of x. Thus for all others β(x) ∩ β1(tc) ⊆ σ(x,P(x)) ⊆ YT . ◀

Let γ : V (T) → V (T) and Yt ⊆ β1(t) for each node t ∈ T be function and sets given by
Lemma 6. We now define a pair (T ∗, β∗) based on T, T , γ and Yt that we will prove to be a
tree decomposition of G having all our desired properties including unbreakable bags.

▶ Definition 7 ((T ∗, β∗)). Let T ∗ be a graph with V (T ∗) = V (T) ∪ V (T) and E(T ∗) =
{(τ(x), x) : x ∈ T} ∪ {(γ(t), t) : t ∈ T \ {rT }}. Also let β∗ : V (T ∗) → 2V (G) be a function
with β∗(t) = Yt, for t ∈ T and β∗(x) = Yτ(x) ∪ β(x) for x ∈ T .

In the following, we show that (T ∗, β∗) is a tree decomposition of G (see Figure 2).

▶ Lemma 8 (∗). (T ∗, β∗) is a rooted tree decomposition of G. Further (T ∗, β∗) satisfies the
following properties:
1. every adhesion of (T ∗, β∗) is of size at most 8k

2. every bag of (T ∗, β∗) is (q + 8k, k)-unbreakable in G.
3. T ∗ has depth at most 2⌈log2 |V (G)|⌉

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:11

We are now ready to prove the main theorem of this section.

▶ Theorem 9. There exists a polynomial-time algorithm that takes input an n-vertex graph
G and positive integers k and q, and a rooted tree decomposition (T, β) of G satisfying the
following properties:
1. every adhesion of (T, β) is of size at most k

2. every bag of (T, β) is (q, k)-unbreakable in G

and finds a compact tree decomposition (T ′, β′) of G satisfying the following properties:
1. every adhesion of (T ′, β′) is of size at most 8k

2. every bag of (T ′, β′) is (q + 8k, k)-unbreakable in G.
3. T ′ has depth at most 2⌈log2 n⌉.

Proof. Let (T, β) be the input tree decomposition of G. We first compute a nice tree partition
(T , τ) of T using Lemma 4. Then we obtain the tree decomposition (T , β1) of G where
β1 : V (G) → V (T) and β1(t) =

⋃
x∈τ−1(t) β(x) – it is a tree decomposition by Lemma 5.

Let β∗ : V (T ∗) → 2V (G) be a function with β∗(t) = Yt, for t ∈ T and β∗(x) = Yτ(x) ∪β(x)
for x ∈ T . We compute the tree decomposition (T ∗, β∗) with V (T ∗) = V (T) ∪ V (T) and
E(T ∗) = {(τ(x), x) : x ∈ T} ∪ {(γ(t), t) : t ∈ T \ {rT }}. By Lemma 8 it satisfies all our
required properties except compactness. We can in polynomial time obtain a compact tree
decomposition (T ′, β′) whose each bag is a subset of some bag of (T ∗, β∗) and whose height
is the same as T ∗ [5]. Thus the tree decomposition (T ′, β′) will satisfy all our required
properties. ◀

The following corollary directly follows from Theorem 9, and a known result ([9]) that
outputs a tree decomposition of a graph satisfying the premise of Corollary 10 in time
2O(k log k) · nO(1).

▶ Corollary 10. Given an n-vertex graph G and an integer k, one can in time 2O(k log k)nO(1)

compute a rooted compact tree decomposition (T, β) of G such that:
1. Every adhesion of (T, β) is of size at most 8k

2. Every bag of (T, β) is (9k, k)-unbreakable in G

3. T has depth at most 2⌈log2 n⌉

4 Exact and Approximation algorithms

Let (G, c, k, r◦, χ) be an instance of Fair Bisection and let n = |V (G)|. We start by
invoking the algorithm of Theorem 10 with G and k to obtain a rooted compact tree
decomposition (T, β) of G with root r, having (9k, k)-edge-unbreakable bags and adhesions of
size at most 8k. This takes time 2O(k log k)nO(1). Recall that an edge cut (A, B) is (ϵ, r◦)-fair
if A and B contain no more than ri(1 + ϵ) and (ci − ri)(1 + ϵ) vertices respectively.

