
Towards Bypassing Lower Bounds for Graph
Shortcuts
Shimon Kogan #

Weizmann Institute of Science, Rehovot, Israel

Merav Parter #

Weizmann Institute of Science, Rehovot, Israel

Abstract
For a given (possibly directed) graph G, a hopset (a.k.a. shortcut set) is a (small) set of edges whose
addition reduces the graph diameter while preserving desired properties from the given graph G, such
as, reachability and shortest-path distances. The key objective is in optimizing the tradeoff between
the achieved diameter and the size of the shortcut set (possibly also, the distance distortion). Despite
the centrality of these objects and their thorough study over the years, there are still significant
gaps between the known upper and lower bound results.

A common property shared by almost all known shortcut lower bounds is that they hold for the
seemingly simpler task of reducing the diameter of the given graph, DG, by a constant additive term,
in fact, even by just one! We denote such restricted structures by (DG − 1)-diameter hopsets. In this
paper we show that this relaxation can be leveraged to narrow the current gaps, and in certain cases
to also bypass the known lower bound results, when restricting to sparse graphs (with O(n) edges):

Hopsets for Directed Weighted Sparse Graphs. For every n-vertex directed and weighted
sparse graph G with DG ≥ n1/4, one can compute an exact (DG − 1)-diameter hopset of linear
size. Combining this with known lower bound results for dense graphs, we get a separation
between dense and sparse graphs, hence shortcutting sparse graphs is provably easier. For
reachability hopsets, we can provide (DG − 1)-diameter hopsets of linear size, for sparse DAGs,
already for DG ≥ n1/5. This should be compared with the diameter bound of Õ(n1/3) [Kogan
and Parter, SODA 2022], and the lower bound of DG = n1/6 by [Huang and Pettie, SIAM J.
Discret. Math. 2018].
Additive Hopsets for Undirected and Unweighted Graphs. We show a construction
of +24 additive (DG − 1)-diameter hopsets with linear number of edges for DG ≥ n1/12 for
sparse graphs. This bypasses the current lower bound of DG = n1/6 obtained for exact (DG − 1)-
diameter hopset by [HP’18]. For general graphs, the bound becomes DG ≥ n1/6 which matches
the lower bound of exact (DG − 1) hopsets implied by [HP’18]. We also provide new additive
D-diameter hopsets with linear size, for any given diameter D.

Altogether, we show that the current lower bounds can be bypassed by restricting to sparse
graphs (with O(n) edges). Moreover, the gaps are narrowed significantly for any graph by allowing
for a constant additive stretch.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Directed Shortcuts, Hopsets, Emulators

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.73

Funding This project is funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 949083), and by
the Israeli Science Foundation (ISF), grant No. 2084/18.

1 Introduction

A shortcut set (a.k.a hopset) is a small collection of edges H that when added to a given
(possibly directed and weighted) graph G reduces the diameter substantially, while preserving
key properties from G, such as, reachability, shortest-path distances, etc. Since their

© Shimon Kogan and Merav Parter;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 73;
pp. 73:1–73:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shimon.kogan@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2023.73
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Towards Bypassing Lower Bounds for Graph Shortcuts

introduction by Ullman and Yannakakis [25] and Thorup [24], shortcut sets have been
studied extensively due to their wide-range of applications for parallel, distributed, dynamic
and streaming algorithms [16, 12, 10, 15, 9, 11, 3]. Their applicability is also demonstrated
by recent algorithmic results, e.g., [15, 9, 11] that use shortcuts as their core component.

We focus on the fundamental notions of reachability D-diameter hopsets1 and exact
D-diameter hopsets. These are sets of edges that when added to G reduce the directed
diameter to at most D while preserving reachability (resp., exact D-hop distances). For a
graph on n vertices and m edges, the literature has mainly focused on how small the diameter
D can become after adding Õ(n) or Õ(m) edges to the graph. Recent years have witnessed a
significant progress on the combinatorial and algorithmic aspects of these structures. Despite
these efforts, there are still major gaps in our understanding. Thorup conjectured [24] that
any n-vertex digraph with m edges, has a D-diameter shortcut of size Õ(m) for2 D = Õ(1).
This has been shown to hold for a restricted class of graphs, such as planar [24]. Hesse [13]
refuted this conjecture for general graphs by presenting a construction of an n-vertex digraph
with m = Θ(n19/17) edges that requires Ω(mn1/17) shortcut edges to reduce its diameter to
below n1/17. Huang and Pettie [14] showed a diameter lower bound of Ω(n1/6) for O(n)-size
shortcuts, and Lu, Vassilevska-Williams, Wein and Xu [21] have recently improved the lower
bound for D-shortcuts with O(m) edges to D = Ω(n1/8).

Up to very recently, the only known upper bound for reachability hopsets was given by
a folklore randomized algorithm, attributed to Ullman and Yannakakis [25], that for every
integer D ≥ 1, provides a shortcut of size Õ((n/D)2). Kogan and Parter [18] have improved
the tradeoff to Õ(n2/D3 + (n/D)3/2). Hence, for reachability D-diameter hopsets of linear
size, we have D = Õ(n1/3) and D = Ω(n1/6).

The gap becomes even more dramatic when insisting on preserving the exact distances.
The only known upper bound for exact D-diameter hopsets are still given by the folklore
algorithm of [25], even for the presumably simpler setting of unweighted and undirected graphs.
Currently, exact D-diameter hopsets of linear size require D = Ω(n1/6) for unweighted and
undirected graphs, while the upper bound is still O(

√
n). The lower bound for weighted

graphs has been recently improved to D = Ω(n1/3) by [17].
In this paper we investigate this curious gap between upper and lower bound results

for reachability and exact hopsets. We aim at understanding the limitations of the current
lower bound constructions, and study whether they can be bypassed, algorithmically. Our
viewpoint differs from the classical algorithmic approach in the sense that we aim to provide
algorithms mainly for the purpose of understanding the key barriers for narrowing the
observed gaps. In the following, for two given shortcutting tasks Π, Π′, we say that task Π is
easier than task Π′ if one can provide for task Π an improved diameter vs. size tradeoff over
the current tradeoff known for task Π′.

1.1 Our Contribution
Our starting observation is that almost all known lower bounds for hopsets, a partial list
includes, [13, 14, 21, 17], in-fact hold for the seemingly easier task of reducing the diameter
of the given graph by just 1. For example, the lower bound of Huang and Pettie [14] exhibits

1 These structures are usually referred to as reachability shortcuts, and the notion of hopset is usually
used in the context of preserving also the shortest-path distances. For clarity of presentation, we unify
the notation and refer to all structures as variants of hopsets.

