
5-Approximation for H-Treewidth Essentially as
Fast as H-Deletion Parameterized by Solution Size
Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Jari J. H. de Kroon #

Eindhoven University of Technology, The Netherlands

Michał Włodarczyk #

University of Warsaw, Poland

Abstract
The notion of H-treewidth, where H is a hereditary graph class, was recently introduced as a
generalization of the treewidth of an undirected graph. Roughly speaking, a graph of H-treewidth at
most k can be decomposed into (arbitrarily large) H-subgraphs which interact only through vertex
sets of size O(k) which can be organized in a tree-like fashion. H-treewidth can be used as a hybrid
parameterization to develop fixed-parameter tractable algorithms for H-deletion problems, which
ask to find a minimum vertex set whose removal from a given graph G turns it into a member of H.
The bottleneck in the current parameterized algorithms lies in the computation of suitable tree
H-decompositions.

We present FPT-approximation algorithms to compute tree H-decompositions for hereditary and
union-closed graph classes H. Given a graph of H-treewidth k, we can compute a 5-approximate tree
H-decomposition in time f(O(k)) · nO(1) whenever H-deletion parameterized by solution size can
be solved in time f(k) ·nO(1) for some function f(k) ≥ 2k. The current-best algorithms either achieve
an approximation factor of kO(1) or construct optimal decompositions while suffering from non-
uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms
solving Odd Cycle Transversal in time 2O(k) · nO(1) parameterized by bipartite-treewidth and
Vertex Planarization in time 2O(k log k) · nO(1) parameterized by planar-treewidth, showing that
these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms
for parameterizations by hybrid width measures.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis; Theory of computation → Parameterized complexity
and exact algorithms

Keywords and phrases fixed-parameter tractability, treewidth, graph decompositions

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.66

Related Version Full Version: https://arxiv.org/abs/2306.17065 [31]

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

1 Introduction

Background and motivation. Treewidth (see [7, 19] [16, §7]) is a width measure for
graphs that is ubiquitous in algorithmic graph theory. It features prominently in the
Graph Minors series [47] and frequently pops up unexpectedly [38] in the parameterized
complexity [16, 20, 23] analysis of NP-hard graph problems on undirected graphs. The
notion of treewidth captures how tree-like a graph is in a certain sense; it is defined as the
width of an optimal tree decomposition for the graph. Unfortunately, computing an optimal
tree decomposition is NP-hard [3]. As many of the algorithmic applications of treewidth

© Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 66;
pp. 66:1–66:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:j.j.h.d.kroon@tue.nl
https://orcid.org/0000-0003-3328-9712
mailto:m.wlodarczyk@tue.nl
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ESA.2023.66
https://arxiv.org/abs/2306.17065
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 5-Approximation for H-Treewidth

require a tree decomposition to be able to work, there has been long record of algorithms
computing optimal [3, 6, 9, 43] or near-optimal [4, 8, 35] tree decompositions with no end in
sight [36], as well as a long series of experimental work on heuristically computing good tree
decompositions [10, 11, 17, 18]. In this paper, we present a new fixed-parameter tractable
approximation algorithm for the notion of H-treewidth, a generalization of treewidth which
has recently attracted significant attention [1, 21, 29, 30]. Before describing our contributions
for H-treewidth, we summarize the most important background to motivate the problem.

The popularity of treewidth as a graph parameter can be attributed to the fact that
it has very good algorithmic properties (by Courcelle’s theorem, any problem that can be
formulated in Counting Monadic Second-Order (CMSO2) logic can be solved in linear time on
graphs of bounded treewidth [15]), while also having a very elegant mathematical structure
theory. Unfortunately, simple substructures like grids or cliques in a graph can already make
its treewidth large. This means that for many input graphs of interest, the treewidth is
too large for an approach based on treewidth to be efficient: the running times of many
treewidth-based algorithms are of the form f(k) · nO(1), where f is an exponential function
in the treewidth k and n is the total number of vertices of the graph.

Several approaches have been taken to cope with the fact that treewidth is large on graphs
with large cliques or large induced grid subgraphs. One approach lies in generalized width
measures like cliquewidth or rankwidth [41], by essentially replacing the use of separations of
small order (which are encoded in tree decompositions), by separations of large order but in
which the interactions between the two sides is well-structured. Unfortunately this generality
comes at a price in terms of algorithmic applications [24, 25, 26].

This has recently led Eiben, Ganian, Hamm, and Kwon [21] to enrich the notion of
treewidth in a different way. Consider a hereditary class H of graphs, such as bipartite
graphs. The notion of H-treewidth aims to capture how well a graph G can be decomposed
into subgraphs belonging to H which only interact with the rest of the graph via small
vertex sets which are organized in a tree-like manner. While we defer formal definitions
of H-treewidth to Section 2, an intuitive way to think of the concept is the following: a
graph G has H-treewidth at most k if and only if it can be obtained from a graph G0
with a tree decomposition of width at most k by the following process: repeatedly insert a
subgraph Hi belonging to graph class H, such that the neighbors of Hi in the rest of the
graph are all contained in a single bag of the tree decomposition of G0. The H-subgraphs Hi

inserted during this process are called base components and their neighborhoods have size
at most k + 1. When H is a graph class of unbounded treewidth, like bipartite graphs, the
H-treewidth of a graph can be arbitrarily much smaller than its treewidth. This prompted
an investigation of the algorithmic applications of H-treewidth.

In recent works [1, 21, 30], the notion of H-treewidth was used to develop new algorithms
to solve vertex-deletion problems. Many classic NP-hard problems in algorithmic graph
theory can be phrased in the framework of H-deletion: find a minimum vertex-subset S of
the input graph G such that G − S belongs to a prescribed graph class H. Examples include
Vertex Cover (where H is the class of edgeless graphs), Odd Cycle Transversal
(bipartite graphs), and Vertex Planarization (planar graphs). All these problems are
known to be fixed-parameter tractable [14, 33, 34, 39, 44] when parameterized by the size of
a desired solution: there are algorithms that, given an n-vertex graph G and integer k, run
in time f(k) · nO(1) and output a vertex set S ⊆ V (G) of size at most k for which G − S ∈ H,
if such a set exists. These algorithms show that large instances whose optimal solutions
are small, can still be solved efficiently. Alternatively, since the mentioned graph classes H
can be defined in CMSO2, these vertex-deletion problems can be solved in time f(w) · n

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:3

parameterized by the treewidth w of the input graph via Courcelle’s theorem, which shows
that instances of small treewidth (but whose optimal solutions may be large) can be solved
efficiently.