▶ Theorem 11. Given an instance (G, c, k, r◦, χ) of Fair Bisection and ϵ > 0 there exists
an algorithm that in time 2O(k log k) ·

(
c
ϵ

)O(c) · nO(1) finds an (ϵ, r◦)-fair edge cut of G if one
exists, else returns no.

Given a subset S ⊆ V (G), we use χ◦(S) to denote the c length tuple where the ith entry is
the number of vertices v in S having color i, i.e. χ(v) = i. We remark that we use ◦ to denote
tuples of integers of length c. Further we use operators such as +, −, scalar multiplication,
and ⌈⌉ on tuples, which perform the respective operations on each entry in the tuple(s).

ESA 2023

63:12 Parameterized Complexity of Fair Bisection

For a node t ∈ V (T) recall that γ(t) =
⋃

s: descendant of t β(s), α(t) = γ(t)\σ(t), Gt =
G[γ(t)] − E(G[σ(t)]). We perform bottom-up dynamic programming on (T, β). For each
node t ∈ V (T), we first define a Boolean function ft : {0, · · · , k} × 2σ(t) × {0, · · · , n}c ×
{0, · · · , n}c → {True, False}. For each integer w ∈ {0, · · · , k}, subset At ⊆ σ(t), and c length
tuples a◦ and b◦ with a◦, b◦ ∈ {0, · · · , n}c, we define the following.

▶ Definition 12. ft(w, At, a◦, b◦) = True if there exists an edge cut (A, B) of Gt that satisfies
the following properties: (1) (A, B) has order at most w, (2) A∩σ(t) = At, (3) χ◦(A∩α(t)) =
a◦, and (4) χ◦(B ∩ α(t)) = b◦. If such a cut does not exist, ft(w, At, a◦, b◦) = False. Further
if ft(w, At, a◦, b◦) = True, we say an edge cut (A, B) of Gt that satisfies properties 1 − 4
realizes ft(w, At, a◦, b◦).

From the definition of ft one can make the following observation.

▶ Observation 13. (G, c, k, r◦, χ) is a yes-instance to Fair Bisection if and only if for
fr(k, ∅, r◦, c − r◦) = True, where r is the root of T .

In order to reduce the size of the domain of f (and hence the running time), we work with
the reduced domain D =

{
(1 + δ)i : i ≥ 0

}
. This will approximate the number of vertices of

each color at either side of the cut to the nearest power of 1 + δ, where δ > 0 is a parameter
whose value will be fixed later.

Let Ct be the set of all possible edge-cuts (A, B) of Gt. To compute ft we have a table
Mt : {0, · · · , k} × 2σ(t) × Dc × Dc → {Ct ∪ ⊥} that satisfies properties Mt → ft and ft → Mt

(defined below in Definition 14 and 16). Mt will help us to approximately obtain ft. Let
z ≥ 0 be a sufficiently large constant; for example, z = 10 suffices. We have Definitions 14
and 16 that will be crucial towards proving the correctness of the approximation algorithm.

▶ Definition 14 (Property Mt → ft). If Mt(w, At, a◦, b◦) ̸= ⊥ then ∃ x◦ ∈ {0, · · · , n} and
y◦ ∈ {0, · · · , n} such that:

ft(w, At, x◦, y◦) = True and Mt(w, At, a◦, b◦) is an edge-cut that realizes ft(w, At, x◦, y◦)
a◦ ≤ x◦ ≤ (1 + δ)z·ht(t) log2 n · a◦

b◦ ≤ y◦ ≤ (1 + δ)z·ht(t) log2 n · b◦

▶ Definition 15 (Global-feasible edge cut). An edge cut (A, B) is global-feasible if there exists
an edge cut (A′, B′) of G having order at most k which induces the cut (A, B) on A ∪ B.