2 The Õ(.) notation hides poly-log n factors.

S. Kogan and M. Parter 73:3

an n-vertex graph G with diameter DG = Θ(n1/6) for which any subset of linear number of
shortcut edges cannot reduce the diameter to DG − 1. As this property is shared by many of
the lower bound results, we raise the following question:

▶ Question 1.1 (Additive vs. Multiplicative Diameter Reduction). Is reducing the graph
diameter by a constant additive term easier than by a constant multiplicative factor?

In this context, we say that task Π is easier than task Π′, if one can provide a solution for
Π′ which improves the state-of-the-art bounds known for Π. To answer this question, we
focus on the notion of (DG − 1)-diameter hopset: a subset of shortcut edges that reduces the
diameter of G from DG to DG−1. We provide new algorithmic results for (DG−1)-diameter
hopsets that significantly narrow the current gap for these structures.

▶ Theorem 1.1 (Reachability (DG−1)-Diameter Hopset). Every m-edge n-vertex DAG
G admits a reachability (DG − 1)-diameter hopset with Õ(m4/3/D

5/3
G) edges.

By plugging m = O(n), we get a reachability (DG − 1)-hopset with linear number of
edges for every DG ≥ n1/5. This suggests that at least algorithmically and for the family
of sparse graphs, the task of reducing the diameter additively is easier than reducing the
diameter by a constant factor. Currently, for the latter task, linear reachability hopsets exist
only for DG ≥ n1/3, even for sparse DAGs [18, 19].

Another fundamental feature shared by most of the lower bound results [13, 14, 21, 17]
is concerned with the density (i.e. number of edges) of the worst-case graph examples. In
particular, all these lower bound graphs have a super-linear number of edges (referred to
hereafter as dense graphs). E.g., the above-mentioned lower bound graph of [14] contains
Ω(n7/6) edges. We therefore raise the following question:

▶ Question 1.2 (Shortcutting Sparse vs. Dense Graphs). Is reducing graph diameter easier
for sparse graphs compared to dense graphs?

We answer Question 1.2 in the affirmative by providing a provable gap between the sparse
and dense settings, in the context of exact hopsets. We show:

▶ Theorem 1.2 (Exact (DG − 1)-Diameter Hopset, Directed and Weighted). Every
m-edge n-vertex directed (and possibly weighted) graph G admits an exact (DG − 1)-
diameter hopset with Õ((m/DG)4/3) edges.

Taking m = n yields Õ(n)-size exact hopsets for diameter DG ≥ n1/4. This should be
compared with the lower bound for exact (DG − 1)-diameter hopsets by [4] (one can adapt
Theorem 5, therein to this setting) which requires a super-linear number of shortcut edges
for dense graphs G with Θ(n3/2) edges and diameter DG = n1/4.

Finally, we address the setting of exact (DG − 1)-diameter hopsets for unweighted and
undirected graphs, which currently admits the largest gap between the known upper and lower
bound results. Recall that for exact D-diameter hopsets of linear size, we have D = O(

√
n).

As no progress (at least for upper bounds) has been made for exact hopsets over the years, we
consider the question of whether it is possible to narrow this gap by introducing an additive
stretch:

ESA 2023

73:4 Towards Bypassing Lower Bounds for Graph Shortcuts

▶ Question 1.3 (Exact vs. Additive Stretch). Is reducing the graph diameter easier when
allowing an additive stretch compared to exact distances?

To address Question 1.3 we study the notion of additive hopsets, which to the best of our
knowledge has not been considered before. For a given graph G, an +α-additive D-diameter
hopset is a subset of (weighted) shortcut edges H whose addition guarantees the following:
for every u, v pair, the graph G ∪H contains a D-hop u-v path (that is the path contains
at most D edges) of total length3 ℓu,v where distG(u, v) ≤ ℓu,v ≤ distG(u, v) + α. We show
that the introduction of additive stretch can indeed achieve a lot in terms of improving the
state-of-the-art bounds when compared to exact hopsets. We have:

▶ Theorem 1.3 (Additive Hopsets Upper Bounds). Every n-vertex m-edge undir-
ected unweighted graph G admits a +24-additive (DG − 1)-diameter hopset with
Õ(min{(n/DG)6/5, (m/DG)12/11}) edges.

Theorem 1.3 should be compared with the lower bound of [14]. The latter can be shown to
imply that there exists an undirected and unweighted graph G with ω(n7/6) edges for which
any exact (DG − 1)-diameter hopset requires Ω(n) edges. For m = O(n), our construction in
Theorem 1.3 provides +24-additive (DG − 1)-hopset with linear number of edges, for any
DG ≥ n1/12. That is, by restricting to sparse graphs and introducing a small additive stretch
we bypass the lower bound of [14]. Moreover, for any (possibly dense) graph G, we provide
a linear-size additive (DG − 1)-diameter hopset for DG ≥ n1/6, hence matching the lower
bound of n1/6 implied by [14] for exact (DG − 1)-diameter hopsets.

We also show a general construction of α-additive D-hopsets for any given stretch
parameter α and diameter bound D (which is possibly much smaller than DG):

▶ Theorem 1.4. Every n-vertex undirected unweighted graph G with input parameters
α, D, admits a +α-additive D-diameter hopset with Õ((n/(α ·D))2 + (n/α)4/3 + n)
edges. Hence, of linear size for D, α = Ω(n1/4).

The construction of Theorem 1.4 is based on an interesting connection between hopsets and
additive spanners for weighted graphs [1, 7].

Remark. In our upper bound results, we focus on (DG − 1)-diameter hopsets since this is a
recurrent feature of the state-of-the-art lower bounds. Our algorithms can indeed be easily
extended to provide a −c reduction for any given term c. In the context of exact hopsets
and reachability preservers, the factor c will appear in the final size bound (for constant c,
the asymptotic size bound remains as is). For additive hopsets the factor c will appear in
the final size as well as in the final additive stretch (i.e., the +24 term in Theorem 1.3 might
become +24 · c).

Recent Breakthrough Lower-Bound Results on Shortcuts and Hopsets. Following the
submission of this paper, Bodwin and Hoppenworth [5] provided new lower bound results
for shortcuts and hopsets. In particular, they provide a lower bound of D = Ω(n1/4) for

3 The length of a path is measured by the sum of its edge weights (note that in an unweighted graph the
length is the number of edges in the path).

S. Kogan and M. Parter 73:5

reachability D-diameter hopsets with linear number of edges. Hence, the current gap for
these structures is D = Õ(n1/3) and D = Ω(n1/6). In addition, for exact D-hopsets of linear
size, they show a lower bound of D = Ω(

√
n), implying that the folklore algorithm for these

structures is indeed tight.