The notion of H-treewidth (abbreviated as twH from now on) can be used to combine
the best of both worlds. It is not difficult to show that if a graph G has a vertex set S of
size k for which G − S ∈ H (we call such a set an H-deletion set), then the H-treewidth of G

is at most k: simply take a trivial tree decomposition consisting of a single bag of size k for
the graph G0 := G[S], so that afterwards the graph G can be obtained from G0 by inserting
the graph H = G − S, which belongs to H and has all its neighbors in a single bag. Since
the H-treewidth of G is also never larger than its standard treewidth, the hybrid (cf. [2])
parameterization by H-treewidth dominates both the parameterizations by the solution size
and the treewidth of the graph. This raises the question whether existing fixed-parameter
tractability results for parameterizations of H-deletion by treewidth or solution size, can
be extended to twH.

It was recently shown [1] that when it comes to non-uniform fixed-parameter tractability
characterizations, the answer to this question is positive. If H satisfies certain mild conditions,
which is the case for all graph classes mentioned so far, then for each value of k there exists
an algorithm AH,k that, given a graph G with twH(G) ≤ k and target value t, decides
whether or not G has an H-deletion set of size at most t. There is a constant cH such that
each algorithm AH,k runs in time O(ncH), so that the overall running time can be bounded
by f(k) · ncH ; however, no bounds on the function f are given and in general it is unknown
how to construct the algorithms whose existence is proven. Another recent paper [29] gave
concrete FPT algorithms to solve H-deletion parameterized by twH for certain cases of H,
including the three mentioned ones. For example, it presents an algorithm that solves Odd
Cycle Transversal in time 2O(k3) · nO(1), parameterized by bipartite-treewidth. The
bottleneck in the latter approach lies in the computation of a suitable tree H-decomposition:
on a graph of twH(G) ≤ k, the algorithm runs in 2O(k log k) · nO(1) time to compute a tree H-
decomposition of width w ∈ O(k3), and then optimally solves Odd Cycle Transversal on
the decomposition of width w in time 2O(w) · nO(1) ≤ 2O(k3) · nO(1). Note that the parameter
dependence of this algorithm is much worse than for the parameterizations by solution size and
by treewidth, both of which can be solved in single-exponential time 2O(k) · nO(1) [44, 37]. To
improve the running times of algorithms for H-deletion based on hybrid parameterizations,
improved algorithms are therefore required to compute approximate tree H-decompositions.
These form the subject of our work.

Our contribution: H-treewidth. We develop generic FPT algorithms to approximate
H-treewidth, for graph classes H which are hereditary and closed under taking the disjoint
union of graphs. To approximate H-treewidth, all our algorithm needs is access to an oracle
for solving H-deletion parameterized by solution size. The values of the solution size
for which the oracle is invoked, will be at most twice as large as the H-treewidth of the
graph we are decomposing. Hence existing algorithms for solution-size parameterizations of
H-deletion can be used as a black box to form the oracle. Aside from the oracle calls, our
algorithm only takes 8k · kn(n + m) time on an n-vertex graph with m edges. So whenever
the solution-size parameterization can be solved in single-exponential time, an approximate
tree H-decomposition can be found in single-exponential time. The approximation factor of
the algorithm is 5, which is a significant improvement over earlier poly(opt) approximations
running in superexponential time. The formal statement of our main result is the following.

▶ Theorem 1. Let H be a hereditary and union-closed class of graphs. There is an algorithm
that, using oracle-access to an algorithm A for H-deletion, takes as input an n-vertex
m-edge graph G, integer k, and either computes a tree H-decomposition of G of width at

ESA 2023

66:4 5-Approximation for H-Treewidth

most 5k + 5 consisting of O(n) nodes, or correctly concludes that twH(G) > k. The algorithm
runs in time O(8k · kn(n + m)), polynomial space, and makes O(8kn) calls to A on induced
subgraphs of G and parameter 2k + 2.

Theorem 1 yields the first constant-factor approximation algorithms for twH that run in
single-exponential time. For example, for H the class of bipartite graphs the running time
becomes O(72k · n2(n + m)), and for interval graphs we obtain O(83k · n(n + m)) (the full
version [31] gives results for more classes H). Combining these approximate decompositions
with existing algorithms that solve H-deletion on a given tree H-decomposition, we obtain
ETH-tight algorithms as a consequence. Odd Cycle Transversal can be solved in
time 2O(k) · nO(1), and Vertex Planarization can be solved in time 2O(k log k) · nO(1)

when parameterized by twH for H the class of bipartite and planar graphs, respectively,
without having to supply a decomposition in the input. For Vertex Planarization, the
previous-best bound [32] was 2O(k5 log k) · nO(1). Note that for the planarization problem, a
parameter dependence of 2o(k log k) is impossible assuming the Exponential Time Hypothesis;
this already holds for the larger parameterization by treewidth [42]. For Odd Cycle
Transversal, an algorithm running in time 2o(n) would violate the Exponential Time
Hypothesis, which follows by a simple reduction from Vertex Cover for which such a lower
bound is known [16, Theorem 14.6]. This implies that the solution size parameterization
cannot be solved in subexponential time.

Compared to existing algorithms to approximate treewidth, the main obstacle we have to
overcome in Theorem 1 is identifying the base components of an approximate decomposition
in a suitable way. The earlier FPT poly(opt)-approximation for twH effectively reduced
the input graph G to a graph G′ by repeatedly extracting large H-subgraphs with small
neighborhoods, in such a way that the treewidth of G′ can be bounded in terms of twH(G),
while a tree decomposition of G′ can be lifted into an approximate tree H-decomposition
of G. Several steps in this process led to losses in the approximation factor. To obtain
our 5-approximation, we avoid the translation between G and G′, and work directly on
decomposing the input graph G.

Our recursive decomposition algorithm works similarly as the Robertson-Seymour 4-
approximation algorithm for treewidth [45] (cf. [16, §7.6]). When given a graph G and
integer k with twH(G) ≤ k, the algorithm maintains a vertex set S of size 3k +4 which forms
the boundary between the part of the graph that has already been decomposed and the part
that still needs to be processed. If S has a 2

3 -balanced separator R of size k + 1, we can
proceed in the usual way: we split the graph based on R, recursively decompose the resulting
parts, and combine these decompositions by adding a bag containing R ∪ S as the root. If S

does not have a balanced separator of size k + 1, then we show (modulo some technical
details) that for any optimal tree H-decomposition, there is a subset S′ ⊆ S of 2k + 3 vertices
which belong to a single base component H0. Our main insight is that such a set S′ can be
used in a win/win approach, by maintaining an H-deletion set X during the decomposition
process that initially contains all vertices. To make progress in the recursion, we would like
to split off a base component containing S′ via a separator U of size at most 2k + 2, while
adding U to the boundary of the remainder of the graph to be decomposed. To identify
an induced H-subgraph with small neighborhood that can serve as a base component, we
compute a minimum (S′, X)-separator U (we allow U to intersect the sets S′, X). Any
connected component H of G − U that contains a vertex from S′ does not contain any vertex
of the H-deletion set X, so H is an induced subgraph of G − X which implies H ∈ H for
hereditary H. Hence if there is an (S′, X)-separator U of size at most 2k + 2, we can use it
to split off base components neighboring U that eliminate 2k + 3 vertices from S from the
boundary, thereby making room to insert U into the boundary without blowing up its size.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:5