▶ Definition 16 (Property ft → Mt). If ft(w, At, x◦, y◦) = True and there is a global-feasible
edge cut (A, B) of Gt that realizes it then ∃ a◦ ∈ Dc and b◦ ∈ Dc such that:

Mt(w, At, a◦, b◦) ̸= ⊥
a◦ ≤ x◦ ≤ (1 + δ)z·ht(t) log2 n · a◦

b◦ ≤ y◦ ≤ (1 + δ)z·ht(t) log2 n · b◦

▶ Definition 17 (Good Mt). Mt is good if it satisfies properties Mt → ft and ft → Mt.

▶ Lemma 18. For each ϵ > 0 and δ = ϵ
2z log3 n

, if fr(k, ϕ, r◦, c◦ − r◦) = True and Mr is good,
then ∃ a◦, b◦ ∈ Dc such that Mr(k, ϕ, a◦, b◦) is a (ϵ, r◦)-fair edge cut of G.

Proof. We first note that, if δ := ϵ
2z log3 n

, then (1+δ)z·log3 n ≤ 1+ϵ. This is because ln(1+ϵ) ≥
ϵ

1+ϵ ≥ ϵ
2 , since ϵ ∈ (0, 1), which implies that (1 + δ)z·log3 n ≤ exp

(
ϵ

2z log3 n
· z log3 n

)
≤

exp
(

ln(1+ϵ)
z log3 n

· z log3 n
)

= 1 + ϵ. Furthermore, log1+δ n = (log n/ϵ)O(1).

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:13

Let fr(k, ϕ, r◦, c◦ − r◦) = True and Mr satisfy properties Mr → fr and fr → Mr.
Since ht(T) = log n, by the previous claim (1 + δ)z·ht(t) log2 n ≤ 1 + ϵ. So by property
fr → Mr, ∃ a◦, b◦ ∈ Dc such that: (1) Mr(k, ϕ, a◦, b◦) ̸= ⊥, (2) a◦ ≤ r◦ ≤ (1 + ϵ) · a◦, and
b◦ ≤ c◦ − r◦ ≤ (1 + ϵ) · b◦.

Further by property Mr → fr, since Mr(k, ϕ, a◦, b◦) ̸= ⊥, ∃ x◦, y◦ ∈ {0, · · · , n} such that,
(1) fr(k, ϕ, x◦, y◦) = True and Mr(k, ϕ, a◦, b◦) is an edge-cut that realizes fr(k, ϕ, x◦, y◦), (2)
a◦ ≤ x◦ ≤ (1 + ϵ) · a◦ ≤ (1 + ϵ) · r◦, and (3) b◦ ≤ y◦ ≤ (1 + ϵ) · b◦ ≤ (1 + ϵ) · (r◦ − c◦). Thus,
Mr(k, ϕ, a◦, b◦) is a (ϵ, r◦)-fair edge-cut of G. This completes our proof. ◀

Lemma 18 shows us that computing a good table M efficiently is sufficient for obtaining
our final approximation. We now state as a theorem that we can compute a good Mt

assuming a good Mt′ has been computed for each t′ ∈ child(t).

▶ Lemma 19 (∗). There exists an algorithm that takes as input t ∈ V (T), δ > 0, (T, β), and a
good Mt′ for each t′ ∈ child(t) and computes a good Mt in time 2O(k log k)(log1+δ n)O(c)nO(1).

Assuming Lemma 19 and Lemma 18, the correctness of our algorithm follows. Setting δ

as in Lemma 18, we obtain our desired runtime thus proving Theorem 11.

Proof of Theorem 11. Let δ := ϵ
2z log3 n

. In our algorithm we compute M by computing
good Mt using Lemma 19 for each t ∈ V (T), bottom up, starting from leaves of T to root of
T . We finally go over each a◦, b◦ ∈ Dc and output a cut Mr(k, ϕ, a◦, b◦) that is a (ϵ, r◦)-fair
edge cut of G if one exists.

The correctness follows directly from the definition of f and Lemma 18. The time taken by
our algorithm is equal the size of domain of M times the time taken to compute each entry in
M . The size of the domain of M is at most 2O(k)(log1+δ n)O(c)nO(1) because |D| ≤ log1+δ n

and all adhesions in (T, β) have size at most 8k. The time taken to compute each entry in
M is 2O(k log k)(log1+δ n)O(c)nO(1) by Lemma 19.