1.2 Preliminaries
Graph Notations. For an a-b dipath P and a b-c dipath P ′ the concatenation of the paths is
denoted by P ◦P ′. Let |P | denote the number of edges (hop) on P and let len(P) be the length
of path P , measured by the sum of its (possibly) weighted edges. In the context of weighted
graphs, we refer to number of edges on a path P as the number of hops. For a collection
of paths P, let V (P) =

⋃
P ∈P V (P). For an element set X and p ∈ [0, 1], let X[p] be the

set obtained by taking each element of X into X[p] independently with probability p. For a
subset V ′ ⊆ V , let G[V ′] be the induced graph on V ′. For a (possibly directed and weighted)
graph G and u, v ∈ V (G), let distG(u, v) be the shortest-path distance between u, v in G. Let
Nin(u, G) = {v ∈ V (G) | (v, u) ∈ E(G)} and Nout(u, G) = {v ∈ V (G) | (u, v) ∈ E(G)}.
Define degin(u, G) = |Nin(u, G)| and degout(u, G) = |Nout(u, G)|. For an undirected graph
G, a vertex v ∈ V (G) and an integer k, let Nk(v, G) = {u ∈ V (G) | distG(u, v) ≤ k} and
let degk(v, G) = |Nk(v)|. When G is clear from the context, we may omit it. Also, when
k = 1, we may write N(v, G), rather than N1(v, G). For a given path P ⊆ G and u ∈ P , the
k-hop P -neighbor of u is some vertex in P ∩Nk(u, G).

For an n-vertex digraph G, let TC(G) denote its transitive closure. For (u, v) /∈ TC(G),
distG(u, v) = ∞. A shortcut edge is an edge in TC(G). These definitions are naturally
extended to undirected graphs, by treating all edges as bidirectional, consequently, TC(G)
is an n × n clique for connected undirected graphs. For an integer weighted (possibly
directed) graph G = (V, E, ω) where ω : E → [1, W], the weighted transitive closure, denoted
as TCW (G), has the same edge set as TC(G) weighted by the G-distances between the
edges’ endpoints. For any vertices u, v ∈ V and integer β ≤ n, define dist(β)

G (u, v) to be
the minimum length u-v path with at most β edges (hops). If there is no such path, then
define dist(β)

G (u, v) = ∞. Throughout, we define the diameter of the graph, DG, by the
smallest value β satisfying that dist(β)

G (u, v) = distG(u, v) for every u, v ∈ V . In the context
of weighted graphs G, DG as defined above is usually refereed to as the hopbound. For ease
of readability, we slightly revise the notion of diameter in a way the captures weighted and
unweighted hopsets as well as reachability shortcuts.

Reachability, Exact and Additive Hopsets. For a directed graph G, a reachability d-diameter
hopset H is a subset of edges from the transitive closure TC(G) such that DG∪H ≤ d. For a
(possibly directed and weighted) graph G, an α-additive d-diameter hopset H is a subset of
weighted edges in TCW (G) satisfying that for every u, v ∈ V (G):

distG(u, v) ≤ dist(d)
G∪H(u, v) ≤ distG(u, v) + α . (1.1)

An exact d-diameter hopset satisfies Eq. (1.1) for α = 0.
In this paper, we study the notion of (DG − 1)-diameter hopsets which given a graph G

provide the desired hopbound guarantees for d = DG − 1. Our algorithms can easily provide
any constant additive reduction, i.e., a (DG − c)-diameter hopsets, for any desired constant
c. We use the notion of (DG − 1) as a reference to the special property of the current lower
bounds. That is, (DG − 1)-hopsets are precisely the structures for which we currently have
lower bounds for. We note that our bounds also hold in the following alternative formulation:

ESA 2023

73:6 Towards Bypassing Lower Bounds for Graph Shortcuts

Given an input parameter D, then the output hopset guarantees a hopbound reduction by 1
(or by a constant term) for any u-v shortest path with hopbound at least D. That is, the
reduction can be provided for all paths of length ≥ D and not only for D = DG.

Shortcutting Tools. We use the basic shortcutting algorithm for dipaths from [23].

▶ Lemma 1.5 (Restatement of Lemma 1.1 in [23]). Any dipath P admits a reachability
2-diameter hopset H with Õ(|P |) edges.

▶ Lemma 1.6 ([25]). For every n-vertex (possibly directed and weighted) graph G and integer
D ≤ n, there is an algorithm ExactHopset that computes an exact D-diameter hopset H with
Õ((n/D)2) edges.

Our constructions employ a useful variant of reachability hopsets, in which it is required
to provide the desired hopbound w.r.t to a given subset of vertices [19].

▶ Definition 1.1 (Subset Reachability Hopset [19]). Given a graph G = (V, E), a subset
S ⊆ V and an integer D, a set of edges H ⊆ TC(G) is an (S, D)-reachability-hopset, if for
every u, v ∈ V such that (u, v) ∈ TC(G), there is a u-v path Pu,v (not necessarily a shortest
path) in G ∪H with at most D vertices from S.

For completeness we provide a complete proof for the following which also provides an
additional property compared to the construction of [19]. See Appendix A for the proof.

▶ Lemma 1.7. For every n-vertex DAG G, S ⊆ V (G) and input parameter D, one can
compute an (S, D)-reachability-hopset H ⊆ TC(G) of size Õ(|S|+ (|S|2/D3)). In addition,
the hopset H satisfies the following for every u, v ∈ V : If there is a shortest path Pu,v ⊆ G

which contains k vertices in V \S, then in G∪H, there is a u-v path (which is not necessarily
the shortest path) that contains at most D vertices from S and at most k vertices from V \ S.

Spanners and Emulators. Graph spanners introduced by Peleg and Schäffer [22] are sparse
subgraphs that preserve shortest path distances up to a small stretch. In contrast to hopsets,
these structures are defined only for undirected graphs, as no sparsificiation is possible in the
worst-case for directed n-vertex graphs with Ω(n2) edges.

▶ Definition 1.2 ((α, β)-Spanner). Given an undirected graph G = (V, E), a subgraph
G∗ ⊆ G is called an (α, β)-spanner if distG∗(u, v) ≤ α · distG(u, v) + β for every u, v ∈ V .

An (α, β)-emulator E∗ is a weighted set of edges in V × V (i.e., not necessarily a subgraph
of G) that provides the same stretch guarantees as (α, β)-spanners, where distG(u, v) ≤
distE∗(u, v) ≤ α · distG(u, v) + β for every u, v ∈ V .

Our constructions also use recent algorithms for computing additive spanners for weighted
graphs [1, 8]. For a weighted graph G = (V, E, ω) where ω : E → {1, . . . , W}, these spanners
provide a +β ·W stretch guarantees. We use the following theorem for weighted additive
spanners by [2] (recently improved by [7]).