Of course, it may be that all (S′, X)-separators are larger than 2k + 2; by Menger’s
theorem, this happens exactly when there is a family P of 2k +3 vertex-disjoint (S′, X)-paths.
Only k + 1 paths in P can escape the base component H0 covering S′ since its neighborhood
has size at most k + 1, so that k + 2 of them end in a vertex of the deletion set X that lies
in H0. The key point is now that this situation implies that X is redundant in a technical
sense: if we let X ′ denote the endpoints of k + 2 (S′, X)-paths starting and ending in H0, we
can obtain a smaller H-deletion set by replacing X ′ by the neighborhood of H0, which has size
at most k + 1. This replacement is valid as long as H is hereditary and union-closed. Using
an oracle for H-deletion parameterized by solution size, we can therefore efficiently find a
smaller H-deletion set when we know X ′. While the algorithm does not know X ′ in general,
this type of argument leads to the win/win: either there is a small (S′, X)-separator which we
can use to split off a base component, or there is a large family of vertex-disjoint (S′, X)-paths
which allows the H-deletion set to be improved. As the latter can only happen |V (G)| times,
we must eventually identify a base component to split off, allowing the recursion to proceed.

Our contribution: H-elimination distance. The H-elimination distance edH(G) of a
graph G is a parameter [12, 13] that extends treedepth [40] similarly to how H-treewidth
extends treewidth. For hereditary and union-closed classes H, the H-elimination distance of
a graph G is the minimum number of rounds needed to turn G into a member of H, when a
round consists of removing one vertex from each connected component. Such an elimination
process can be represented by a tree structure called H-elimination forest. Aside from the fact
that computing the H-elimination distance may reveal interesting properties of a graph G,
a second motivation for studying this parameter is that it can facilitate polynomial-space
algorithms for solving H-deletion, while the parameterization by twH (which is never
larger) typically gives rise to exponential-space algorithms. At a high level, the state of the art
for computing edH is similar as for twH: there is an exact non-uniform FPT algorithm with
unspecified parameter dependence that works as long as H satisfies some mild conditions [1],
while uniform poly(opt)-approximation algorithms running in time 2kO(1) · nO(1) are known
for several concrete graph classes H [30].

By leveraging similar ideas as for Theorem 1, we also obtain improved FPT-approximation
algorithms for edH. The following theorem gives algorithms for two settings: one for an
algorithm using polynomial space whenever the algorithm A for H-deletion does, which is
the case for most of the considered graph classes, and one for an exponential-space algorithm
with a better approximation ratio.

▶ Theorem 2. Let H be a hereditary and union-closed class of graphs. There exists an
algorithm that, using oracle-access to an algorithm A for H-deletion, takes as input an
n-vertex graph G and integer k, runs in time nO(1), makes nO(1) calls to A on induced
subgraphs of G and parameter 2k, and either concludes that edH(G) > k or outputs an
H-elimination forest of depth O(k3 log3/2 k).

Under the same assumptions, there is an algorithm that runs in time 2O(k2) ·nO(1), makes
nO(1) calls to A on induced subgraphs of G and parameter 2k, and either concludes that
edH(G) > k or outputs an H-elimination forest of depth O(k2).

In the previous work [30, 32] such a dependence on k was possible only in two cases:
when H is the class of bipartite graphs or when H is defined by a finite family of forbidden
induced subgraphs. In the general case, our result effectively shaves off a single k-factor in
the depth of the returned decomposition and in the exponent of the running time, compared
to the previously known approximations. Theorem 2 entails better approximation algorithms
for H-elimination distance for classes of e.g. chordal, interval, planar, bipartite permutation,
or distance-hereditary graphs.

ESA 2023

66:6 5-Approximation for H-Treewidth

Organization. The remainder of the paper is organized as follows. We continue by presenting
formal preliminaries in Section 2. In Section 3 we treat H-treewidth, developing the theory
and subroutines needed to prove Theorem 1. Due to space limitations, the resulting proof of
Theorem 1 is deferred to the full version [31], which also provides a list of applications for
concrete graph classes. The proof of Theorem 2 can also be found in the full version. We
conclude in Section 4.

2 Preliminaries

Graphs and graph classes. We consider finite, simple, undirected graphs. We denote the
vertex and edge sets of a graph G by V (G) and E(G) respectively, with |V (G)| = n and
|E(G)| = m. For a set of vertices S ⊆ V (G), by G[S] we denote the graph induced by S.
We use shorthand G − v and G − S for G[V (G) \ {v}] and G[V (G) \ S], respectively. The
open neighborhood NG(v) of v ∈ V (G) is defined as {u ∈ V (G) | uv ∈ E(G)}. The closed
neighborhood of v is NG[v] = NG(v) ∪ {v}. For S ⊆ V (G), we have NG[S] =

⋃
v∈S NG[v]

and NG(S) = NG[S] \ S. We define the boundary ∂G(S) of the vertex set S as NG(V (G) \ S),
i.e., those vertices of S which have a neighbor outside S.

A class of graphs H is called hereditary if for any G ∈ H, every induced subgraph of G

also belongs to H. Furthermore, H is union-closed if for any G1, G2 ∈ H the disjoint union
of G1 and G2 also belongs to H. For a graph class H and a graph G, a set X ⊆ V (G) is
called an H-deletion set in G if G − X ∈ H. For a graph class H, the parameterized problem
H-deletion takes a graph G and parameter k as input, and either outputs a minimum-size
H-deletion set in G or reports that there is no such set of size at most k.

Separators. For two (not necessarily disjoint) sets X, Y ⊆ V (G) in a graph G, a set
P ⊆ V (G) is an (X, Y)-separator if no connected component of G − P contains a vertex
from both X \ P and Y \ P . Such a separator may intersect X ∪ Y . Equivalently, P is
an (X, Y)-separator if each (X, Y)-path contains a vertex of P . The minimum cardinality
of such a separator is denoted λG(X, Y). By Menger’s theorem, λG(X, Y) is equal to the
maximum cardinality of a set of pairwise vertex-disjoint (X, Y)-paths. A pair (A, B) of
subsets of V (G) is a separation in G if A ∪ B = V (G) and G has no edges between A \ B

and B \ A. Its order is defined as |A ∩ B|.

▶ Observation 3. For two sets X, Y ⊆ V (G), it holds that λG(X, Y) ≤ k if and only if there
exists a separation (A, B) in V (G) such that X ⊆ A, Y ⊆ B, and |A ∩ B| ≤ k.