Using log1+δ n = (log n/ϵ)O(1) and a standard case analysis on whether c ≤ log n
log log n ,

it follows that the total time taken is 2O(k log k)(log1+δ n)O(c)nO(1) ≤ 2O(k log k) (
c
ϵ

)O(c) ·
nO(1). ◀

Computing Mt: A sketch of proof of Lemma 19

In particular, we design an algorithm that takes as input a graph G, the tree decomposition
(T, β) and a node t of T , together with dynamic programming tables Mt′ for every child
t′ of t, and outputs the appropriate dynamic programming table Mt (which is good) for t.
This algorithm is an adaptation of a similar step performed by Cygan et al. [10] in their
algorithm for the Minimum Bisection problem. The algorithm of Cygan et al. [10] proceeds
by a random coloring step, followed by a “knapsack”-like dynamic programming algorithm.
Our algorithm proceeds in a similar manner, but faces the following key difficulty: in order
to keep time and space bounded by f(k, c, ϵ)nO(1) we can only store approximate values in
the knapsack dynamic programming table (the table satisfies soundness and completeness
properties similar to Definition 17). Therefore, after computing each entry of the table (from
previous entries) we need to perform a rounding step that introduces a (1 + (ϵ

log n)O(1))
multiplicative factor in the error bound. The standard way of solving Knapsack involves
considering each item in the input one by one, however this would lead to the rounding
error possibly accumulating and getting out of hand. We overcome this by organizing the
dynamic program in a complete binary tree. That is, split the items in two equal sized
groups, compute dynamic programming tables for the two groups recursively, and combine

ESA 2023

63:14 Parameterized Complexity of Fair Bisection

the dynamic programming tables to the two halves to a dynamic programming for all the
items. This ensures that the total error is upper bounded by a multiplicative factor of
(1 + (ϵ

log n)O(1))O(log3 n) = 1 + O(ϵ).

5 Hardness

Here, we sketch the proof of our result that establishes W[1]-hardness of Fair Bisection.
To this end, we first consider the following problem, called Multi-Dimensional Subset
Sum. In this problem, we are given an instance (V, T), where V = {V1, . . . , Vn}, such that
each Vi ∈ V is a d-dimensional vector, i.e., Vi ∈ Zd

≥0; and T ∈ Zd
≥0 is the d-dimensional

target vector. The task is to determine whether there exists a subset U ⊆ V such that∑
Vi∈U Vi = T?
Although it is folklore that Multi-Dimensional Subset Sum is W[1]-hard parameterized

by the dimension d, we are unable to find a reference for this result. Thus, we give a reduction
from Binary Constrainted Satisfaction Problem to MDSS; the W[1]-hardness of
the former problem was established in [23, 21]. In fact, our reduction shows that MDSS
is W[1]-hard even when the integer entries in each vector are bounded by a polynomial in
n. As the first step of our reduction, given an instance (V, T) of MDSS, we reduce it to
Multi-Dimensional Partition (MDP), where the target vector T is exactly half of the
sum of entries along each dimension. Now, for each vector Vi ∈ V, we create a subset Ui of
vertices, which contains exactly Vi(j) many vertices of color 1 ≤ j ≤ d. Then, we arbitrarily
choose a vertex in Ui and connect the rest of the vertices in Ui to it, making a connected
component a star. Proceeding this way for each vector Vi, we obtain a graph G that is a
disjoint union of n stars on Ui’s, with each Ui containing at most polynomially many vertices
of each color. It is straightforward to see the equivalence between the instance (V, T) of
MDP, and the resulting instance of Fair Bisection, with the cut-size k being zero. Thus,
we conclude with the following theorem, whose formal proof can be found in the full version.

▶ Theorem 20. Fair Bisection is W[1]-hard parameterized by the number of colors c, even
when k, the cut-size is zero.