▶ Theorem 1.8 (Theorem 3 in [2]). For any n-vertex weighted graph G = (V, E, ω) with
maximum edge weight W , there is an algorithm WeightedSpanner that computes a +8W

additive spanner H ⊆ G with Õ(n4/3) edges.

S. Kogan and M. Parter 73:7

2 Directed Shortcuts

In this section we observe that the existing lower bounds for directed hopsets hold for the
relaxed task of (DG − 1)-diameter hopsets. We then show that these lower bounds can be
bypassed for sparse graphs. Our upper bounds yield a separation between sparse and dense
graphs, implying that shortcutting sparse graphs might be simpler in terms of providing an
improved diameter vs. size tradeoffs.

2.1 Exact (DG − 1)-Hopsets
Known Lower Bound. The following lower-bound follows by plugging ℓ = n1/3 in Theorem 5
of [4]. See also Table 3 in [6]. We observe that this lower bound argument, as all prior lower
bounds, holds even when it is required to reduce the diameter of the given graph by 1.

▶ Theorem 2.1 (Exact Hopsets, Directed, Follows by Theorem 5 of [4]). There exist an n-vertex
(dense) directed graphs with Θ(n3/2) edges for which any exact (DG − 1)-hopset must have
Ω(n5/4) shortcut edges provided that DG ≤ n1/4.

New Upper Bound (Proof of Theorem 1.2). We show that the lower bound of Theorem
2.1 can be bypassed for sparse graphs while preserving the exact distances in a weighted
digraph. Note that for m = n, Theorem 1.2 yields O(n)-size exact hopsets for diameter
D ≥ n1/4 while the lower bound of Theorem 2.1 for exact (DG − 1)-diameter requires a
super-linear size for D = n1/4.

The Construction. Set an integer threshold k = ⌈(m/DG)1/3⌉ and define a vertex u to be
low-deg if degin(u) ≤ k and degout(u) ≤ k. Otherwise, the vertex is high-deg. By a simple
counting, there are O(m/k) high-deg vertices in the given m-edge graph.

Let L = V [p] for p = Θ(log n/DG) be a random sample of vertices, and let Lh, Lℓ be the
sets of high-deg (resp., low-deg) vertices in L (hence, Lh ∪ Lℓ = L). The algorithm adds two
subsets of shortcut edges Hh, Hℓ which handle the high-deg and low-deg, respectively:

Hh = (Lh × Lh) ∩ TC(G) .

For every u ∈ Lℓ, Hℓ(u) = {(x, y) | x ∈ Nin(u), y ∈ Nout(u)}.
Hℓ =

⋃
u∈V Hℓ(u).

All added shortcut edges in Hh, Hℓ are weighted by their shortest-path distances in G. The
output hopset is given by H = Hh ∪Hℓ. This completes the description of the construction.

Proof of Theorem 1.2.

Size. Since there are O(m/k) high-deg vertices, w.h.p.,
|Lh| = O(m log n/(kDG)). Hence, |Hh| = Õ((m/(kDG))2). We next bound the size of Hℓ.
Let Vℓ be the set of all low-deg vertices in G. Then,

∑
u∈Vℓ

degin(u) · degout(u) = O(km).
Since Lℓ is obtained by sampling each low-deg vertex with probability of Θ(log n/DG), we
get that w.h.p., |Hℓ| = Õ(km/DG). The size argument holds by setting k = ⌈(m/DG)1/3⌉.

Diameter and Distances. Consider some u-v shortest-path P ⊆ G with DG edges. First
assume that P ∩ Lℓ ≠ ∅. I.e., that P contains at least one sampled low-deg vertex, say z.
Let z′, z′′ be the vertex preceding (resp., subsequent to) z on the path P . Since z′ ∈ Nin(z)
and z′′ ∈ Nout(z), the shortcut edge (z′, z′′) is in Hℓ. Consequently, the path P can be
shortcut into a path P ′ obtained by replacing the 2-hop segment P [z′, z′′] = (z′, z) ◦ (z, z′′)
by a weighted edge (z′, z′′). Note that len(P ′) = len(P) and that |P ′| = |P | − 1.

ESA 2023

73:8 Towards Bypassing Lower Bounds for Graph Shortcuts

From now on assume that P has no sampled low-deg vertex. W.h.p., it then holds that
P contains at least two high-deg sampled vertices, i.e., |P ∩ Lh| ≥ 2. In addition, we can
assume that those two sampled vertices, x, y are at hop-distance at least D/3 from each
other. Since the weighted edge (x, y) ∈ Hh, the Ω(D)-hop segment P [x, y] can be replaced
by the single edge (x, y). The distances are clearly preserved. Note that in this case, the
hopbound can be reduced by an even a constant factor, and hence the additive reduction is
bottle-necked by the low-deg vertices. ◀

2.2 Reachability (DG − 1)-Hopsets
Known Lower Bound. We start by making the immediate observation that the well-known
lower-bound by Huang and Pettie [14] also holds for (DG − 1)-hopsets.

▶ Theorem 2.2 (Reachability Hopsets, Slight Restatement of [14]). There exists an n-vertex
directed acyclic graph with Ω(n7/6) edges for which any reachability (DG − 1)-hopset must
have Ω(n) shortcut edges provided that DG ≤ n1/6.

Reachability (DG − 1)-Diameter Hopsets (Proof of Theorem 1.1). When settling for
reachability, rather than exact distances, one can provide improved bounds. In particular,
Theorem 1.1 claims that sparse DAGs admit a reachability (DG − 1)-diameter hopset of
linear size for DG ≥ n1/5 (compared to DG ≥ n1/4 when preserving the exact distances).

Throughout, recall that G is a DAG4. The algorithm for reachability (DG − 1)-hopsets is
similar to that of Theorem 1.2. The main distinction is that instead of connecting each pair
of sampled high-deg vertices in the hopset, we add the subset reachability hopset of Lemma
1.7 w.r.t. to the set of high-degree vertices. In our context, this adds |Lh|2/D3

G edges, rather
than |Lh|2 edges, where Lh is the set of sampled high-degree vertices in the construction of
Theorem 1.2.

Proof of Theorem 1.1. Set k = ⌈m4/3/D5/3⌉. The definition of Hℓ is the same, hence
|Hℓ| = Õ(mk/D) = Õ(m4/3/D

5/3
G). The subset Hh is defined by applying the subset

reachability hopset of Lemma 1.7 with S = Lh and D = DG/2. Since |S| = Õ(m/(kD)), the
size of Hh can be bounded by Õ(|Lh|+ (|Lh|2/D3

G)) = Õ(m4/3/D
5/3
G).