The following theorem summarizes how, given vertex sets X, Y ⊆ V (G) and a bound k,
we can algorithmically find a small-order separation or a large system of vertex-disjoint paths.
The statement follows from the analysis of the Ford-Fulkerson algorithm for maximum (X, Y)-
flow in which each vertex has a capacity of 1. If the algorithm has not terminated within k

iterations, then the flow of value k + 1 yields k + 1 vertex-disjoint paths. If it terminates
earlier, a suitable separation can be identified based on reachability in the residual network
of the last iteration.

▶ Theorem 4 (Ford-Fulkerson, see [16, Thm. 8.2] and [49, §9.2]). There is an algorithm
that, given an n-vertex m-edge graph G, sets X, Y ⊆ V (G), and integer k, runs in time
O(k(n + m)) and determines whether λG(X, Y) ≤ k. If so, the algorithm also returns a
separation (A, B) in G with X ⊆ A, Y ⊆ B, and |A ∩ B| ≤ k. Otherwise, the algorithm
returns a family of k + 1 vertex-disjoint (X, Y)-paths.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:7

H-treewidth. We continue by giving a formal definition of a tree H-decomposition.

▶ Definition 5. For a graph class H, a tree H-decomposition of graph G is a triple (T, χ, L)
where L ⊆ V (G), T is a rooted tree, and χ : V (T) → 2V (G), such that:
1. For each v ∈ V (G) the nodes {t | v ∈ χ(t)} form a non-empty connected subtree of T .
2. For each edge uv ∈ E(G) there is a node t ∈ V (T) with {u, v} ⊆ χ(t).
3. For each vertex v ∈ L, there is a unique t ∈ V (T) with v ∈ χ(t), and t is a leaf of T .
4. For each node t ∈ V (T), the graph G[χ(t) ∩ L] belongs to H.

The width of a tree H-decomposition is defined as max(0, maxt∈V (T) |χ(t) \ L| − 1). The
H-treewidth of a graph G, denoted twH(G), is the minimum width of a tree H-decomposition
of G. The connected components of G[L] are called base components.

A pair (T, χ) is a (standard) tree decomposition if (T, χ, ∅) satisfies all conditions of an
H-decomposition; the choice of H is irrelevant.

For a rooted tree decomposition (T, χ), Tt denotes the subtree of T rooted at t ∈ V (T),
while χ(Tt) =

⋃
x∈V (Tt) χ(x). Similarly as treewidth, H-treewidth is a monotone parameter

with respect to taking induced subgraphs.

▶ Observation 6. Let H be a hereditary class of graphs, G be a graph, and H be an induced
subgraph of G. Then twH(H) ≤ twH(G).

3 Approximating H-treewidth

We make preparations for the proof of Theorem 1. First, we formalize the concept of
a potential base component using the notion of an (H, ℓ)-separation and relate it to redundant
subsets in a solution to H-deletion. Next, we prove a counterpart of the balanced-separation
property for graphs of bounded H-treewidth and explain how it allows us to apply a win/win
approach in a single step of the decomposition algorithm.

3.1 Redundancy and (H, ℓ)-separations
We summon the following concept from the previous work on H-treewidth [30] to capture
H-subgraphs with small neighborhoods.

▶ Definition 7. For disjoint C, S ⊆ V (G), the pair (C, S) is called an (H, ℓ)-separation
in G if (1) G[C] ∈ H, (2) |S| ≤ ℓ, and (3) NG(C) ⊆ S.

This notion is tightly connected to the base components of tree H-decompositions. For
any tree H-decomposition (T, χ, L) of width k of a graph G, for any node t ∈ T , the
graph G[χ(t) ∩ L] belongs to H so that C := χ(t) ∩ L satisfies Definition 7. The open
neighborhood of χ(t) ∩ L is a subset of S := χ(t) \ L, which follows from the fact that vertices
of L only occur in a single bag, while each edge has both endpoints covered by a single bag.
Since |S| ≤ k + 1 by definition of the width of a tree H-decomposition, this leads to the
following observation.

▶ Observation 8. Let (T, χ, L) be a tree H-decomposition of a graph G of width k. For each
node t ∈ V (T), the pair (χ(t) ∩ L, χ(t) \ L) is an (H, k + 1)-separation in G.

The following concept will be useful when working with (H, ℓ)-separations.

▶ Definition 9. For an (H, k)-separation (C, S) and set Z ⊆ V (G), we say that (C, S)
covers Z if Z ⊆ C, or weakly covers Z if Z ⊆ C ∪ S. Set Z ⊆ V (G) is called (weakly)
(H, ℓ)-separable if there exists an (H, ℓ)-separation that (weakly) covers Z.

ESA 2023

66:8 5-Approximation for H-Treewidth

C S V (G) \ (C ∪ S)

Figure 1 Illustration for Lemma 12: an (H, ℓ)-separation (C, S) in a graph G where H is the
class of triangle-free graphs and ℓ = 2. Vertices marked with a cross form an H-deletion set X

in G, while the set Z of size 2ℓ + 1 = 5 marked with blue squares is weakly (H, ℓ)-separable. A set
of 2ℓ + 1 vertex-disjoint (Z, X)-paths P is highlighted, witnessing λG(Z, X) = |Z|. Since |X ∩ C| > ℓ,
the set X is not a minimum H-deletion set in G: it can be improved by replacing X ∩ C with S.
When (C, S) weakly covering Z exists but is unknown to the algorithm, we can still improve X since
the set of X-endpoints of P also form a redundant set in X.

We introduce both notions to keep consistency with the earlier work [30] but in fact we
will be interested only in weak coverings. Following the example above, the set Z = χ(t) is
weakly (H, k + 1)-separable but not necessarily (H, k + 1)-separable.

Next, we introduce the notion of redundancy for solutions to H-deletion.

▶ Definition 10. For an H-deletion set X in G we say that a subset X ′ ⊆ X is redundant
in X if there exists a set X ′′ ⊆ V (G) smaller than |X ′| such that (X \ X ′) ∪ X ′′ is also an
H-deletion set in G.

We remark that redundancy has been studied in the context of local-search strategies
(cf. [27, 28]). It is known that for Vertex Cover finding a redundant subset X ′ in a
solution X is FPT in graphs of bounded local treewidth but W[1]-hard in general, when
parameterized by the size of |X ′| [22]. However, when X ′ is given, one can easily check
whether it is redundant using an algorithm for H-deletion parameterized by the solution
size, due to the following observation.

▶ Observation 11. Let X be an H-deletion set in a graph G. A subset X ′ ⊆ X is redundant
in X if and only if the graph G − (X \ X ′) has an H-deletion set smaller than |X ′|.