6 Conclusion

In this paper, we initiated the study of Fair Bisection from the perspective of parameterized
algorithms. We showed that the problem is W[1]-hard parameterized by the number of
colors c, even when k = 0; thus, we cannot hope to generalize the FPT algorithm to Fair
Bisection with a running time of the form f(k, c) · nO(1). On the other hand, the known
2O(k log k) · nO(1) algorithm for Minimum Bisection ([9, 10]) extends to Fair Bisection
in a straightforward manner with running time 2O(k log k) · nO(c). Our main result is that
Fair Bisection admits an FPT-approximation algorithm that finds an (ϵ, r)-fair bisection in
time 2O(k log k) ·

(
c
ϵ

)O(c) · nO(1). In fact, by setting ϵ = 1/(2n), we can obtain the previously
mentioned exact algorithm as a corollary.

We note that our approximation algorithm also works in the setting where a vertex can
belong to multiple color classes. Also, our technique can be extended to Fair q-section
problem, where we want to partition the vertex set into q parts such that (i) at most k edges
with endpoints in different parts, and (ii) each part has proportional representation from
each color – here, the algorithm will have an XP dependence on q.

Our main conceptual contribution is the observation that it is possible to design paramet-
erized approximation algorithms by applying the technique of Lampis [20] to design DP over
tree decompositions with unbreakable bags. Towards this goal we designed an algorithm that

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:15

given a graph G and integer k computes a (9k, k)-unbreakable tree decomposition of G with
logaritmic depth and adhesions of size at most 8k in time 2O(k log k)nO(1). We expect that
this will be a useful tool for obtaining parameterized approximation algorithms for other
problems by using Lampis [20]-style dynamic programming over tree decompositions with
unbreakable bags.

References
1 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering

in metric and euclidean spaces and their applications. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.23.

2 Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Kasturi R. Varadarajan. A constant
approximation for colorful k-center. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.12.

3 Johannes Blömer, Christiane Lammersen, Melanie Schmidt, and Christian Sohler. Theoretical
analysis of the k-means algorithm–a survey. In Algorithm Engineering, pages 81–116. Springer,
2016.

4 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.

5 Mikolaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs
of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 407–416. ACM, 2016. doi:10.1145/2933575.
2934508.

6 Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clus-
tering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 1032–1041.
PMLR, 2019. URL: http://proceedings.mlr.press/v97/chen19d.html.

7 Yixin Chen, Ya Zhang, and Xiang Ji. Size regularized cut for data cluster-
ing. In Advances in Neural Information Processing Systems 18 [Neural Information
Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia,
Canada], pages 211–218, 2005. URL: https://proceedings.neurips.cc/paper/2005/hash/
379a7ba015d8bf1c70b8add2c287c6fa-Abstract.html.

8 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016.

9 Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket
Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM
Trans. Algorithms, 17(1):6:1–6:30, 2021. doi:10.1145/3426738.

10 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM J. Comput., 48(2):417–450, 2019.
doi:10.1137/140988553.

11 Jefferey Dastin. Amazon scraps secret ai recruiting tool that showed bias against wo-
men. Reuters, 2018. https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight-idUSKCN1MK08G.

ESA 2023

https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://doi.org/10.4230/LIPIcs.ESA.2019.12
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508
http://proceedings.mlr.press/v97/chen19d.html
https://proceedings.neurips.cc/paper/2005/hash/379a7ba015d8bf1c70b8add2c287c6fa-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/379a7ba015d8bf1c70b8add2c287c6fa-Abstract.html
https://doi.org/10.1145/3426738
https://doi.org/10.1137/140988553
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

63:16 Parameterized Complexity of Fair Bisection

12 Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. The (im)possibility
of fairness: different value systems require different mechanisms for fair decision making.
Commun. ACM, 64(4):136–143, 2021. doi:10.1145/3433949.

13 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

14 Mehrdad Ghadiri, Samira Samadi, and Santosh S. Vempala. Socially fair k-means clustering.
In Madeleine Clare Elish, William Isaac, and Richard S. Zemel, editors, FAccT ’21: 2021
ACM Conference on Fairness, Accountability, and Transparency, Virtual Event / Toronto,
Canada, March 3-10, 2021, pages 438–448. ACM, 2021. doi:10.1145/3442188.3445906.