It remains to consider the diameter argument. By the proof of Theorem 1.2 it is sufficient
to consider a u-v shortest path P of hopbound DG that has at least DG/3 high-deg vertices
and at most DG/3 low-deg vertices. By Lemma 1.7, we have that Hh contains a u-v path
with at most DG/3 low-deg vertices and at most DG/3 high-deg vertices. Note that in this
case, we get a constant reduction in the diameter. The theorem follows. ◀

3 Additive Shortcuts for Undirected Unweighted Graphs

We next consider the gap obtained for exact hopsets in undirected and unweighted graphs.
Our goal is to narrow this gap by (i) restricting attention to (DG − 1)-hopsets (for which the
known lower bound results hold), and (ii) allow a constant additive stretch in the distances.
We will show that for sparse graphs, one can even bypass the current lower bound obtained
for exact hopsets, as the latter is based on a dense graph example.

4 Note that the general DAG reduction introduces a factor of 2 in the diameter, and hence we cannot
employ it. All lower-bound graphs for this problem are DAGs as well.

S. Kogan and M. Parter 73:9

Known Lower Bounds for Exact (DG − 1)-Hopsets. We start by observing that the lower
bounds for reachability hopsets by Huang and Pettie [14] also hold for exact hopsets for
undirected and unweighted graphs. See Appendix A for a proof.

▶ Theorem 3.1 (Lower Bound for Exact Hopsets, Undirected Unweighted, Immediate by [14]).
There exist n-vertex undirected and unweighted graphs G with m = Ω(n7/6) edges and
DG = Θ(n1/6), such that any exact (DG − 1)-diameter hopset for G has Ω(n) edges.

We next show that the lower bound of Theorem 3.1 can be bypassed for sparse graphs
when allowing additive stretch. In addition, for general graphs (possibly dense) we match
the bound of n1/6 obtained for exact hopsets.

New Additive (DG − 1)-Hopsets (Proof of Theorem 1.3). We start by presenting an
algorithm that achieves a size bound of Õ((n/DG)6/5) (hence, linear-size for DG ≥ n1/6) and
then explain how to modify the construction to yield the bound of Õ((m/DG)12/11) (which
provides the improved results for sparse graphs). For the sake of this extension, we show the
following slightly stronger statement:

▶ Lemma 3.2. Every n-vertex m-edge undirected unweighted graph G and any input parameter
D, one can compute a hopset H with Õ((n/D)6/5) edges with the following guarantee: For
any u, v pair at distance at least D in G, it holds that distG(u, v) ≤ dist(D−1)

G∪H (u, v) ≤
distG(u, v) + 24.

Note that Lemma 3.2 in particular implies a +24-additive (DG − 1)-diameter hopsets with
Õ((n/D)6/5) edges. The lemma is stronger in the sense that for any given D (where possibly
D < DG), the (−1) reduction in the hopbound holds for any shortest path of length at least
D. In contrast, (DG − 1)-hopsets provides the (−1) reduction only for shortest-paths of
length exactly DG.

The Construction. Let deg2(u) be the number of 2-hop neighbors of u in the given graph
G. Set k = (n/D)1/5 as a parameter that serves as our 2-degree threshold, as follows. A
vertex u is low-deg if deg2(u) ≤ k and it is high-deg otherwise. The algorithm has two
phases. The first phase handles the low-deg vertices by adding Õ(nk/D) shortcut edges. At
the end of that phase, the algorithm outputs also a subgraph G′ in which each vertex is
high-deg. The second phase handles these high-deg vertices by adding an additional subset of
Õ(nk/D + (n/(Dk2))2) shortcut edges. The size bound of (n/D)6/5 is obtained by balancing
these two size terms, which is achieved for k = (n/D)1/5. Throughout, all added shortcut
edges are weighted by the corresponding shortest-path distances between the edge endpoints.

Step (1): Handling Low-Degree Vertices. The algorithm iterates over the low-deg vertices
in the graph, as long as such exists. Initially, set G0 = G and H0 = ∅. In every iteration
i ≥ 1, it gets as input a subgraph Gi−1 and Hi−1 and considers an arbitrary low-deg vertex
u. (If no such exists, then G′ = Gi−1, H ′ = Hi−1 and the step terminates). First, the
algorithm removes u by letting Gi = Gi−1 \ {u}. Then, with probability of p = Θ(log n/D),
the algorithm connects u to each of its (current) 2-hop neighbors in Gi−1 by letting Hi =
Hi−1 ∪ {(u, v) | v ∈ N2(u, Gi−1)}. This completes the description of the ith iteration.
Denoting the number of iterations by ℓ, then the output of the step is given by G′ = Gℓ and
H ′ = Hℓ.

ESA 2023

73:10 Towards Bypassing Lower Bounds for Graph Shortcuts

Step (2): Handling the Remaining High-Degree Vertices. We now restrict attention only
to the graph G′. Letting V ′ = V (G′), the algorithm computes three random samples of
V ′-vertices: S = V ′[p], Q = V ′[q] and R = V ′[r] where p = Θ(log n/D), q = Θ(log n/k) and
r = Θ(log n/(Dk2)). Also, initially set H ′′ = (R×R), and add to H ′′ a subset of shortcut
edges by applying the following shortcutting procedure for every vertex u ∈ S:

Build a depth-6 BFS tree T6(u, G′) ⊆ G′ rooted at u (i.e., a BFS which spans only
N6(u, G′)).
If |T6(u, G′)| = O(k2), add the edges E′(u) = {(u, v) | v ∈ T6(u, G′) ∩Q} to H ′′.

The output hopset is given by H ′ ∪H ′′. We next turn to analyze the construction and prove
Lemma 3.2.

Size. In the first step, for every low-deg vertex u, with probability of p = Θ(log n/D), the
algorithm adds deg2(u) ≤ k shortcut edges. Hence this adds |H ′| = Õ(nk/D) edges, w.h.p.
Consider the second step. W.h.p., |S| = O(n log n/D) and |R| = O(n log n/(Dk2)). For
every u ∈ S with |T6(u, G′)| = O(k2), we have that w.h.p. |T6(u, G′) ∩ Q| ≤ k log n, and
therefore, we have O(|S| · k log n) edges, due to this step. Overall, we added to H ′′ a total of
O(|R|2 + |S| · k log n) edges. The size bound follows by plugging k = (n/D)1/5.