An important observation is that when X ′ ⊆ X of size at least ℓ + 1 is weakly (H, ℓ)-
separable, then it is redundant in X by a simple exchange argument. This fact has been
already leveraged in previous work [1, 30] when analyzing the structure of minimum-size
H-deletion sets, which clearly cannot contain any redundant subsets. We exploit it in a
different context, to prove that if there is a large flow between an H-deletion set X and a
weakly (H, ℓ)-separable set Z, then X has a redundant subset. Subsequently, we will show
that this redundant subset can efficiently be detected.

▶ Lemma 12. Let H be a hereditary and union-closed class of graphs. Consider a graph G,
an H-deletion set X in G, and a weakly (H, ℓ)-separable set Z ⊆ V (G). Suppose that there
exists a subset X ′ ⊆ X of size 2ℓ + 1 such that λG(Z, X ′) = 2ℓ + 1. Then X ′ is redundant
in X.

Proof. Let (C, S) be an (H, ℓ) separation in G with Z ⊆ C ∪ S. From the definition of
an (H, ℓ)-separation, we have G[C] ∈ H while NG(C) ⊆ S and |S| ≤ ℓ.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:9

By Menger’s theorem, the cardinality of a maximum packing of vertex-disjoint (Z, X ′)-
paths equals λG(Z, X ′). Hence there exists a family P = {P1, . . . , P2ℓ+1} of vertex-disjoint
paths, each of which connects a unique vertex zi ∈ Z to a unique vertex xi ∈ X ′ (possibly
xi = zi). At most |S| of these paths intersect the separator S of the (H, ℓ)-separation
(see Figure 1). Let X ′′ = {xi | Pi ∩ S = ∅} denote the X ′-endpoints of those paths not
intersecting S, and let P ′ be the corresponding paths. Each path Pi in P ′ is disjoint from S

and has an endpoint zi ∈ Z. Since Z ⊆ C ∪ S, the zi endpoint belongs to C. As NG(C) ⊆ S

and Pi does not intersect S, the other endpoint xi also belongs to C. Hence all vertices
of X ′′ belong to C, and there are at least 2ℓ + 1 − ℓ = ℓ + 1 of them.

Let X∗ := (X \ X ′′) ∪ S, and observe that |X∗| < |X| since |X ′′| ≥ ℓ + 1 while |S| ≤ ℓ.
We prove that G − X∗ ∈ H, by showing that S is an H-deletion set in G − (X \ X ′′). Since H
is union-closed, it suffices to argue that each connected component H of G − ((X \ X ′′) ∪ S)
belongs to H. If H contains no vertex of X ′′, then H is an induced subgraph of G − X ∈ H
and therefore H ∈ H since the graph class is hereditary. If H contains a vertex of X ′′ ⊆ C,
then the component H is an induced subgraph of G[C] since NG(C) ⊆ S is part of the set X∗.
Hence H is an induced subgraph of G[C] ∈ H, which implies H ∈ H as H is hereditary. This
shows that X∗ is indeed an H-deletion set.

Since (X \ X ′′) ∪ S is an H-deletion set smaller than X, the set X ′′ is redundant in X.
As X ′ ⊇ X ′′, it follows that X ′ is redundant as well. ◀

3.2 The win/win strategy
The classic 4-approximation algorithm for computing a (standard) tree decomposition is
based on the existence of balanced separators in graphs of bounded treewidth. In a graph G

of treewidth ≤ k, any set S of 3k + 4 vertices can by partitioned into S = SA ∪ SB in such a
way that |SA|, |SB | ≤ 2k + 2 and λG(SA, SB) ≤ k + 1 [16, Corollary 7.21]. This is not always
possible if we only have a bound on H-treewidth twH(G) ≤ k because a large subset S′ of S

might lie in a single well-connected base component of a tree H-decomposition, i.e., a base
component whose standard treewidth is large. But then S′ is weakly (H, k + 1)-separable,
which can also be exploited when constructing a decomposition. We show that this is in fact
the only scenario in which we cannot split S in a balanced way.

▶ Lemma 13. Let H be a hereditary and union-closed class of graphs. Let G be a graph with
twH(G) ≤ k. For any set S ⊆ V (G) of size 3k + 4, at least one of the following holds.
1. There is a partition S = SA ∪ SB such that |SA|, |SB | ≤ 2k + 2 and λG(SA, SB) ≤ k + 1.
2. There is a set S′ ⊆ S of size 2k + 3 which is weakly (H, k + 1)-separable.

Proof. Consider an optimal tree H-decomposition (T, χ, L) of G, so that |χ(t) \ L| ≤ k + 1
for each t ∈ V (T). Let r ∈ V (T) be its root. We start by showing that (2) holds if some leaf
bag of the decomposition contains 2k + 3 vertices from S.

So suppose there exists a leaf t ∈ V (T) with |χ(t) ∩ S| ≥ 2k + 3, and let S′ ⊆ χ(t) ∩ S be
an arbitrary subset of size exactly 2k + 3. Observation 8 ensures that (C∗ := χ(t) ∩ L, S∗ :=
χ(t) \ L) is an (H, k + 1)-separation, which weakly covers χ(t) and therefore S′. Hence (2)
holds.

In the remainder, it suffices to show that (1) holds when there is no leaf t ∈ V (T)
with |χ(t) ∩ S| ≥ 2k + 3. Pick a deepest node t∗ in the rooted tree T for which |S ∩ χ(Tt∗)| ≥
2k + 3. Then t∗ is not a leaf since the previous case did not apply, so by definition of
tree H-decomposition we have χ(t∗) ∩ L = ∅. Let D1, . . . , Dp be the connected components
of G−χ(t∗). Since the pair (T, χ) satisfies all properties of a standard tree decomposition, the
bag χ(t∗) is a separator in G so that for each component Di, there is a single tree T i in the
unrooted forest T − t∗ such that T i contains all nodes whose bags contain some v ∈ V (Di);
see for example [46, (2.3)].

ESA 2023

66:10 5-Approximation for H-Treewidth

The choice of t∗ ensures that |V (Di) ∩ S| < 2k + 3 for all i ∈ [p]: when vertices of Di

are contained in bags of a tree rooted at a child of t∗ this follows from the fact that t∗ is
a deepest node for which |S ∩ χ(Tt∗)| ≥ 2k + 3; when vertices of Di are contained in the
tree T i of T − t∗ having the parent of t∗, this follows from the fact that χ(Tt∗) contains at
least 2k + 3 vertices from S, none of which appear in Di since a vertex occurring in χ(Tt∗)
and in a bag outside Tt∗ , is contained in χ(t∗) and therefore part of the separator χ(t∗) used
to obtain the component Di. Hence none of the vertices of S ∩ χ(t∗) can appear in Di, which
means there are at most |S| − (2k + 3) ≤ k + 1 vertices in V (Di) ∩ S.