15 Patrick J Grother, Patrick J Grother, Mei Ngan, and K Hanaoka. Face recognition vendor test
(FRVT). US Department of Commerce, National Institute of Standards and Technology, 2014.

16 Rudolf Halin. Tree-partitions of infinite graphs. Discret. Math., 97(1-3):203–217, 1991.
doi:10.1016/0012-365X(91)90436-6.

17 Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for clus-
tering with fairness constraints. In Hanna M. Wallach, Hugo Larochelle, Alina Bey-
gelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Inform-
ation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 7587–7598, 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
810dfbbebb17302018ae903e9cb7a483-Abstract.html.

18 Xinrui Jia, Kshiteej Sheth, and Ola Svensson. Fair colorful k-center clustering. In Daniel
Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimiz-
ation – 21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceed-
ings, volume 12125 of Lecture Notes in Computer Science, pages 209–222. Springer, 2020.
doi:10.1007/978-3-030-45771-6_17.

19 Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for cut
problems and embeddability of negative-type metrics into 1. J. ACM, 62(1):8:1–8:39, 2015.
doi:10.1145/2629614.

20 Michael Lampis. Parameterized approximation schemes using graph widths. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages
775–786. Springer, 2014. doi:10.1007/978-3-662-43948-7_64.

21 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020. doi:10.1137/1.
9781611975994.134.

22 Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering.
In Mikhail Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT
2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine
Learning Research, pages 3246–3264. PMLR, 2021. URL: http://proceedings.mlr.press/
v134/makarychev21a.html.

23 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

24 Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial
bias in an algorithm used to manage the health of populations. Science, 366(6464):447–453,
2019.

25 Evelien Otte and Ronald Rousseau. Social network analysis: a powerful strategy, also for the
information sciences. Journal of information Science, 28(6):441–453, 2002.

26 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 255–264. ACM, 2008.
doi:10.1145/1374376.1374415.

https://doi.org/10.1145/3433949
https://doi.org/10.1145/3442188.3445906
https://doi.org/10.1016/0012-365X(91)90436-6
https://proceedings.neurips.cc/paper/2019/hash/810dfbbebb17302018ae903e9cb7a483-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/810dfbbebb17302018ae903e9cb7a483-Abstract.html
https://doi.org/10.1007/978-3-030-45771-6_17
https://doi.org/10.1145/2629614
https://doi.org/10.1007/978-3-662-43948-7_64
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1137/1.9781611975994.134
http://proceedings.mlr.press/v134/makarychev21a.html
http://proceedings.mlr.press/v134/makarychev21a.html
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1145/1374376.1374415

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan 63:17

27 Lior Rokach. A survey of clustering algorithms. In Data mining and knowledge discovery
handbook, pages 269–298. Springer, 2009.

28 Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming
algorithms for fair k-means. In Evripidis Bampis and Nicole Megow, editors, Approximation
and Online Algorithms – 17th International Workshop, WAOA 2019, Munich, Germany,
September 12-13, 2019, Revised Selected Papers, volume 11926 of Lecture Notes in Computer
Science, pages 232–251. Springer, 2019. doi:10.1007/978-3-030-39479-0_16.

29 Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach,
editor, Fundamentals of Computation Theory, FCT ’85, Cottbus, GDR, September 9-13,
1985, volume 199 of Lecture Notes in Computer Science, pages 412–421. Springer, 1985.
doi:10.1007/BFb0028825.

30 Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals of
Data Science, 2(2):165–193, 2015.

31 Jin-Tai Yan and Pei-Yung Hsiao. A fuzzy clustering algorithm for graph bisection. Inf. Process.
Lett., 52(5):259–263, 1994. doi:10.1016/0020-0190(94)00148-0.

ESA 2023

https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1016/0020-0190(94)00148-0

	1 Introduction
	2 Preliminaries
	3 Obtaining a Low Depth Unbreakable Tree Decomposition
	4 Exact and Approximation algorithms
	5 Hardness
	6 Conclusion