Diameter and Stretch Analysis. Throughout, we override notation and redefine a vertex v

to be low-deg if v /∈ V (G′). That is, a vertex is low-deg if there exists an iteration i in the
Step (1) in which N2(v, Gi−1) ≤ k. A vertex v is then high-deg if v ∈ V (G′) (i.e., it is a
high-deg in each subgraph Gi−1 considered in each iteration i of Step (1)). We also need the
following classification of the high-deg vertices. A vertex u ∈ V (G′) is large if its 6-depth
BFS tree has size |T6(u, G′)| = ω(k2), and it is small otherwise. Let Vℓ = V \ V (G′) be the
low-deg vertices, V small

h (resp., V large
h) denote the small (resp., large) high-deg vertices. It

then holds that Vℓ ∪ V small
h ∪ V large

h = V (G).
Consider now a u-v shortest-path P with D edges (hops). The analysis breaks into three

cases depending on the number of vertices in V (P) that belong to each of the three subsets
of vertices Vℓ, V small

h and V large
h .

Case 1: |P ∩ Vℓ| = Ω(D). For every low-deg vertex z, let iz be the iteration in which
z is removed in Step (1). I.e., z is the (unique) selected low-deg vertex in Giz−1. We then
say that the low-deg vertex z ∈ P ∩ Vℓ is bad if both of its 2-hop P -neighbors z1, z2 are not
in Giz−1. This can happen if these two 2-hop neighbors were removed in prior iterations.
Otherwise, the vertex is good.

▶ Lemma 3.3. The path P can contain at most two consecutive bad vertices.

Proof. The claim follows by noting that a 2-hop P -neighbor of a bad vertex x ∈ P must be
good. To see this, let z be a 2-hop P -neighbor of x. Since x is bad, it implies that ix ≥ iz + 1,
i.e., z is removed before x in Step (1). This implies that x ∈ Giz−1 and hence z must be
good. ◀

By Lemma 3.3, we get that in this case P contains Ω(D) good vertices. Since the
algorithm add shortcut edges to each good vertex w.p. p = Θ(log n/D), we get that w.h.p.,
the coin flip is successful for at least one good vertex, say x, on P . By the definition of
the good vertex, at least one of its 2-hop P -neighbors, say x′, is in Gix−1 and therefore the
shortcut edge (x′, x) is in H ′. Let P ′ be the path obtained by replacing the 2-hop segment
P [x, x′] with an edge (x, x′). Then, len(P) = len(P ′) but |P ′| ≤ |P | − 1, as required.

S. Kogan and M. Parter 73:11

Case 2.1: |P ∩ V large
h | = Ω(D). Note that for any for any two vertices u′, u′′ on P at

distance at least 13 from each other, it holds that their 6-hop neighborhoods are disjoint. Also
note that since N6(u′, G′) ⊆ N6(u′, G), we have that |N6(u′, G)| = ω(k2) for every u′ ∈ V large

h .
As P contains Ω(D) vertices from V large

h , we get that the size of the 6-hop neighborhood
of the path P is Ω(Dk2). Since we sample each vertex in V into R independently with
probability of r = Θ(log n/(Dk2)), we get that w.h.p., the following holds: There are two
vertices u′, u′′ ∈ S ∩ P ∩ V large

h at distance Ω(D) from each other such that there exists
w ∈ N6(u′, G) ∩ R and w′ ∈ N6(u′′, G) ∩ R. Since the algorithm adds to H ′′ the shortcut
edge (w, w′), the hopbound between u and u′ is reduced from Ω(D) to at most 13. By the
triangle inequality, this introduces an additive stretch of at most +24. See Fig. 1 (Left) for
an illustration.

Case 2.2: |P ∩ V small
h | = Ω(D). Since P has Ω(D) vertices from V small

h , we can also
assume the following. The path P contains ℓ = Ω(D) segments P1, . . . , Pℓ such that: (i)
each Pi ⊆ G′, (ii) |Pi| = 40 and (iii) the internal 20-length segment of Pi contains a vertex
in V small

h . We then get that w.h.p. there exists a vertex u′ ∈ S ∩ P ∩ V small
h that belongs

to the internal 20-length segment of some Pi ⊆ G′. Let w be a vertex at distance 4 from
u′ on Pi. Since each vertex in G′ has 2-deg at least k, we get (i) |N2(w, G′)| ≥ k and (ii)
N2(w, G′) ⊂ T6(u′, G′). Therefore, w.h.p., it holds that there exists some z ∈ N2(w, G′) ∩Q

(where Q = V ′[Θ(log n/k)]) and consequently, (u′, z) ∈ E′(u). The 4-hop path segment
P [u′, w] can then be replaced by a 3-hop segment P ′ = (u′, z) ◦ (z, z′) ◦ (z′, w) for some
z′ ∈ N(w, G′) ∩ N(z, G′). It is easy to see that the additive stretch is at most +4, as we
replace a 4-hop segment by a 3-hop segment of length at most 8. See Fig. 1 (Right) for an
illustration. Lemma 3.2 follows.

𝑢′ 𝑢′′

𝑤 𝑤′

≤ 6≤ 6

≤ 𝑑 𝑢′, 𝑢′′ + 12

𝑢′ 𝑤

≤ 2

≤ 6
𝑧

Figure 1 An illustration for stretch and diameter argument of Theorem 1.3. Left: The path P

contains Ω(D) vertices which are high-deg and an in addition with large 6-depth BFS trees. The shortcut
edge is shown in blue. Right: The path P has Ω(D) vertices which are high-deg and with small 6-depth
BFS trees.

We are now ready to complete the proof of Theorem 1.3.

Theorem 1.3. It remains to modify the construction to obtain a size bound of
Õ((m/DG)12/11) edges. We start with a preliminary sparsification step that handles vertices
with 1-degree (that is simply the degree) at most k′ = (m/DG)1/11. Let Vℓ,1 be the subset
of all low-degree vertices (i.e., with 1-deg at most k′) and let Vh,1 = V \ Vℓ,1. Let H1 be a
subset of shortcut edges that handles the low-degree vertices, as follows. Let V ′

ℓ,1 = Vℓ,1[p]
for p = Θ(log n/DG). Then,

H1 =
⋃

v∈V ′
ℓ,1

{(x, y) | x, y ∈ N(v) and x ̸= y} .

ESA 2023

73:12 Towards Bypassing Lower Bounds for Graph Shortcuts

Next, we apply the construction of Lemma 3.2 on the graph Gh = G[Vh,1] with D = DG,
which outputs a +24-additive (DG − 1)-diameter hopset H2 on the graph Gh. Observe that
the diameter of Gh might be considerably larger than D. This motivates the more dedicated
guarantees of Lemma 3.2. The output hopset is given by H1 ∪H2.

Size. By the Chernoff bound, w.h.p., |H1| = Õ(mk′/DG). In addition, |Vh,1| = O(m/k′)
by a simple counting argument. Letting n′ = |Vh,1| = O(m/k′), by Lemma 3.2, |H2| =
Õ((n′/DG)6/5). This size bound follows by plugging k′ = (m/DG)1/11.