Since |S| = 3k + 4 and no component Di contains at least 2k + 3 vertices from S, the
components can be partitioned into two parts D1, D2 such that

∑
Di∈Dj

|V (Di) ∩ S| ≤ 2k + 2
for each j ∈ {1, 2}. If some component contains at least k + 2 vertices from S, then that
component is a part by itself, ensuring the remainder has at most 3k + 4 − (k + 2) ≤ 2k + 2
vertices from S; if no component contains at least k + 2 vertices from S, then any inclusion-
minimal subset of components having at least k + 2 vertices from S has at most 2k + 2 of
them.

Define S′
A :=

⋃
Di∈D1

V (Di) ∩ S and S′
B :=

⋃
Di∈D2

V (Di) ∩ S, and assume without loss
of generality that |S′

A| ≥ |S′
B |. Note that |S′

A ∪ S′
B | = |S \ χ(t∗)| ≥ 2k + 3, so that the larger

side S′
A contains at least k+2 vertices. To turn S′

A, S′
B into the desired partition of S, it suffices

to take SA = S′
A and SB = S′

B ∪ (χ(t∗) ∩ S) = S \ SA. It is clear that |SA| = |S′
A| ≥ k + 2,

while |SB | = |S|−|SA| ≥ 3k+4−(2k+2) ≥ k+2. The fact that |SA|, |SB | ≥ k+2 while they
partition S with |S| = 3k + 4 implies |SA|, |SB | ≤ 2k + 2 as desired. Since χ(t∗) separates S′

A

from S′
B , it separates SA from SB and we have λG(SA, SB) ≤ |χ(t∗)| = |χ(t∗)\L| ≤ k+1. ◀

We can now translate the last two lemmas into an algorithmic statement, which will be
used as a subroutine in the main algorithm. When twH(G) ≤ k and S ⊆ V (G) is of size
3k + 4, then we can either split it in a balanced way, split off a base component, or detect
a redundancy in a given H-deletion set and reduce its size. Each of these outcomes will
guarantee some progress for the task of constructing a tree H-decomposition.

▶ Lemma 14. Let H be a hereditary and union-closed class of graphs. There is an algorithm
that, using oracle-access to an algorithm A for H-deletion, takes as input an n-vertex
m-edge graph G, integer k, H-deletion set X in G, and a set S ⊆ V (G) of size 3k + 4, runs
in time O(8k · k(n + m)) and polynomial space, makes O(8k) calls to A on induced subgraphs
of G and parameter 2k + 2, and terminates with one of the following outcomes.
1. A partition S = SA ∪ SB and a separation (A, B) in G are returned, such that SA ⊆ A,

SB ⊆ B, |SA| ≤ 2k + 2, |SB | ≤ 2k + 2, and |A ∩ B| ≤ k + 1.
2. A subset S′ ⊆ S and a separation (A, B) in G are returned, such that S′ ⊆ A, X ⊆ B,

|S′| = 2k + 3, and |A ∩ B| ≤ 2k + 2. (This implies that G[A \ B] ∈ H.)
3. An H-deletion set X ′ in G is returned, that is smaller than X.
4. The algorithm correctly concludes that twH(G) > k.

Proof. The algorithm starts by trying to reach the first outcome. For each partition SA ∪ SB

of S in which both parts have at most 2k + 2 vertices, it performs at most k + 2 iterations of
the Fold-Fulkerson algorithm to test whether λG(SA, SB) ≤ k + 1. If so, then the algorithm
outputs a corresponding separation (A, B) in G with SA ⊆ A, SB ⊆ B, and |A ∩ B| =
λG(SA, SB) ≤ k + 1. By Theorem 4, this can be done in time O(k(n + m)).

Next, the algorithm attempts to reach the second outcome. For each subset S′ ⊆ S of
size 2k + 3, it performs at most 2k + 3 iterations of the Ford-Fulkerson algorithm to test
whether λG(S′, X) ≤ 2k + 2. If so, the algorithm extracts a corresponding separation (A, B)
with S′ ⊆ A, X ⊆ B, and |A ∩ B| ≤ 2k + 2, and outputs it.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:11

If the algorithm has not terminated so far, it will reach the third or fourth outcome. It
proceeds as follows.
1. For each subset S′ ⊆ S of size 2k + 3, we have λG(S′, X) > 2k + 2 since we could not

reach the second outcome. As |S′| = 2k + 3 this implies λG(S′, X) = 2k + 3. By Menger’s
theorem, there is a packing PS′ of 2k +3 vertex-disjoint (S′, X)-paths, and such a packing
can be extracted from the final stage of the Ford-Fulkerson computation.

2. Let X ′
S′ ⊆ X be the endpoints in the set X of the paths PS′ , so that |X ′

S′ | = |S′| = 2k +3.
3. We invoke algorithm A on the graph G − (X \ X ′

S′) and parameter value 2k + 2, to find a
minimum-size H-deletion set in G − (X \ X ′

S′) or conclude that such a set has size more
than 2k + 2. If A returns a solution Y of size at most 2k + 2, then (X \ X ′

S′) ∪ Y is an
H-deletion set in G smaller than X and we return it as the third outcome.

If none of the preceding steps for any S′ ⊆ S of size 2k + 3 caused the algorithm to give
an output, then we conclude that twH(G) > k and terminate.

Correctness. We proceed to argue for correctness of the algorithm. It is clear that if the
algorithm terminates with one of the first three outcomes, then its output is correct. We
proceed to show that if twH(G) ≤ k, then it will indeed terminate in one of those outcomes.
So assume twH(G) ≤ k, which means we may apply Lemma 13 to S and G. If Case 1 of
Lemma 13 holds, then the algorithm will detect the corresponding separation in the first
phase of the algorithm and terminate with a suitable separation. So assume Case 2 holds,
so that there is a set S′ ⊆ S of size 2k + 3 which is weakly (H, k + 1)-separable. Since
the set S′ is a candidate for reaching the second outcome, if that outcome is not reached
we have λG(S′, X) > 2k + 2 and hence λG(S′, X) = 2k + 3 = |S′|. Consider the family of
(S′, X)-paths PS′ constructed by the algorithm for this choice of S′ and let X ′

S′ be their
endpoints in X. The paths PS′ show that λG(S′, X ′

S′) = |S′| = |X ′
S′ | = 2k + 3. Now we

can apply Lemma 12 for ℓ = k + 1 to infer that X ′
S′ is redundant in X, which implies

that G − (X \ X ′
S′) has an H-deletion set smaller than |X ′

S′ | = 2k + 3. Hence algorithm A
outputs an H-deletion set smaller than |X ′

S′ | and the algorithm terminates with the third
outcome.

Since the algorithm reaches one the first three outcomes when twH(G) ≤ k, the algorithm
is correct when it reaches the last outcome.