Diameter and Stretch. Consider a u-v shortest-path P with DG edges. If P contains
Ω(DG) vertices of degree at most k′, then w.h.p., P ∩ V ′

ℓ,1 ̸= ∅, and P is shortcut by one hop,
and the distances are preserved. It remains therefore to consider the case where P contains
ℓ = Ω(DG) segments P1, . . . , Pℓ, each of length 100, that are fully contained in the graph
Gh = G[Vh]. For every i ∈ {1, . . . , ℓ}, letting Pi = [ui1, . . . , ui100] then define an internal
segment P ′

i = [ui50, . . . , ui80] ⊂ Pi.
We next show that this suffices to recover the same argument as obtained in Lemma 3.2.

Partition the vertices on P ∩ Vh,1 into three subsets Vℓ, V small
h , V large

h as in the argument of
Lemma 3.2. We then consider the same cases as in Lemma 3.2 with minor modifications.

Case 1: Vℓ intersects with Ω(DG) distinct segments of P ′
1, . . . , P ′

ℓ . By Lemma 3.3, we
get that w.h.p. the algorithm adds a shortcut edge between some vertex Vℓ ∩ P to its 2-hop
neighbor on the path. Hence, the diameter (hopbound) is reduced by 1, and the distances
are preserved.

Case 2.1: V large
h intersects with Ω(DG) distinct segments of P ′

1, . . . , P ′
ℓ . Note that

any for any two vertices u, v on P at distance at least 13 from each other, it holds that their
6-hop neighborhoods are disjoint. This implies that the 6-hop neighborhood of the path P is
Ω(Dk2). By the exact same argument as obtained for Case 2.1 in Lemma 3.2, we get that
there is at least one segment Pj whose hopbound is reduced while introducing an additive
stretch of at most +24. This holds as the argument in Lemma 3.2 is local in the sense that it
shortcuts segments of constant length provided that there are sampled u′, u′′ ∈ V large

h that
are sufficiently apart on P and that each has a 4-hop P -neighbor on the segment.

Case 2.2: V small
h intersects with Ω(DG) distinct segments of P ′

1, . . . , P ′
ℓ . The claim

follows by noting that the argument for Case 2.2 of Lemma 3.2 shows that any segment Pj gets
shortcut (and while introducing an additive stretch of +4) with probability of Θ(log n/DG).
The probabilities are independent for vertex-disjoint segments. Note that this holds since
it is sufficient for the segment Pj to include the 6-hop neighborhood of the vertex. Since
V small

h intersects with Ω(DG) disjoint segments, at least one of them is successful, w.h.p.,
and provides the desired (−1) reduction in the hopbound (while introducing an additive
stretch of +4). ◀

New Additive D-Diameter Hopsets (for any D). We now turn to proving Theorem 1.4.
For simplicity we show a construction of O(D)-diameter hopsets with additive stretch O(α),
but these constant factors can be easily omitted. The algorithm has two main steps. The
first step computes a graph G′ on O(n log n/α) vertices at the cost of introducing an additive
stretch of O(α). The second step computes an exact D-diameter hopset on G′.

S. Kogan and M. Parter 73:13

Specifically, the algorithm starts by computing a weighted net graph G′ = Net(G, p) for
the given (unweighted) graph G where p = Θ(log n/α). The algorithm Net(G, p) outputs
a graph G′ = (V ′, E′, ω′) defined as follows. Let V ′ = V [p] be a random sample of V ,
obtained by sampling each v ∈ V independently with probability of p. Let E′ = {(u, v) ∈
V ′ × V ′ | distG(u, v) ≤ Θ(log n/p) ·W} and ω′((u, v)) = distG(u, v) for every (u, v) ∈ E′.
We use the following observation in our constructions:

▶ Observation 3.1 (Observation 3.4 in [20]). Let G′ = (V ′, E′, ω′) be the output net graph
of Alg. Net(G, p) where G = (V, E, ω) is an n-vertex graph with maximum edge weight W .
Then w.h.p., the following holds: (i) |V ′| = O(np log n), (ii) for every u, v ∈ V ′, distG′(u, v) =
distG(u, v), and (iii) the maximum edge weight of G′ is bounded by W ′ = Θ(W log n/p).

Denote S1 = V (G′), hence S1 = V [p]. By Obs. 3.1(iii), the maximum edge weight of
G′ is W = O(α). Let S2 = S1[q] for q = Θ(log n/D). For a vertex u and a set S1, let
Closest(u, S1) be the closest vertex to u in S1, breaking ties arbitrarily. The output hopset
H is the union of H0 ∪H1 ∪H2 of weighted edges, where:

H0 ← {(u, Closest(u, S1)) | u ∈ V }.
H1 ←WeightedSpanner(G′) of Theorem 1.8.
H2 ← ExactHopset(H1, D) of Lemma 1.6.

This completes the description of the hopset.

Proof of Theorem 1.4. Clearly, |H0| ≤ n. By the Chernoff bound, w.h.p., |S1| =
O(n log2 n/α), and therefore by Theorem 1.8, |H1| = Õ((n/α)4/3). The size of H2 can
bounded by |S2|2 = Õ((n/(α ·D))2), w.h.p. We next turn to consider the additive stretch
and the hopbound.

Consider a u, v pair and let u′ = Closest(u, S1) and v′ = Closest(v, S1). W.h.p., it
holds that distG(u, u′), distG(v, v′) = O(α). Since, u′, v′ ∈ S1, by Obs. 3.1 we have that
distG′(u′, v′) = distG(u, v). Hence, distH1(u′, v′) ≤ distG′(u′, v′) + O(α). Since H2 is an
exact D-diameter hopset for H1, we get:

dist(D)
H1∪H2

(u′, v′) = distH1(u′, v′) ≤ distG(u′, v′) + O(α) .

Letting P be the shortest u′-v′ path with at most D hops in H1 ∪ H2, we get that the
u-v path P ′ = (u, u′) ◦ P ◦ (v′, v) ⊆ G ∪ H has at most O(D) hops and of total length
distG(u, v) + O(α). The theorem follows. ◀

References
1 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad

Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020.

2 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen G. Kobourov, and Richard
Spence. Weighted additive spanners. In Isolde Adler and Haiko Müller, editors, Graph-
Theoretic Concepts in Computer Science – 46th International Workshop, WG 2020, Leeds,
UK, June 24-26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer
Science, pages 401–413. Springer, 2020.

3 Aaron Bernstein, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. Near-optimal
decremental SSSP in dense weighted digraphs. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1112–1122.
IEEE, 2020.

4 Greg Bodwin. New results on linear size distance preservers. SIAM J. Comput., 50(2):662–673,
2021.

ESA 2023

73:14 Towards Bypassing Lower Bounds for Graph Shortcuts

5 Greg Bodwin and Gary Hoppenworth. Folklore sampling is optimal for exact hopsets: Con-
firming the

√
n barrier. CoRR, abs/2304.02193, 2023. doi:10.48550/arXiv.2304.02193.