Running time and oracle calls. Each of the three phases of the algorithm consist of
enumerating subsets S′ ⊆ S, of which there are 2|S| ≤ 23k+4 = O(8k). For each such set S′,
the algorithm performs O(k) rounds of the Ford-Fulkerson algorithm in time O(k(n+m)). In
the last phase, the algorithm additionally invokes A on an induced subgraph of G for each S′

to find an H-deletion set of size at most 2k + 2 if one exists. It follows that the running time
of the algorithm (not accounting for the time spent by A) is O(8k · k(n + m)). The space
usage is easily seen to be polynomial in the input size since the algorithm is iterative. This
concludes the proof of Lemma 14. ◀

3.3 The decomposition algorithm
We retrace the proof of [16, Theorem 7.18] which gives the classic algorithm for approximating
(standard) treewidth. Consider sets S ⊆ W ⊆ V (G) such that ∂G(W) ⊆ S and |S| = 3k + 4;
we aim to construct a tree decomposition of G[W] which contains S in its root bag. We can
consider all ways to partition S into SA ∪ SB such that |SA|, |SB | ≤ 2k + 2 and compute a
minimum (SA, SB)-separator. Since |S| = 3k + 4, there are 23k+4 = O(8k) such partitions.

ESA 2023

66:12 5-Approximation for H-Treewidth

When tw(G) ≤ k, we are guaranteed that for some partition S = SA ∪ SB we will find a
separator in G[W] of size ≤ k + 1 which yields the separation (AW , BW) in G[W] satisfying
SA ⊆ AW , SB ⊆ BW , and |AW ∩ BW | ≤ k + 1. Then the boundary ∂G(AW) is contained
in SA ∪ (AW ∩ BW), and similarly ∂G(BW) ⊆ SB ∪ (AW ∩ BW). We create instances
(AW , SA ∪ (AW ∩ BW)) and (BW , SB ∪ (AW ∩ BW)) to be solved recursively, analogously as
(W, S). Note that each of the sets SA ∪ (AW ∩ BW), SB ∪ (AW ∩ BW) has less than 3k + 4
vertices, so we can augment each of them with one more vertex before making the recursive
call while preserving the size invariant. This step ensures that the recursion tree has at most
|V (G)| nodes. After computing tree decompositions for G[A] and G[B] we merge them by
creating a new root with a bag S ∪ (AW ∩ BW) of size at most 4k + 5. Hence, we are able to
construct a tree decomposition of width 4k + 4 assuming that one of width k exists.

There are two differences between the outlined algorithm and ours, while the recursive
scheme stays the same. First, due to scenario (2) in Lemma 14 we need to handle the cases
where we can directly create a base component containing at least 2k + 3 vertices from S.
The lower bound 2k + 3 is greater than the separator size 2k + 2 so we will move on to a
subproblem where S is significantly smaller. We need to include the separator of size 2k + 2
in the root bag, together with S, so we obtain a slightly weaker bound on the maximum
bag size, that is 5k + 6. Next, due to scenario (3) we might not make direct progress in the
recursive scheme but instead we reduce the size of an H-deletion set X that we maintain
(which initially contains all vertices). This situation can happen at most |V (G)| many times,
so eventually we will reach outcome (1) or (2).

The approach sketched above leads to a proof of Theorem 1. The details are deferred to
the full version [31] due to space restrictions. Apart from carefully combining the ingredients
collected so far, in the proof we take care to optimize the number of calls to the H-deletion
oracle, leading to the clean bound of O(8kn) oracle calls advocated in the introduction.

4 Conclusion

We contributed to the algorithmic theory of hybrid graph parameterizations, by showing
how a 5-approximation to twH can be obtained using an algorithm for the solution-size
parameterization of H-deletion as a black box. This makes the step of computing a tree
H-decomposition now essentially as fast as that of solving H-deletion parameterized by
solution size. Our new decomposition algorithm combines with existing algorithms to solve
H-deletion on a given tree H-decomposition, to deliver algorithms that solve H-deletion
parameterized by twH. For Odd Cycle Transversal and Vertex Planarization, the
parameter dependence of the resulting algorithm is equal to the worst of the parameter
dependencies of the solution-size and treewidth-parameterizations. We believe that this is
not a coincidence, and offer the following conjecture.

▶ Conjecture 15. Let H be a hereditary and union-closed graph class. If H-deletion
can be solved in time f(s) · nO(1) parameterized by solution size s, and in time h(w) · nO(1)

parameterized by treewidth w, then H-deletion can be solved in time (f(O(k)) + h(O(k))) ·
nO(1) parameterized by H-treewidth k.

The conjecture is a significant strengthening of the equivalence, with respect to non-
uniform fixed-parameter tractability, between solving H-deletion parameterized by solution
size and computing twH given by Agrawal et al. [1]. It essentially states that there is no price
of generality to pay for using the hybrid parameterization by twH. After three decades in
which the field of parameterized complexity has focused on parameterizations by solution size,
this would lead to a substantial shift of perspective. We believe Theorem 1 is an important
ingredient in this direction.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:13

To understand the relative power of the parameterizations by solution size, treewidth, and
H-treewidth, the remaining bottleneck lies in using the tree H-decomposition to compute
a minimum H-deletion set. Can the latter be done as efficiently when using a tree H-
decomposition as when using a standard tree decomposition? For problems like Odd Cycle
Transversal and Vertex Planarization, this is indeed the case. But when the current-
best dynamic-programming algorithm over a tree decomposition uses advanced techniques,
it is currently not clear how to lift such an algorithm to work on a tree H-decomposition.
Can H-deletion for H the class of interval graphs be solved in time 2O(k log k) · nO(1)

parameterized by twH? Such a running time can be obtained for the parameterization by
treewidth by adapting the approach of Saitoh, Yoshinaka, and Bodlaender [48].

While we have not touched on the subject here, we expect our ideas to also be applicable
when H is a scattered graph class, i.e., when H consists of graphs where each connected
component is contained in one of a finite number of graph classes H1, . . . , Ht. It is known [30]
that, when Vertex Cover can be solved in polynomial time on each graph class Hi, then
Vertex Cover is FPT parameterized by the width of a given tree H-decomposition. We
expect that Theorem 1 can be generalized to work with scattered graph classes H, as long as
there is an oracle to solve Hi-deletion parameterized by solution size for each individual
class Hi. To accommodate this setting, the algorithm maintains an Hi-deletion set Xi for
each graph class Hi. A step of the decomposition algorithm then either consists of finding a
balanced separation of S, splitting off a base component, or improving one of the deletion
sets Xi (which can occur only t · |V (G)| times).

The decomposition algorithm we presented has an approximation factor of 5. It may
be possible to obtain a smaller approximation ratio at the expense of a worse base of the
exponent, by repeatedly splitting large bags [5, 35, 36]. For obtaining single-exponential
H-deletion algorithms, the advantage of the improved approximation factor would be
immediately lost due to the increased running time and therefore we did not pursue this
direction.