6 Greg Bodwin, Gary Hoppenworth, and Ohad Trabelsi. Bridge girth: A unifying notion in
network design. CoRR, abs/2212.11944, 2022. doi:10.48550/arXiv.2212.11944.

7 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. In Seth
Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021, October
4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

8 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths with near-additive error
in weighted graphs. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands,
volume 227 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

9 Jeremy T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability. SIAM J.
Comput., 49(5), 2020. doi:10.1137/18M1197850.

10 Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest paths
algorithm. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 686–697. IEEE
Computer Society, 2018.

11 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP in weighted
digraphs: Faster and against an adaptive adversary. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2542–2561. SIAM, 2020.

12 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms
for decremental single-source reachability on directed graphs. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 725–736.
Springer, 2015.

13 William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA, pages 665–669. ACM/SIAM, 2003.

14 Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts. SIAM J. Discret. Math., 35(3):2129–2144, 2021. doi:10.1137/19M1306154.

15 Arun Jambulapati, Yang P. Liu, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost
linear work and square root depth. In David Zuckerman, editor, 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019, pages 1664–1686. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00098.

16 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. J. Algorithms, 25(2):205–220, 1997.

17 Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower
bounds for hopsets. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 766–777. IEEE, 2022.

18 Shimon Kogan and Merav Parter. New diameter-reducing shortcuts and directed hopsets:
Breaking the barrier. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 – 12, 2022, pages 1326–1341. SIAM, 2022.

19 Shimon Kogan and Merav Parter. Faster and unified algorithms for diameter reducing shortcuts
and minimum chain covers. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 212–239. SIAM, 2023. doi:10.1137/1.9781611977554.ch9.

https://doi.org/10.48550/arXiv.2304.02193
https://doi.org/10.48550/arXiv.2212.11944
https://doi.org/10.1137/18M1197850
https://doi.org/10.1137/19M1306154
https://doi.org/10.1109/FOCS.2019.00098
https://doi.org/10.1137/1.9781611977554.ch9

S. Kogan and M. Parter 73:15

20 Shimon Kogan and Merav Parter. New additive emulators. In 50th International Colloquium
on Automata, Languages, and Programming (ICALP 2023). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2023.

21 Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds
for shortcut sets and additive spanners via an improved alternation product. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 – 12, 2022,
pages 3311–3331. SIAM, 2022.

22 David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989.
23 Sofya Raskhodnikova. Transitive-closure spanners: A survey. In Oded Goldreich, editor,

Property Testing – Current Research and Surveys, volume 6390 of Lecture Notes in Computer
Science, pages 167–196. Springer, 2010. doi:10.1007/978-3-642-16367-8_10.

24 Mikkel Thorup. On shortcutting digraphs. In Ernst W. Mayr, editor, Graph-Theoretic Concepts
in Computer Science, 18th International Workshop, WG ’92, Wiesbaden-Naurod, Germany,
June 19-20, 1992, Proceedings, volume 657 of Lecture Notes in Computer Science, pages
205–211. Springer, 1992.

25 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure al-
gorithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

A Missing Proofs

Proof of Lemma 1.7. Let TC ′ = TC(G)[S] be the induced transitive closure on the subset
S. Compute a collection of O(|S|/D) vertex-disjoint paths P in TC ′ such that TC ′ \ V (P)
has no directed path of length D/10. Let H1 =

⋃
P ∈P H(P) where H(P) is a 2-diameter

hopset for P that consists of O(|P | log |P |) edges, using Lemma 1.5. Let S′ = S[p] and
P ′ = P[p] for p = Θ(log n/D). Let H2 = {e(v, P) | v ∈ S′, P ∈ P ′} where e(v, P) is an
edge connecting v to its first outgoing neighbor in TC ′ on P . The size bound is immediate.

Consider the diameter argument. Let Q be a u-v shortest path in G for u, v ∈ S such
that |Q∩ S| ≥ D. By the properties of the paths P , we can assume that |Q \ V (P)| ≤ D/10.
We next show that Q can be transformed into a path Q′ ⊆ G ∪H1 such that the following
holds: (i) for each P ∈ P , |P ∩Q′| ≤ 3 and V (Q′) \ V (P) ⊆ V (Q). This can be obtained by
traversing Q and at each point of observing a vertex z ∈ P ∩Q, we add the shortcut edges
H(P) to connect z with the far most vertex z′ ∈ P ∩Q. It is easy to see that V (Q′) ⊆ V (Q)
as by shortcutting Q we can only omit vertices.

Finally, in the case where |Q′ ∩ S| ≥ D/2, by property (i), we have that Q′ intersects
with Ω(D) distinct paths from P. Let w ∈ S be the first sampled vertex in Q′ ∩ S′ (w.h.p.,
such exists among the first D/10 many S’ vertices on P). Let w′ ∈ S be the last vertex on
Q′ that belongs to a sampled path P ′ in P ′ (w.h.p., such exists among that last D/10 many
S’ vertices on P). The diameter argument holds by noting that the shortcut edge e(w, P ′) is
in H2. ◀

Proof of Theorem 3.1. The lower bound graph of [14] is a DAG with DG layers which
contain Ω(n) critical pairs. For each critical pair ⟨u, v⟩, u belongs to layer 1 and v belongs to
layer DG. Furthermore, there is a unique directed path in G between u to v and this path
contains exactly one vertex from each layer. We now remove the directions of the edges in G

to get an undirected and unweighted graph G′. Notice that now for each critical pair ⟨u, v⟩
in G′, we have a unique shortest path of length DG − 1 between u and v, that is there might
be other paths between u and v but the length of such path will be greater than DG − 1
because such path will necessarily contain at least one vertex from each level, and for a
certain level i there will be two vertices from level i. In particular, the path will contain

ESA 2023

https://doi.org/10.1007/978-3-642-16367-8_10
https://doi.org/10.1137/0220006

73:16 Towards Bypassing Lower Bounds for Graph Shortcuts

vertices u, w, v consecutively in the path, where u is in level i, w is in level i− 1 and v is in
level i. We therefore have that the unique directed u-v paths in G are translated into unique
undirected unweighted shortest paths in G′. Therefore, the claim holds in the exact same
manner as in [14]. ◀

	1 Introduction
	1.1 Our Contribution
	1.2 Preliminaries

	2 Directed Shortcuts
	2.1 Exact (D_G-1)-Hopsets
	2.2 Reachability (D_G-1)-Hopsets

	3 Additive Shortcuts for Undirected Unweighted Graphs
	A Missing Proofs