A final direction for future work concerns the optimization of the polynomial part
of the running time. For standard treewidth, a 2-approximation can be computed in
time 2O(k) ·n [35], which was obtained after a long series of improvements (cf. [8, Table 1]) on
both the approximation factor and dependence on n. Can a constant-factor approximation
to H-treewidth be computed in time 2O(k) · (n + m) for graph classes H like bipartite graphs?

References

1 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,
Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary
classes are all FPT-equivalent. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9–12, 2022, pages 1976–2004. SIAM, 2022. doi:10.1137/1.
9781611977073.79.

2 Akanksha Agrawal and M. S. Ramanujan. Distance from triviality 2.0: Hybrid parame-
terizations. In Cristina Bazgan and Henning Fernau, editors, Combinatorial Algorithms
– 33rd International Workshop, IWOCA 2022, Trier, Germany, June 7-9, 2022, Proceed-
ings, volume 13270 of Lecture Notes in Computer Science, pages 3–20. Springer, 2022.
doi:10.1007/978-3-031-06678-8_1.

3 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987. doi:
10.1137/0608024.

ESA 2023

https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1007/978-3-031-06678-8_1
https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024

66:14 5-Approximation for H-Treewidth

4 Mahdi Belbasi and Martin Fürer. An improvement of reed’s treewidth approximation. J.
Graph Algorithms Appl., 26(2):257–282, 2022. doi:10.7155/jgaa.00593.

5 Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions.
Comb. Probab. Comput., 11(6):541–547, 2002. doi:10.1017/S0963548302005369.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

7 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

8 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

9 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.1996.0049.

10 Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. Upper bounds. Inf.
Comput., 208(3):259–275, 2010. doi:10.1016/j.ic.2009.03.008.

11 Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II. Lower bounds.
Inf. Comput., 209(7):1103–1119, 2011. doi:10.1016/j.ic.2011.04.003.

12 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3.

13 Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7.

14 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

15 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.IPEC.2016.30.

18 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE
2017 Parameterized Algorithms and Computational Experiments Challenge: The Second
Iteration. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium
on Parameterized and Exact Computation (IPEC 2017), volume 89 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 30:1–30:12, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2017.30.

19 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

20 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

21 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. In Peter Rossmanith, Pinar
Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume
138 of LIPIcs, pages 42:1–42:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.42.

https://doi.org/10.7155/jgaa.00593
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1137/130947374
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1016/j.ic.2009.03.008
https://doi.org/10.1016/j.ic.2011.04.003
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.MFCS.2019.42

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 66:15

22 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? J. Comput. Syst. Sci., 78(3):707–
719, 2012. doi:10.1016/j.jcss.2011.10.003.

23 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

24 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-width:
on the price of generality. In Claire Mathieu, editor, Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January
4-6, 2009, pages 825–834. SIAM, 2009. doi:10.1137/1.9781611973068.90.

25 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

26 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

27 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013. doi:10.1007/
s00453-012-9685-8.

28 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theor. Comput. Sci., 525:30–41, 2014. doi:10.1016/j.tcs.
2013.05.006.

29 Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination
distance to bipartite graphs and more. In Lukasz Kowalik, Michal Pilipczuk, and Pawel
Rzazewski, editors, Graph-Theoretic Concepts in Computer Science – 47th International
Workshop, WG 2021, Warsaw, Poland, Revised Selected Papers, volume 12911 of Lecture Notes
in Computer Science, pages 80–93. Springer, 2021. doi:10.1007/978-3-030-86838-3_6.

30 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pages 1757–1769, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3406325.3451068.

31 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Włodarczyk. 5-approximation
for H-treewidth essentially as fast as H-deletion parameterized by solution size. CoRR,
abs/2306.17065, 2023. arXiv:2306.17065.

32 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. CoRR, abs/2105.04660, 2021. URL: https://arxiv.
org/abs/2105.04660.

33 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

34 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA, pages 639–648. IEEE Computer Society, 2009. doi:10.1109/FOCS.
2009.45.

35 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.

36 Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth.
CoRR, abs/2211.07154, 2022. doi:10.48550/arXiv.2211.07154.

37 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

ESA 2023

https://doi.org/10.1016/j.jcss.2011.10.003
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/1.9781611973068.90
https://doi.org/10.1137/080742270
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.1007/s00453-012-9685-8
https://doi.org/10.1007/s00453-012-9685-8
https://doi.org/10.1016/j.tcs.2013.05.006
https://doi.org/10.1016/j.tcs.2013.05.006
https://doi.org/10.1007/978-3-030-86838-3_6
https://doi.org/10.1145/3406325.3451068
https://arxiv.org/abs/2306.17065
https://arxiv.org/abs/2105.04660
https://arxiv.org/abs/2105.04660
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.48550/arXiv.2211.07154
https://doi.org/10.1145/3170442

66:16 5-Approximation for H-Treewidth

38 Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. In Fedor V.
Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms
– Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume
12160 of Lecture Notes in Computer Science, pages 129–144. Springer, 2020. doi:10.1007/
978-3-030-42071-0_10.

39 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

40 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

41 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

42 Marcin Pilipczuk. A tight lower bound for vertex planarization on graphs of bounded treewidth.
Discret. Appl. Math., 231:211–216, 2017. doi:10.1016/j.dam.2016.05.019.

43 Bruce A. Reed. Finding approximate separators and computing tree width quickly. In S. Rao
Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 221–228. ACM, 1992. doi:10.1145/129712.129734.

44 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

45 N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

46 Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

47 Neil Robertson and Paul D. Seymour. Graph minors. IV. Tree-width and well-quasi-ordering.
J. Comb. Theory, Ser. B, 48(2):227–254, 1990. doi:10.1016/0095-8956(90)90120-O.

48 Toshiki Saitoh, Ryo Yoshinaka, and Hans L. Bodlaender. Fixed-treewidth-efficient algorithms
for edge-deletion to interval graph classes. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C.
Nandy, editors, WALCOM: Algorithms and Computation – 15th International Conference and
Workshops, WALCOM 2021, Yangon, Myanmar, February 28 – March 2, 2021, Proceedings,
volume 12635 of Lecture Notes in Computer Science, pages 142–153. Springer, 2021. doi:
10.1007/978-3-030-68211-8_12.

49 A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.

https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.dam.2016.05.019
https://doi.org/10.1145/129712.129734
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1007/978-3-030-68211-8_12
https://doi.org/10.1007/978-3-030-68211-8_12

	1 Introduction
	2 Preliminaries
	3 Approximating {H}-treewidth
	3.1 Redundancy and ({H},l)-separations
	3.2 The win/win strategy
	3.3 The decomposition algorithm

	4 Conclusion

